Difficulties in Perceiving and Understanding Simulated Robot
Reliability Changes in a Sequential Binary Task

Hiroshi Furuya
hiroshi.furuya@ucf.edu
University of Central Florida
Orlando, Florida, USA

Matt Gottsacker
mattg@ucf.edu
University of Central Florida
Orlando, Florida, USA

Laura Battistel
laura.battistel@eurac.edu
University of Trento, Eurac Research
Trento, Italy

Gerd Bruder
bruder@ucf.edu
University of Central Florida
Orlando, Florida, USA

Zubin Choudhary
zubin.choudhary@ucf.edu
University of Central Florida
Orlando, Florida, USA

Gregory F. Welch
welch@ucf.edu
University of Central Florida
Orlando, Florida, USA

Figure 1: Composite image of participant monitoring a simulated robotic arm in the experimental virtual reality environment.

ABSTRACT

Human-robot teams push the boundaries of what both humans and
robots can accomplish. In order for the team to function well, the
human must accurately assess the robot’s capabilities to calibrate
the trust between the human and robot. In this paper, we use vir-
tual reality (VR), a widely accepted tool in studying human-robot
interaction (HRI), to study human behaviors affecting their detec-
tion and understanding of changes in a simulated robot’s reliability.
We present a human-subject study to see how different reliability
change factors may affect this process. Our results demonstrate
that participants make judgements about robot reliability before
they have accumulated sufficient evidence to make objectively high-
confidence inferences about robot reliability. We show that this
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reliability change observation behavior diverges from behavior ex-
pectations based on the probability distribution functions used to
describe observation outcomes.
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1 INTRODUCTION

Human-robot teams are often considered the future of human oper-
ations in space exploration, defense, search-and-rescue, and many
other important applications [4, 10, 40, 43]. In these and other do-
mains, trust, commonly defined as "the attitude that an agent will
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help achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability;" is one of the most important determi-
nants of the human-robot team’s success [38]. Human-robot trust is
in turn pivotally affected by the human’s perception of the robot’s
performance [25]. Incorrect perception of the robot’s performance
will negatively affect the calibration between trust and actual robot
capabilities, which can jeopardize the team [49].

Investigating factors governing HRI such as perceived perfor-
mance can be difficult to perform with physical robots due to high
technical overhead and safety considerations [16]. In response, the
HRI community has widely adopted the use of simulated robots in
VR environments to enable growth in HRI research while avoiding
issues with the use of real-world robots [15, 20, 55].

In this paper, we investigate aspects of human perception and
understanding of changes in reliability of a simulated robot in VR.
As the notion of performance and reliability in a robot can be com-
plex [11], we utilized a binary sorting task to abstract performance
and reliability to an easy to understand quantity: How accurately
does the robot determine to which of two bins an object belongs?
We used this task in a user study to investigate how quickly and
how accurately humans make judgments about changes in a robot’s
reliability level.

The main contributions of this work are:

(1) We describe a gap in current HRI literature on the trust and
human-robot teaming related to perceived performance.

(2) We present a human-subject experiment (N=20) demonstrat-
ing participant behaviors leading to poor performance in
detecting robot reliability changes.

(3) We discuss our results and their implications for future work
in HRL

The remainder of this paper is structured as follows: first we discuss
concepts and related work that form the background for our paper
in Section 2. Then we describe our experimental design in Section 3.
We then present our results in Section 4. In Section 5 we provide a
general discussion of these results. Finally, we conclude the paper
in Section 6.

2 BACKGROUND

In this section, we discuss concepts and prior work that inform
our investigation of human detection of changes in robot reliabil-
ity. These include efforts using VR for HRI research, the role of
perceived performance in trust models in HRI, and methods for
capturing human perception and understanding of change.

2.1 Human-Robot Interaction in Virtual Reality

VR and HRI research have converged to explore novel methods
for robotic design, programming, force feedback in virtual environ-
ments, and human operation of robots [8]. VR offers significant
advantages in studying HRI due to its ability to provide a con-
trolled, repeatable, and safe experimental environment. Tang and
Yamada [56] demonstrated that VR can be used to provide safer and
more effective ways to operate construction robots. Additionally,
the depth perception afforded by stereoscopic VR has been shown
to improve human observer performance in understanding the mo-
tion of a robot compared to a non-stereo display [42]. The high
level of control available in programming virtual environments
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makes VR a useful tool for investigating HRI questions related to
human factors [54]. For instance, it is possible to programmatically
manipulate virtual robot performance to investigate the effect of
changes in robot reliability on human factors, such as trust [22].
Robinette et al. performed an experiment using simulated robots in
a virtual emergency evacuation task to demonstrate that poor robot
performance led to lower levels of trust and less frequent choices
to depend on the robot [51]. Additionally, VR allows evaluating
human-robot interactions that would be prohibitive to conduct
in the real world due to material and safety considerations [19].
For example, Mara et al. implemented a large-scale industrial-style
virtual environment where user studies can be conducted in VR
for investigating HRI topics [44]. VR and simulated robots have
also been successfully used to train humans in HRI, including in
medical [39, 46] and industrial contexts [50].

2.2 Perception of Robot Performance in
Human-Robot Interaction

HRI researchers have modeled human perceptual and cognitive
processes when interacting with robots. For instance, Boos et al.
presented an information processing model linking human percep-
tion, comprehension, and action in response to cues from a robot [7].
Honig et al. developed a model for human understanding of failures
in HRY, including separate steps for perceiving and comprehending
failures [28]. Observation of a robot’s performance is a critical step
in the formation of human trust in robotic systems [38]. Hancock’s
influential meta-analysis of trust factors in HRI [25], supported
with a follow-up meta-analysis [26], highlights the central role of
perceived robot reliability in human-robot trust. Khavas et al’s
survey also found that robot performance is an important factor in
determining the quality of HRI, and that performance-based mod-
els are often used as a feedback source for improving subsequent
human-robot interactions [32]. Moreover, researchers have demon-
strated that operator trust in robots changes as the reliability of the
robot changes [9, 29].

However, a complicating factor for these models is the uncer-
tainty regarding the amount of evidence required for a human
to achieve an accurate comprehension of reliability and whether
human perception of performance is reasonably aligned with the
robot’s actual performance. Prior work has demonstrated fatigue
resulting from extended vigilance results in decreased trust in
autonomous systems [24]. Perceived automation reliability has
also been shown to vary inversely with human monitoring perfor-
mance [48], meaning that incorrect monitoring can lead to percep-
tions of better performance. The kind of evidence humans observe
also has been shown to affect human trust. For example, Yang et
al. [65] demonstrated that events diminishing trust have greater
impacts on trust than events that would repair it. To more fully
understand the human factors involved in forming trust and re-
liability judgments, it is necessary to examine how human make
reliability judgments and how those judgments vary over time. In
HRI, inaccurate perceptions of robot reliability lead to poor team
outcomes.
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2.3 Temporal Dynamics of Trust in
Human-Robot Interaction

It is well-established that trust is a time-dependent construct, but
the underlying temporal dynamics are not well understood, and so
new experimental methodologies are required [61]. Lee and Moray
proposed modeling trust using time series representations [37]. Xu
and Dudek [63] modeled real-time changes in trust using robot
performance relying on episodic trust measurements, where the
instrument is administered after observation of an event taking
place over thirty to sixty seconds [63]. Trust has also been modeled
and measured as a result of a series of binary outcomes [23], similar
to the sorting outcomes in our work. There is a growing awareness
and importance placed on the idea that HRI unfolds over various
scales of time [57], such as over the course of a single task [14].
Other works further focus on developing the notion of “trust dy-
namics,” time-dependent changes in trust, over micro-time scales
over the course of individual interactions in HRI. For example, Li
et al. [41] used conversation analysis to measure predictors of trust
during an interaction. Bhat et al. demonstrated the use of a slider
to record self-reported trust on a moment-to-moment basis over
the course of an experiment [6]. Guo and Yang presented a similar
experiment employing a high number of trials with frequent trust
reporting to capture granular changes in trust [21]. Kintz et al. pre-
sented a human-subject study exploring ways to estimate trust in
real time based on a task-dependent model of human actions [33].
Among the numerous definitions and models of trust, one com-
mon feature is a feedback loop where observations and interactions
with the robot informs subsequent human trust evaluations of the
robot [34]. Of the numerous factors in these feedback loops, the
most influential is typically considered to be the performance of
the robot [25]. It is reasonable to assume that perceiving and under-
standing the robot’s performance takes time, with additional time
added for cognitive processes to resolve and update the human’s
trust in the robot. While substantial literature exists on developing
our understanding of the potential effects of various robot perfor-
mance outcomes [12], it is typically assumed that users have enough
time to understand these events and have correctly perceived them.
Our study aims to shed light on this assumption by taking time
and accuracy measurements of participants’ observation behaviors
(i.e., how long it took them to detect and identify changes to robot
reliability, and whether their observations were correct).

3 EXPERIMENT

In this section, we describe the experiment we conducted using a
simulated robot in VR to study participants’ performance in moni-
toring for changes in the robot’s reliability. The study protocol was
approved by the institutional review board of our university under
protocol number: SBE-17-13446.

3.1 Participants

Estimating sample sizes for Generalized Linear Mixed Models (GLMMs),

the use of which we will discuss in Sec. 3.5, is notoriously diffi-
cult [35]. This is further complicated by the fact that we did not
decide on a particular model apriori to use for non-analytical power
analysis techniques such as simulation. To get a rough estimate
for an appropriate sample size, we instead performed an apriori
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Colored Bins

Figure 2: Virtual environment setup consisting of 6DOF robot
arm, colored objects, two colored bins and a billboard text
window for the instructions. Objects flowed from the left
side of the conveyor belt to the right.

power analysis in G*Power [17] for a repeated measures, within-
subjects ANOVA. We utilized a large effect size, r]f, = 0.25, based
on prior work in HRI that demonstrates that differences in robot
performance have large effects on human trust [59]. Using stan-
dard values of ¢ = 0.05 and power of 1 — = 0.8, we calculated a
required sample size of 18 participants. Furthermore, recent work
in our community involving HRI (e.g., [64]) utilizes similar sample
sizes. Based on these factors, we chose to recruit 20 participants (14
male, 6 female), all students from our university community. All of
the participants had normal or corrected-to-normal vision. None
of the participants reported any visual or vestibular disorders, such
as color or night blindness, dyschromatopsia, or a displacement
of balance. 18 participants had used a VR head-mounted display
(HMD) before. Participants received monetary compensation for
their participation. The experimental task and the questionnaires
took participants approximately 60 minutes to complete.

3.2 Materials

3.2.1 Experimental Setup. Participants were seated and immersed
in a virtual environment via the Meta Quest 3, which provides a
horizontal field of view of approximately 110 degrees and a vertical
field of view of approximately 96 degrees, as well as a native resolu-
tion of 2064 X 2208 per eye at a refresh rate of 120 Hz. Participants
were provided with the right controller only. We used a separate
computer for participants to answer the questionnaires. The virtual
environment application was deployed to the HMD. Development
for the virtual environment application was performed using Unity
version 2022.3.

3.2.2  Virtual Environment. The virtual environment consisted of
a background environment, a conveyor belt asset, a cube situated
at each end of the conveyor belt, a 6 degree-of-freedom (6DOF)
robot arm, two colored bins, and a billboard text window used to
deliver instructions. The background environment was adapted
from sample assets provided as part of the Meta XR All-in-One
SDK [1]. The conveyor belt asset was created using a long box and
a black rubber texture. The cubes at each end of the conveyor belt
functioned as the start and end points for objects that travel down
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the conveyor belt. The 6DOF robot arm was created using Unity
primitive shapes and utilized a 6DOF robot arm inverse kinematics
solver and linear joint interpolation to simulate realistic robot arm
motion. The two colored bins served as sorting targets for the robot
to sort objects into. The billboard text window provided instructions
for participants to follow. Figure 2 depicts this environment.

3.2.3  Simulated Robot Motion, Appearance, and Sound Effects. Each
sorting repetition, hereon referred to as a ‘pick, begins with the
robot at a neutral rest position. The robot then moves the end
effector down to pick up an object. After picking up an object,
it returns to the rest position. It then moves the end effector to
place the object into one of the bins. Finally, it returns back to the
rest position to finish the pick animation. This process took four
seconds in total, referred to as the pick cycle time. Importantly,
while the pick cycle time is four seconds, it may take less than four
seconds for an observer to perceive a pick, as they may be able to
predict the path of the robot after observing part of the motion. We
selected four seconds as the pick cycle time as pilot testing revealed
that shorter cycle times made it more difficult for participants to
maintain attention and observe the results of each action. This is in
line with prior work that demonstrates that decreasing robot work
pace eases perceived cognitive and temporal demands of humans
tasked with observing the robot’s performance [60]. Therefore, we
chose to use a slower pick cycle time to mitigate problems that may
arise from extended periods of high perceived workload.

Pilot testing also revealed a risk that participants would not cor-
rectly perceive each trial (see Section 3.3.2) as independent if the
robot looked and behaved the same way each trial. To mitigate this
risk, we implemented several different shapes and materials for the
robot arm links, robot sound effects, shapes and colors of objects to
be sorted, and paths the robot would take between its rest position
and picking up a new object. In each trial, a random combination
of the above elements would be assigned, resulting in a robot that
looked, sounded, and moved differently than robots in other trials.
To ensure that these changes would not affect participant percep-
tion, the actual length and size of the robot, the pick cycle time,
approximate object size, and placement of objects and destination
bins were kept constant. Furthermore, all shapes, materials, sounds,
and motion paths for the robot were similar to each other in realism.

3.3 Methods

3.3.1 Study Design. We ran a within-subjects design study for our
experiment with the following two factors:

e Reliability Change Magnitude (3 levels) — Zero, Small
(25%), Large (50%)
o Reliability Change Direction (3 levels) — None, Up (+),
Down (-)
These factors were implemented using a 3 X 3 square of initial and
final reliability values: 25% (Low), 50% (Medium), and 75% (High).
This resulted in 9 different reliability conditions. These conditions
were mapped to the levels for each reliability change factor by the
direction of change between the initial and final value (i.e., increase
or decrease) and the magnitude of that change (i.e., 0% difference
is “zero,” 25% is “small,” and 50% is “large”). The mapping between
these conditions and the two reliability change factors can be seen
in Table 1. This mapping results in 3 conditions for each reliability
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change direction level, 3 conditions for zero change magnitude, 4
conditions for small change magnitude, and 2 conditions for large
change magnitude. For example, the 50%-75% condition is labeled in
Table 1 as (Small, Up). During the trials for this condition, the robot
would initially sort items with 50% accuracy, then increase (see
Section 3.3.2) to 75% accuracy for the experimental manipulation.

Each condition was repeated 3 times, resulting in 27 experimen-
tal trials. Results from pilot testing indicated a significant risk of
participants learning the 3 different reliability values (i.e., Low,
Medium, and High), so we added an additional 10 distractor trials
of random initial and final reliability values to mask the experimen-
tal values. Trial order was simply randomized by adding all trials,
including distractor trials, into a single list and randomly shuffling
the order of list elements. This shuffling was performed separately
for each participant.

3.3.2  Procedure. Upon arrival, participants read through the con-
sent form, and were asked to give their verbal consent to participate
in the experiment. We assigned them a participant ID, and asked
them to complete a demographics survey and the Simulator Sick-
ness Questionnaire [31]. Participants were then briefed about the
experiment and then donned the headset for a tutorial session. The
tutorial explained the experiment and took participants through
three practice trials demonstrating no reliability change, an increase
in reliability, and a decrease in reliability, respectively. These trials
were not counted as part of the experimental data set and served to
familiarize and "warm up" participants with the setting and the task.
After the tutorial, the experimenter debriefed and asked the par-
ticipant to explain the task in their own words. The experimenter
issued corrections or clarifications as needed. Then participants
completed all trials, taking breaks between trials as needed. In each
trial, participants observed the robot sorting items at an initial reli-
ability level. Participants pressed the ‘A’ button on the controller
when they felt like they understood this initial reliability level well.
After pressing the button, the robot could change its reliability level,
depending on the particular condition the trial was assigned to. Par-
ticipants continued to observe the robot and pressed the “Trigger”
button as soon as they noticed a change in reliability (this recorded
Detection Time, see Section 3.3.3). Participants were briefed that
noticing a change may occur without fully understanding the new
reliability level. Participants then continued to observed the robot
until they felt confident about the robot’s new reliability level. At
this point, participants pressed the “Trigger” button (this recorded
Identification Time, see Section 3.3.3). Finally, participants used the
joystick and the ‘A’ button to respond to a prompt asking them to
report whether the perceived change in reliability was an increase
or a decrease (see Correctness in Section 3.3.3). For all three inputs
recording DT, IT, and direction of perceived change, respectively,

Table 1: Mapping from reliability values to reliability change
variable levels for: (Magnitude, Direction)

Initial Reliability
25% 50% 75%
25% | (Zero, None) | (Small, Down) | (Large, Down)
50% | (Small, Up) (Zero, None) (Small, Down)
75% | (Large, Up) (Small, Up) (Zero, None)

Final Reliability
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Figure 3: Timeline illustrating each trial and the measures DT and IT.

the participant could also press the ‘B’ button to indicate that they
perceived no change. After these inputs were recorded, the trial
ended. Participants were prompted to press the ‘A’ button when
they felt ready to begin the next trial, allowing them to take a short
break between trials. After completing all the trials, participants
answered the post-experience Simulator Sickness Questionnaire.
Participants then received monetary compensation.

3.3.3 Measures. To explore human time-dependent behavior in
perceiving and understanding performance changes of a robot, we
measured the following:

e Detection time (DT) — The time taken by participants to
detect that the robot’s reliability has changed. This is the
time between the robot changing its reliability level and
participants first noticing a change in reliability.

o Identification time (IT) — The time taken by participants
to identify the robot’s new reliability level. This is the time
between the robot changing its reliability level and partic-
ipants feeling like they confidently understood the robot’s
new reliability level.

e Correctness — If the reported direction of change in relia-
bility (increase, decrease, or none) was correct. In aggregate,
this is the percent of correct reports of direction of change
in reliability.

Both DT and IT are calculated relative to the moment when the
reliability of the robot changed, which was in turn triggered by
participants indicating that they had understood the robot’s initial
reliability level as discussed in Section 3.3.2. This moment was
instantaneous, implemented as a change in a parameter used to
simulate the robot. In Section 3.5 we further interpret DT and IT
not as times, but the number of observations until the recording of
DT and IT. Figure 3 illustrates how DT and IT are calculated. It is
of note that the reference time for calculating DT and IT is itself
some time after the start of trial. This time between the start of
the trial and triggering the change in reliability was not measured,
as the task of understanding the robot’s initial reliability is not
the focus of this study. We were instead interested in measuring
the time for participants to perceive and understand a change in
reliability from this initial state. In addition, from DT and IT we
can calculate the time between the two reports, hereon referred to
as BT for ‘between time, as follows:

BT = IT - DT 1)

3.4 Hypotheses

The following hypotheses were formulated based on expectations
that we used to develop our experimental design:

H1 The difference between DT and IT is greater than zero.

H2 DT decreases with increasing magnitude of change (Large <
Small < Zero).

H3 DT is lower for decreases in reliability than for increases
(Down < Up).

H4 IT is the same for all conditions (Large = Small = Zero;
Down = Up = None).

H5 Correctness increases with increasing reliability change mag-
nitude.

H6 Correctness has a direct relationship with IT.

Hypothesis H1 is informed by information process models in HRI,
where perceiving and understanding robot cues are separate steps
(see Section 2) and therefore could be expected to each take a
detectable amount of time. In this experiment, DT would correspond
to the time taken to perceive the cue (i.e., change in reliability) and
IT corresponds to the time taken to understand the cue.

Hypothesis H2 is informed by signal detection concepts, where
greater magnitude signals are easier to perceive.

Hypothesis H3 is informed by trust literature that demonstrates
a stronger effect of trust diminishing events on trust than trust build-
ing events [65]. We are interested in observing if this effect extends
to perception of reliability, which is an antecedent to trust [25].

Hypothesis H4 is informed by the expectation that strategies
for estimating binomial probability rates do not differ by change
characteristics, i.e. a naive strategy is to simply observe the robot
for a set number of repetitions and make a decision based on the
number of successes observed. Such a strategy is not affected by
the direction or magnitude of the reliability change.

Hypothesis H5 is related to H2, where greater stimuli are easier
to detect.

Hypothesis H6 is based on the expectation that longer obser-
vation allows for greater accumulation of observations to inform
more accurate assessments of reliability change.

3.5 Analysis

For DT, IT, and Correctness results, GLMMs [18, 53] were used to
assess the relationship between reliability change factors and DT, IT,
and Correctness. We used GLMMs because they allow modeling of
data that do not follow a normal distribution through the selection
of probability distributions that are more suitable for the data’s
distribution.
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Table 2: Descriptive statistics for DT, IT, and Correctness for all reliability pairs

DT (s) IT (s) Correctness
Q1 [ Median [ Q3 | Q1 [ Median [ Q3 Mean
25-25 || 5.8 | 17.6 269 | 11.1 | 21.7 32.9 | 0.450
25-50 || 6.7 | 16.0 25.8 | 12.7 | 26.0 37.7 | 0.407
25-75 || 7.8 | 159 21.2 | 141 | 21.2 33.1 | 0.633
50-25 || 4.9 | 14.7 23,5 | 104 | 21.1 33.9 | 0.467
Reliability Pair (%) | 50-50 || 7.6 | 14.9 224 | 125 | 22.7 36.8 | 0.233
50-75 || 8.1 | 16.7 27.8 | 11.8 | 22.2 35.6 | 0.500
75-25 || 7.8 | 12.4 20.1 | 12.6 | 19.7 27.2 | 0.700
75-50 || 8.9 | 15.5 22.8 | 12.3 | 245 33.3 | 0.542
75-75 || 8.7 | 16.2 24.0 | 13.0 | 25.1 36.1 | 0.400

For each measure, we first examined density plots to determine
the appropriate distribution family to use. Then, we compared dif-
ferent models using different independent variables as fixed effects
and independent variables and participant IDs as random effects.
Not all possible models converged and many resulted in singular
fits, including most models with multiple fixed effects or random
slopes. We removed these from consideration, and compared the
remaining ones using AIC [2] and BIC [52] values to choose the
best fitting model, i.e., the model with lowest AIC and BIC values,
then fit the model by maximum likelihood estimation. We evalu-
ated significance using the Wald Chi-Square test. For models with
significant Wald Chi-Square results, we performed pairwise t-tests
with Tukey HSD correction as necessary. Selected models were
evaluated using goodness-of-fit measures, including Marginal R?
and Conditional R?, variance explained by fixed effects and variance
explained by both fixed and random effects, respectively [47].

The experiment in this paper was designed to help us better
understand the nature of the relationship between robot reliability
factors and participant perception behavior, a task for which R-
statistics are well-suited as the summary statistic [45]. Thus, the
above Marginal and Conditional R? values serve as the effect size
indices based on variance explained. These R? values are analogous
to the 7% summary statistic used to describe effect sizes in ANOVA
analyses [30, 47]. Analysis was performed using R 4.4.0 using the
Ime4 package for fitting models, emmeans package for evaluating
significance, and MuMIn package for evaluating goodness of fit.

We also explored implications of DT and IT by dividing them
by 4 seconds, the amount of time required for the robot to perform
one repetition of its task. In doing so we always round up the result,
as it may be possible for participants to correctly predict the result
of any task repetition by closely observing the robot’s motion, i.e.,
observing to see which bin the robot is moving the currently held
object towards. In such a case, it would take less than the prescribed
4 seconds for a participant to observe a new outcome in the robot’s
sorting task.

4 RESULTS

In this section we present the results from our experiment and anal-
ysis. We primarily report DT and IT using median and interquartile
range due to their better suitability compared to mean and stan-
dard deviation for describing distributions similar to the gamma

distribution [62]. Table 2 displays descriptive statistics for DT, IT,
and Correctness, aggregated by experimental reliability pair.

In the course of interpreting the data, we also present DT and
IT in terms of the number of picks, based on the pick cycle time
described in Section 3.2.3. Because participants could potentially
observe or predict a pick before the full pick cycle time elapses,
the formula for computing picks using the ceiling function, which
rounds numbers up to the next whole number, is as follows:

Timepr, IT “
Timecycle

@

Pickspr, 1T =

4.1 Analysis of Detection Time

Table 3 shows descriptive statistics for DT by reliability change
direction. We chose to aggregate by reliability change direction due
to the following GLMM analysis.

Following the process described in Section 3.5, we found that
the data distribution for the continuous time variable was clearly

Table 3: Descriptive statistics for DT by Direction of Reliabil-
ity Change (None, Up, Down)

Direction
None Up Down
Time (s) | Picks | Time (s) | Picks | Time (s) | Picks
Q1 10.1 3 9.7 3 8.4 3
Median || 16.3 5 16.4 5 15.4 4
Mean 17.8 5 18.0 5 16.1 5
Q3 24.7 7 24.7 7 20.0 6

Table 4: GLMM employed to analyse the effect of direction
of reliability change on DT.

Model Declaration

DT ~ Condition + (1 | PID)

DT ~ Direction + (1 | PID)

DT ~ InitialReliability + (1 | PID)

DT ~ InitialReliability + Direction
+(1|PID)

DT ~ InitialReliability + Direction
+ (Direction | PID)

DT ~ Magnitude + (1 | PID)

AIC (%)
11235 (2.3%)
11229 (61.2%)
11233 (9.0%)
11232 (14.6%)

BIC (%)
11283 (<0.1%)
11250 (79.4%)
11283 (11.7%)
11262 (0.3%)

11233 (6.3%) | 11285 (<0.1%)

11233 (6.6%) | 11255 (8.6%)
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Figure 4: Percentile rank for DT as number of picks, grouped
by reliability change direction

mounded and right-skewed, leading to the selection of the Gamma
distribution family with log-link function. AIC (weighted 61.2%)
and BIC (79.4%) agreed on selecting a model with reliability change
direction as fixed effect and participant ID (PID) as random effect,
as shown in Equation 3.

DT ~ Direction + (1|PID) 3)

Table 4 shows the other models that were compared to this one with
corresponding AIC and BIC values. This result does not support
H2, the hypothesis that DT is significantly affected by different
magnitudes of change in reliability; instead we found that a model
with change direction as fixed effect is best. Furthermore, using a
Wald Chi-Square test, we do not find a significant effect of reliability
change direction on DT; y%(2) = 4.66, p = 0.097. This does not
support H3, the hypothesis that DT is significantly affected by
reliability change direction. Goodness of fit was also low (marginal
R? = 0.3%, conditional R? = 33% using the trigamma function).

For the same reasons discussed in Sec. 4, our data is well-suited
for aggregation by percentile ranks, or the percentage of samples
at or less than the value at that rank. For example, a rank of 25%
indicates that 25% of points are at or below the given value [62]. Q1
corresponds to the 25% percentile rank, median to the 50% percentile
rank, and Q3 to the 75% percentile rank. Figure 4 shows a plot of
percentile rank of DT by number of picks.

4.2 Analysis of Identification Time

Table 5 shows descriptive statistics for IT by reliability change
direction. We chose to aggregate by reliability change direction due
to the following GLMM analysis.

Following the process described in Section 3.5, we found that
the data distribution for the continuous time variable was clearly
mounded and right-skewed, leading to the selection of the Gamma
distribution family with log-link. Just as for IT, AIC (50.0%) and
BIC (56.9%) agreed on selecting a model with reliability change
direction as fixed effect and participant ID as random effect, as
shown in Equation 4.

IT ~ Direction + (1|PID) (4)

Table 6 shows the other models that were compared to this one with
corresponding AIC and BIC values. Using a Wald Chi-Square test,
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Table 5: Descriptive statistics for IT by Direction of Reliability
Change (None, Up, Down)

Direction
None Up Down
Time (s) | Picks | Time (s) | Picks | Time (s) | Picks
Q1 16.3 5 14.3 4 15.5 4
Median || 26.7 7 26.1 7 21.7 5
Mean 26.4 7 25.6 7 25.0 6
Q3 31.5 8 33.6 9 31.2 8

Table 6: GLMM employed to analyse the effect of direction
of reliability change on IT. Akaike weight percentages are
included with the raw values.

Model Declaration

AIC (%)

BIC (%)

IT ~ Condition + (1 | PID)

11569 (0.7%)

11616 (<0.1%)

IT ~ Direction + (1 | PID)

11560 (50.0%)

11582 (56.9%)

IT ~ Direction + (Direction | PID)

11568 (1.2%)

11611 (<0.1%)

IT ~ InitialReliability + (1 | PID)

11563 (14.5%)

11584.1 (16.5%)

IT ~ InitialReliability + Direction

+ (1| PID)

11563 (10.4%)

11593 (0.2%)

IT ~ Magnitude + (1 | PID)

11562 (23.2%)

11583 (26.4%)

we do not find a significant effect of reliability change direction on
IT; ¥%(2) = 2.65, p = 0.266. Goodness of fit was also low (marginal R?
= 0.2%, conditional R? = 35% using the trigamma function). These
results support H4, that IT is not significantly affected by direction
and magnitude characteristics of the change in reliability.

4.3 Analysis of Difference Between Detection
and Identification Time

We expected BT to be non-zero as a reflection of the time required
to proceed from one stage in information processing to another (see
Section 3.4). To evaluate this, we first observed the data distribution,
which appeared mounded and right-skewed just like DT and IT,
matching a gamma distribution. Descriptive statistics for BT are as
follows: Q1 = 0.93s, Median = 3.63s, Mean = 8.17s, Q3 = 11.76s. These
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Figure 5: Percentile rank for IT as number of picks, grouped
by reliability change direction
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figures are clearly longer than the constant time required to simply
press the button on the controller, which would be expected if
there were no time spent on additional cognitive processes between
information processing stages. To further assess the hypothesis that
the mean of the data set was non-zero, we ran a one-sample t-test
that confirmed that the true mean of BT is non-zero; t(537) = 16.57,
P < 0.001. This supports H1, the hypothesis that there is a non-
zero time period between perceiving and understanding a change
in a robot’s reliability.

4.4 Analysis of Correctness

As the correctness measure is a repeated measure with binary out-
comes, we chose the binomial family with probit link function. AIC
(69.6%) and BIC (99.4%) agreed on selecting a model with reliability
change magnitude as fixed effect and participant ID as random
effect, as shown in Equation 5.

Correctness ~ Magnitude + (1|PID) (5)

Table 7 shows the other models that were compared to this one
with corresponding AIC and BIC values. Using a Wald Chi-Square
test, we found a significant effect of reliability change magnitude
on Correctness in reporting the direction of reliability change; y?(2)
= 27.05, p < 0.001. Pairwise comparison using the Tukey HSD test
indicated significant differences between Zero and Small magni-
tudes (f = -0.31, SE = 0.13, p = 0.039), Zero and Large magnitudes
(B =-0.80, SE = 0.15, p < 0.001), and Small and Large magnitudes
(B =-0.49, SE = 0.15, p = 0.002). Goodness of fit was low (marginal
R? = 5.1%, conditional R? = 6.9% using the delta method). This sup-
ports H5, that increasing magnitude characteristics of reliability
change increases the rate of correct identification of the change in
reliability.

Mean correctness was 36.1% for the Zero condition, 47.9% for
the Small condition, and 66.7% for the Large condition.

We also performed a linear regression using the Im function
in R to see if Correctness and IT have a linear relationship, i.e. if
longer identification times, and therefore observation times, corre-
late with rates of correctly identifying changes in reliability. Results
demonstrated a significant regression, F(1,18) = 15.71, p < 0.001
with adjusted R? = 0.435. This result supports H6, the hypothesis
that Correctness and IT correlate.

4.5 Other Exploratory Analyses

The low marginal R? values estimated for the models for all three
measures motivated some exploratory analyses investigating other
factors that may provide more explanatory power. We first explored

Table 7: GLMM employed to analyse the effect of direction
of reliability change on Correctness.

Model Declaration AIC (%) BIC (%)
Correctness ~ Condition + (1 | PID) 726 (27.5%) | 769 (<0.1%)
Correctness ~ Direction + (1 | PID) 735 (0.4%) 752 (0.5%)

761 (<0.1%)
756 (<0.1%)

(

Correctness ~ InitialReliability + (1 | PID) | 744 (<0.1%)

Correctness ~ InitialReliability + Direction | 731 (2.5%)
+ (1| PID)

Correctness ~ Magnitude + (1 | PID)

724 (69.6%) | 741.2 (99.4%)

Furuya et al.

the effect of trial number, an indication of how far through the
experiment the participant was, on DT and IT:

DT ~ Trial Number + (1|PID)

IT ~ TrialNmuber + (1|PID) ©)

These models were favored over previously assessed models both
in AIC and BIC (DT: 11221 and 11238, respectively; IT: 11539 and
11556, respectively). A Wald Chi-Square test found a significant
effect of trial number on DT; )(2(1) =10.96, p < 0.001; marginal RZ=
0.08%, conditional R% = 36.6% using the trigamma function. A Wald
Chi-Square test further found a significant effect of trial number
onIT; )(2(1) = 23.92, p < 0.001; marginal R? = 0.17%, conditional R?
= 36.4% using the trigamma function.

5 DISCUSSION
5.1 Differences Between DT and IT

Our results on BT align with information processing models of trust
in HRI, as we observed a time difference between self-reported per-
ception of a change (DT) and perceived understanding of the nature
of the change (IT). We can interpret this difference as the time and
evidence required for participants to transition from mere percep-
tion of a reliability change cue to comprehending the characteristics
of the cue, i.e., the direction of reliability change. In the real world,
for more complicated tasks in situations with greater uncertainty,
we may expect longer time intervals and greater amounts of evi-
dence required for humans to transition between perception of an
HRI cue, understanding it, and experiencing subsequent changes in
their mental model of the robot, to include trust. It will be impor-
tant to further explore factors that affect these processing intervals
to better understand how unpredictable events may unexpectedly
shape HRI due to interrupted or incomplete processing of changes
in robot state.

5.2 Participants Make Reliability Judgments
with High Error Risk

Our results also shed light on not just the timing of perceiving and
understanding cues, but also on the character of how participants
completed the task of understanding changes in robot reliability
as a whole. Participants declared understanding the change in ro-
bot reliability after a median of 5 to 7 observations (19.7 to 26.0
seconds, see Section 4 for discussion on the computation of Picks
from DT and IT), depending on condition. Due to the simplicity
of the sorting task, we were able to model theoretical outcomes
of participant observations and compare them with participant
behavior using the cumulative binomial probability function. The
binomial probability distribution describes the probability of dif-
ferent binomial outcomes, such as the probability of observing 5
successes out of 7 picks. The cumulative binomial probability func-
tion describes the probability of observing less than or equal to a
certain number of successes, such as the probability of seeing 5
or less successes out of 7 picks [13]. We can use this to estimate
the likelihood of actually observing sequences of picks whose out-
comes match the true reliability change, as seen in Table 8. We
used the median number of picks at IT as the number of trials over
which to evaluate our cumulative probabilities to see that there are
only two conditions for which participant behavior could yield a
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Table 8: Probability of observing outcomes matching final
reliability

Reliability Median Successes | Probability of
Pair Observations | Required | Observation
25%-25% 6 =3 35.6%
25%-50% 7 >2 77.3%
25%—=75% 6 > 2 99.5%
50%—-25% 6 <2 83.1%
50%—-50% 6 =3 31.3%
50%~-75% 6 >4 83.1%
75%—25% 5 <3 98.4%
75%—-50% 7 <5 93.8%
75%~75% 7 =5 31.1%

theoretical change detection accuracy at or above the traditional
95% threshold, which represents the chance that an observation is
within two standard deviations of the mean. It appears that partici-
pants frequently chose to make their reliability change judgments
before accumulating enough observations to reach a high theoreti-
cal level of accuracy and thus assumed a higher level of risk. On the
other hand, participants were instructed to declare their perceived
changes in performance after reaching a “confident” level of under-
standing, potentially indicating that participants did not perceive
this risk when completing the trials. In HRI and human-robot trust,
the risk of inaccurate perception of robot reliability can directly
lead to the risk of poor team outcomes and team failure. It is impor-
tant to understand that in the real world, humans cannot always be
monitored and forced to await further observations before making
a decision. It is important to investigate the factors behind this
behavior to better understand how to design HRI around risks that
humans may take in assessing robot reliability.

5.3 Participants Perform Poorly Compared to
Basic Probability Models

If a human were to use the cumulative binomial probability func-
tion described above to guide reliability change perception and
understanding, they would simply observe a set number of task
repetitions and to report perceived direction of reliability change
based solely on the observed success rate. In such a case, we would
expect outcomes of this strategy to match values from the cumula-
tive binomial probability function, which evaluates the probability
of observing a certain number of successes out of a series of in-
dependent binary events. For example, in the case of the 50% to
75% condition, we would expect participants to correctly detect the
increase in performance if they observed at least 4 successes out of
6 observations (6 being the median number of picks observed for
identification in that condition). The cumulative binomial probabil-
ity of such observations occurring is 83.1%, implying that a robotic
strategy of counting successes over repetitions of 6 observations
would yield average correctness of 83.1%. Instead we see from Ta-
ble 2 that participants’ mean correctness for the 50%-75% reliability
pair condition was approximately 50%. From the Tables 2 and 8 we
can clearly see that participant performance does not match the
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probability distribution, further indicating that participant perfor-
mance is poorer than would be expected. Strangely, despite this
apparent degradation in performance compared to theoretical prob-
ability, we found a strong correlation between DT and IT, indicating
that accumulation of more observations still does improve accuracy
in identifying robot reliability changes.

From these results and the results discussed in Section 5.2, it
appears that the process by which participants are making reliability
change judgments is fundamentally different than theoretically
expected. Participants do not appear to wait for a set of observations
before committing to a decision on whether and in what direction
reliability changed. Instead, participants appear to be driven by a
few observations towards some unobserved decision threshold well
below what would be expected if they used a binomial probability
distribution model to make their decision.

5.4 Limitations and Future work

The serial observations of a binary sorting task we used in our
study may not fully describe the way humans observe changes
in robot reliability in the real-world. While it is clear that in the
real world humans must perceive evidence in a time-sequenced
manner, there may be numerous factors that may influence how
reliability of the robot is understood. For example, in the real world,
successive visual observations may be chunked and perceived as a
single event [3], whereas in our experiment each sorting outcome
is significantly temporally separated from the next in a way that
may not reflect real world conditions. Future work can help clarify
the extent to which real-world observations of robot performance
may be modeled as sequential samples of binary outcomes.

It would be valuable to perform follow up work analyzing the
effects of particular sequences of pick outcomes to better under-
stand the effects of these micro-scale events on reliability change
perception and understanding. Prior work also identified clusters of
individual differences in trust dynamics [6, 65], suggesting that we
may find individual differences that explain more of the variance
in the data than what our analyses supported.

The gender distribution of our participants was skewed (14 male,
6 female), potentially limiting the generalization of our results.
Although prior work has not found evidence to suggest a significant
gender effect on trust in HRI [27, 36], the literature does represent
evidence that when gender-relevant features are introduced to the
robot, such as gendered anthropomorphism, differences based on
human gender emerge [58]. Future work on perception of changes
in performance, especially if they involve domains that carry strong
gender associations or stereotypes [5], would benefit from better
participant gender representation.

6 CONCLUSION

In this paper, we presented a user study (N=20), in which we inves-
tigated aspects of human perception and understanding of changes
in reliability of a simulated robot in VR as one of the most important
determinants for trust in robots. Specifically, we measured the time
it took participants to detect a change and identify the direction of
the change, as well as the correctness of this identified change in
reliability. Our results show that participant behavior in perceiving
and understanding robot reliability incurs high levels of risk in
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incorrectly perceiving the true robot reliability level and differs in
character from the binomial cumulative probability distribution
used to describe the actual outcomes. Future work may explore
new methods for describing and modeling human performance in
observing changes in robot reliability.
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