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A B S T R A C T

This research paper explores the impact of augmented reality (AR) tracking character-
istics, specifically an AR head-worn display’s tracking registration accuracy and pre-
cision, on users’ spatial abilities and subjective perceptions of trust in and reliance on
the technology. Our study aims to clarify the relationships between user performance
and the different behaviors users may employ based on varying degrees of trust in and
reliance on AR. Our controlled experimental setup used a 360◦ field-of-regard search-
and-selection task and combines the immersive aspects of a CAVE-like environment
with AR overlays viewed with a head-worn display.

We investigated three levels of simulated AR tracking errors in terms of both accu-
racy and precision (+0◦, +1◦, +2◦). We controlled for four user task behaviors that
correspond to different levels of trust in and reliance on an AR system: AR-Only (only
relying on AR), AR-First (prioritizing AR over real world), Real-Only (only relying on
real world), and Real-First (prioritizing real world over AR). By controlling for these
behaviors, our results showed that even small amounts of AR tracking errors had no-
ticeable effects on users’ task performance, especially if they relied completely on the
AR cues (AR-Only). Our results link AR tracking characteristics with user behavior,
highlighting the importance of understanding these elements to improve AR technology
and user satisfaction.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Augmented reality (AR) technologies have seen major ad-
vances over the last decade in terms of their displays, sen-
sors and tracking, and networking capabilities [1]. Especially
head-worn displays (HWDs) are becoming increasingly attrac-
tive for a wide range of application domains, including archi-
tectural design, urban planning, simulation and training, and
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defense [2, 3, 4].

One of the key challenges in creating effective AR HWD
systems in outdoor, dynamic, or generally uncontrolled envi-
ronments and settings is maintaining accurate and precise head
tracking so that virtual content can be properly placed in the
real world [5, 6, 7]. Tracking the position of the physical ob-
jects to which the virtual content is registered poses additional
challenges [8, 9, 10], but we focused on isolating the AR HWD
head tracking errors in this study. Tracking technologies in AR
have improved significantly over the last two decades by fus-
ing sensor data from inertial measurement units [11], RGB and
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depth cameras [12], skyline sensors [13], and related SLAM
algorithms [14, 15, 16], cooperative methods [17], time warp-
ing [18], and other approaches. However, head tracking per-
formance in AR is still often inadequate for registering virtual
entities within the space around AR users, e.g., for training pur-
poses, or fixing annotations to real objects. When relying only
on head tracking for the placement of AR objects, even one de-
gree of orientation error with respect to the user’s actual head
orientation may lead to an AR object appearing in the wrong
location, or an AR annotation appearing over the wrong real ob-
ject, especially for distant objects. This is particularly true for
optical see-through (OST) HWDs [19], while video see-through
HWDs often register AR overlays to the real world based on the
video feeds of front-facing cameras which simplifies the regis-
tration problem [20].

The challenges include both the accuracy of the head orien-
tation estimates and the precision of the orientation estimates.
These two distinct types of head tracking errors have different
effects on human perception, which may impact users’ spatial
task performance and/or affect their subjective sense of being
able to rely on or trust the AR system [21, 22]. Further, while
head tracking errors are comparatively easy to model and eval-
uate in virtual reality settings, their effects on users’ percep-
tion with OST HWDs are more complicated [21]. For one,
head tracking errors can introduce a perceptible discrepancy be-
tween the real scene and the AR content, which may affect the
way users would leverage AR technologies for the completion
of spatial tasks. Due to the complex relationships between the
AR tracking accuracy and precision, and the way users would
rely on and trust AR cues in a specific task context, we decided
to evaluate these interrelations by evaluating and controlling
for different behaviors when completing a visual search-and-
selection task.

In this paper, we present two experiments where we investi-
gated how tracking errors (accuracy and precision) affect OST
HWD users’ subjective assessment of the technology in terms
of their trust in and reliance on the AR system as well as their
objective performance (time and errors) during a 360◦ search-
and-selection task. In these experiments, we also investigated
users’ performance with respect to different task behaviors. We
describe both experiments in detail, including an analysis of the
objective and subjective data, supporting the following findings:

• Effects of the AR head tracking accuracy and precision on
participants’ objective task performance: Each additional
degree of accuracy/precision error led to an increase in er-
ror.

• Effects of the AR head tracking accuracy and precision
on participants’ subjective trust in and reliance on the AR
system: Each additional degree of accuracy/precision error
led to a decrease in trust.

• Interactions between participants’ task behaviors and the
AR tracking factors with respect to task performance: For
+1◦ and +2◦ accuracy/precision angular offsets, relying
completely on AR led to decreased performance compared
to other task behaviors.

In particular, we found significant issues among objective task
performance that were introduced by even small amounts of AR
tracking errors. However, we also found that these issues were
largely dependent on the task behaviors employed by the par-
ticipants in our experiments, which implies that AR cues may
be effective and helpful for users wearing OST HWDs even if
the tracking accuracy and precision are not optimal.

This paper is structured as follows. Section 2 discusses back-
ground information in the scope of this paper. Section 3 de-
scribes the general experimental method we used for our two
experiments. Sections 4 and 5 describe our two experiments, in
which we evaluate the effects of AR head tracking accuracy and
precision, respectively. Section 6 provides a general discussion
of our findings. Section 7 concludes our paper.

2. Background

In this section, we provide background information on trust
and related task behaviors, as well as AR tracking accuracy and
precision.

2.1. Trust and Behavior with Registered AR Cues

OST HWDs are an attractive technology for various applica-
tion domains due to their ability to present registered visual cues
in a real environment. Such cues may be textual or symbolic
annotations for objects or entities in the real environment, often
providing orthogonal or redundant information to that which
users can gain from looking at the real scene. In particular,
there are situations in which OST HWDs can present informa-
tion about real objects in a way that is easier to see and com-
prehend than the visual cues from the real world [23]. A basic
example are AR object annotations, which can be designed to
be visible, salient, and easy to understand, making it possible
for AR users to find objects that otherwise would require exten-
sive searching for small, hidden, or unclear information if users
were to just rely on the real world, especially when under time
pressure or in cluttered or unfamiliar environments [24, 25, 26].
Though technically redundant information is provided to users
in these cases, meaning they could solve these tasks by rely-
ing only on the real world, AR tags afford another information
channel that may have cognitive and task performance bene-
fits. However, such AR task contexts are difficult to assess as
both the subjective and objective results depend on the users’
task behaviors, which in turn depend on their impression of the
AR system. Specifically, AR users may choose to rely only on
the AR cues, integrate both the AR and real-world cues (e.g.,
double-check the AR cues by confirming their information with
the real world, or vice versa), or choose to ignore the AR cues
entirely, depending on how much they trust this information
channel. In this paper, based on these different approaches, we
modeled and evaluated four behaviors for the completion of a
360◦ visual search-and-selection task (illustrated in Figure 4),
each behavior differing in which source of information is prior-
itized and whether users fully trust it or not.

From related work we know that a user’s trust in and reliance
on an AR system depend on a multitude of factors related to
the system, environment, and task context, which historically
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have been related to a perceived increase or decrease in perfor-
mance [23, 27, 28]. In particular, a user may perceive the sys-
tem to be unreliable, which can lead to a loss of trust, and even-
tual disuse of the AR system. Further, these situations may lead
to users undertrusting the AR system, which may cause them to
change their behavior by trying to confirm all AR information,
potentially leading to worse performance than could be gained
otherwise [29, 30]. Conversely, if users overtrust the AR sys-
tem, it may lead to overuse and potentially increase errors than
if they had a more well-calibrated trust in the system [31].

Recent work recognizes the importance of user behavior, re-
liance, and trust in relation to the performance of the AR sys-
tem. Misfud et al. applied these concepts to joint terminal at-
tack controller operations, which are extremely intolerant to er-
ror, revealing a potential for automation bias, a classic result of
over-reliance on the AR system [32]. Other recent work demon-
strated that even if AR cues occasionally highlight the wrong
object, perceived effectiveness of the AR cue leads to over-
reliance and elevated risk for error [25]. In our work, rather
than assuming errors in the cue targeting itself, we investigate
the effects of errors in registration, i.e., the cue points at the cor-
rect target but the AR system itself exhibits errors in properly
aligning the cue with the physical world.

Evaluating these effects on reliance, trust, and overall system
performance can be difficult, however, due to the complexities
of human behavior. For example, users’ reliance and trust in the
system can change over time, leading to a subsequent change in
task behavior and system performance. Further, external fac-
tors such as time pressure or distractions may induce behaviors
that are influenced by trust and reliance but may deviate signifi-
cantly from task behavior that would otherwise be expected. To
better isolate the effects of registration errors on trust, reliance,
and overall performance of AR systems, we chose to control for
task behaviors by explicitly instructing participants to perform
the task following procedures defined by the four aforemen-
tioned task behaviors. In doing so we introduce novel research
questions related to how different behaviors, corresponding to
different levels of system trust, affect AR cueing performance.
This method also allowed us to quantify the performance and
perceptual effects of different tracking errors at different levels.

2.2. AR Tracking Factors
The visual association of AR annotations with real world ob-

jects requires continuous information about the geometric rela-
tionship between both the AR HWD and the real world object.
This geometric relationship is typically maintained by continu-
ously estimating the position and orientation (pose) of the AR
HWD relative to the origin of a three-dimensional coordinate
system [6]. This process is often referred to as head tracking,
and it requires access to external information about the position,
orientation, and size of the real world object of interest, all in
the same coordinate system with the same units.

In theory, access to all of this geometric information should
allow one to accurately register the AR cues to their real world
counterparts as seen in the HWD. Indeed, over the last decade
tracking technologies have improved significantly, making AR
systems in general useful in more circumstances, e.g., indoor
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Fig. 1. Examples illustrating the accuracy and precision tracking errors
we investigated in our two experiments, respectively. In the scope of this
paper, head tracking accuracy refers to a deviation in the mean among
sampled head tracking orientations, while precision refers to the variance
of these sampled head tracking orientations. In this illustration, the orange
circles denote the ground truth and the red circles denote the sampled head
tracking orientations.

work environments [33]. For reviews of existing tracking tech-
nologies, and discussion about the various types and sources
of error, see [34, 35, 36, 37]. In practice, the registration of
AR cues with real world objects presents a significant chal-
lenge [38], in particular with respect to head tracking for OST
HWDs in outdoor, dynamic, or generally uncontrolled environ-
ments. The challenges include both the accuracy of the head
pose estimates — the difference between the mean of the pose
estimates and the true head pose (which is unknown) over a
window of time, and the precision of the pose estimates —
the variance of the pose estimates about the mean over the
same window of time [39, 40, 41]. See Figure 1 for exam-
ples of both accuracy error and precision error on AR regis-
tration. The challenges persist even with systems employing
multiple tracking modalities and sensor fusion paradigms, for
example as afforded by the Kalman filter and related variants
[42, 43, 44, 45, 46]. Livingston et al. [22] showed that precision
errors in registration led to decreased performance when visu-
ally tracking distant objects, and accuracy errors led to more
errors. Out of all the registration errors tested, participants re-
ported precision errors were the most detrimental to their per-
formance, even though this was not supported by their perfor-
mance data [22]. Robertson et al. [47] found that accuracy and
precision errors led to reduced performance on a block stacking
task in terms of increased errors and task time, and that errors
reduced users’ confidence in their task performance. For cer-
tain AR surgical applications where AR users are viewing small
3D objects positioned within reach, positioning accuracy mean
errors of less than 5 mm are considered acceptable [48, 49].
However, it is not known what is considered acceptable for AR
annotations displayed at longer distances from the user.

In this paper we focus on the effects of head tracking orien-
tation accuracy and precision under conditions when the user’s
head position is relatively static. Our work contributes to the
body of tracking-related AR research by investigating the ef-
fects of tracking-related registration errors on users’ task per-
formance and trust in the AR system in a search-and-selection
task. To complement this work from a human factors perspec-
tive, we also investigated how different task behaviors that users
would adopt when experiencing different levels of trust in and
reliance on the system affect their task performance.
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3. General Experimental Method

We conducted two experiments to investigate the relation-
ships between user behaviors and tracking factors on partici-
pants’ task performance and trust. Each of these experiments
utilized the same experimental configuration (participants, ma-
terials, procedure, etc.). The first experiment focused on track-
ing accuracy. The second experiment focused on tracking pre-
cision. In this section, we describe our general experimental
method as well as how the experiments differ. Our experimen-
tal procedure and recruitment of participants in Experiments E1
and E2 were approved by the institutional review board of our
university under protocol number ANONYMIZED.

3.1. Participants

We recruited 20 participants from our university commu-
nity for these experiments, and we obtained participants’ demo-
graphics using ACM’s DIE Demographics Questionnaire1. Un-
fortunately, we had to remove 2 data sets from further analysis
due to the data failing our internal sanity checks. Specifically,
we observed a significant error rate among these two partici-
pants, bordering on chance level, pointing to the participants
having misunderstood the task. The remaining 18 participants
included 15 males, and 3 females, with ages between 18 and
41, M = 23.6, SD= 6.7. All of the participants had normal or
corrected-to-normal vision and none of them reported any vi-
sual or vestibular disorders, such as color or night blindness,
dyschromatopsia, or a displacement of balance. None of the
participants reported any motor or cognitive disabilities. The
participants were either students or non-student members of our
university community who responded to open calls for partici-
pation and received monetary compensation for their participa-
tion. Both experiments together took participants on average 60
minutes to complete.

3.2. Material

Figure 2 shows the hybrid interaction space where we con-
ducted our study. We used a CAVE-like 4 m×4 m square im-
mersive projection environment to simulate the appearance of
the real world, and an OST AR HWD to visually superimpose
AR imagery over that “real world” imagery. Specifically, each
of the four walls was covered from edge to edge with imagery
from NEC U321H ultra-short throw projectors at a resolution
of 1080p per wall, or 7680×1080 pixels total resolution. Fur-
ther, participants wore a professional Vision Products SA-147/S
OST HWD. The AR tags were presented via this AR HWD,
while they were registered with and presented spatially above
the heads of the simulated humans that were shown on the
walls of the CAVE-like space. The Vision Products SA-147/S
HWD includes four OLED microdisplays for a resolution of
3840×1200 per eye, with a 33◦ vertical FOV, a 143◦ horizontal
FOV, and a 53◦ binocular overlap.

The 6 degrees of freedom (DoF) head pose was determined
via a Vive Tracker 3.0 mounted on the HWD, along with two

1https://community.acm.org/demographics/

SteamVR Base Station 2.0 units mounted in opposite upper cor-
ners of the interaction space. We used a hand-held Vive Pro
controller, which was also tracked in 6 DoF and provided point-
and-click input from the participants. Rendering and experi-
ment control were performed with the Unity engine (version
2021.3.2), which used SteamVR to receive the tracking data
from the HWD and hand-held controller. The hybrid simulation
environment was driven by a single BOXX APEXX X3 desktop
workstation with two Nvidia Quadro RTX 6000 graphics cards.

Registration Calibration. Because our investigation is based
on the participants’ perceptions of angular accuracy and pre-
cision, we needed to ensure our baseline conditions exhibited
no perceptible error. To do so we had each participant start
with a self-calibration procedure under the supervision of the
experimenter. Specifically they were presented with a grid of
small spheres projected on a wall of our immersive projection
environment, and an identical grid of spheres appearing in their
AR HWD. They then used software controls to adjust the align-
ment of the two grids until any differences in alignment were
imperceptible. At the completion of this self-calibration proce-
dure we confirmed that there was no perceptible misregistration
error. All of our subsequent simulated errors in registration ac-
curacy and precision involved perturbations from this baseline.

We are confident that our baseline accuracy and precision
persisted throughout the experimental tasks for each partici-
pant, based on our own pre-post tests, and because in a similar
setup, Spitzley & Karduna found that a Vive tracker undergoing
a series of rotations and translations maintained an angular vari-
ance of below one degree compared to a stable reference [50].
The rotations and translations of our participants’ heads were
very small compared to those of Spitzley & Karduna.

Hybrid Simulation Environment. The simulated environment
that was presented to participants via the CAVE-like installa-
tion consisted of a desert landscape with ten clusters of three
simulated humans sitting together in an evenly spaced-out cir-
cle, ten meters away from the center of the simulation space,
with the center of the clusters at regular 36◦ intervals around
the participant (see Figure 2). Each simulated human had a
subtly colored arm band that was either red or blue to sepa-
rate them into two groups (red team vs. blue team). In each
cluster, one of the three humans had a red arm band while the
other two had a blue arm band. The order of the colors was
assigned randomly. The scene displayed on the projected walls
was perspective-correct based on the user’s tracked head posi-
tion. The AR tags presented on the OST HWD were positioned
to match the simulation. The corresponding accuracy and preci-
sion tracking offsets were applied to these and only to these AR
tags, i.e., they were not applied to the head-tracked simulation
of the CAVE-like environment around participants.

Tracking Error Simulation. To simulate accuracy errors as il-
lustrated in Figure 1 (middle) we applied a condition-dependent
horizontal offset to the apparent real world position of each AR
tag. We chose to only perturb the horizontal positions because
the corresponding humans rendered in the simulated real world

https://community.acm.org/demographics/
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Fig. 2. Annotated photo showing our hybrid experimental space, in which
we used a CAVE-like immersive projection environment to simulate a real
space around our participants. As part of the simulated scenario, we
placed ten clusters of three sitting humans in a circular pattern around
the center of the simulation space (see Figure 3). Participants in our exper-
iment further wore a professional Vision Products SA-147/S OST HWD,
through which we presented the AR tags to participants. These and only
these AR tags were affected by the simulated levels of head tracking accu-
racy and precision. These AR tags consisted of red diamonds that floated
over the heads of some of the simulated humans. When the simulated
tracking accuracy and precision were high, these AR tags were close to
the corresponding simulated humans, while they were presented with in-
creasing angular offsets in the other conditions.

environment were arranged horizontally. Specifically, we ap-
plied a condition-dependent fixed positive or negative offset of
0◦, 1◦, or 2◦ to the nominal horizontal angle of each AR tag as
seen from the viewer’s perspective in the HWD, in the world
coordinate frame. The result was a condition-dependent hor-
izontal shift of the perceived position of each AR tag relative
to the associated human in the simulated real world imagery as
illustrated in Figure 3 (a)–(c). All offsets were applied relative
to each participant’s individual baseline of imperceptible mis-
registration, determined during the initial registration calibra-
tion described above. All offsets were held constant throughout
each trial, e.g., an angular offset of +2◦ meant an AR tag for
a given selection target was always 2◦ to the right of its target
during the trial as illustrated in Figure 3 (a).

To simulate precision errors, we followed a similar proce-
dure to that described above for the accuracy errors, however
rather than applying a constant integer offset for each trial,
we applied an angular perturbation chosen randomly (uniform
distribution) from a condition-dependent real number interval
(e.g., {0}, [−1.0,+1.0], or [−2.0,+2.0]) at each rendering frame,
throughout the entire trial. The effect was to produce a “jitter”
of the perceived position of each AR tag relative to the associ-
ated human in the simulated real world imagery as illustrated in
Figure 3 (d)–(f). Again, all angular perturbations were applied
relative to each participant’s individual baseline of impercep-

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a-c) Experiment E1 (Accuracy): Illustration of the different accu-
racy levels participants experienced. The black outlined diamond repre-
sents where an AR tag would be positioned with zero error (perfect accu-
racy), while the solid diamond represents what a participant might have
actually seen for each level of accuracy. This offset was consistent frame-
by-frame. (d-f) Experiment E2 (Precision): Illustration of the different
precision levels participants experienced. The black outlined diamond rep-
resents where an AR tag would be positioned frame-by-frame with zero
error (maximum precision), while the dashed line diamonds with varying
degrees of opacity represent the positions at which the tag was rendered
across several frames (more opaque = more recent). The actual visual ef-
fect was that frame-by-frame, the tag appeared to jitter around its target
location within the range of the precision condition’s angular error.

tible misregistration, determined during the initial registration
calibration described above.

3.3. Methods

We used a 3×4 within-subjects design for each of our exper-
iments with the following tracking factors and task behaviors.
Experiment E1 investigated the accuracy tracking factor — the
difference between the mean of the orientation estimates and
the true head orientation (which is unknown) over a window
of time, and Experiment E2 investigated the precision track-
ing factor — the variance of the orientation estimates about the
mean over the same window of time. Both experiments investi-
gated the four different task behaviors.

• Accuracy (3 levels): As described in Section 3.2, we sim-
ulated three different tracking accuracy levels of +0◦, +1◦,
and +2◦ of horizontal angular offset.

• Precision (3 levels): As described in Section 3.2, we sim-
ulated the three different precision range levels of 0◦, ≤1◦,
and ≤2◦ of horizontal angular jitter.

• Task Behaviors (4 levels): Our study modeled four
distinct behaviors for completing the visual search-and-
selection task. These behaviors reflect varying degrees of
trust in and reliance on AR for task assistance (see Figure 4
for examples):

– AR-Only: Participants focused on the AR tags and
disregarded the arm bands while completing the task.
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(a) AR-Only (b) AR-First

(c) Real-First (d) Real-Only

Fig. 4. Illustrations of the four task behaviors we evaluated in this experiment. We used these illustrations to explain the behaviors to our participants:
(a) AR-Only: participants were asked to scan the 360◦ environment for AR tags while completely disregarding the arm bands and selecting the character
below the AR tag; (b) AR-First: participants were asked to scan the environment for AR tags but double-check the arm band to select the character with
the red arm band near the AR tag; (c) Real-First: participants were asked to scan the environment for arm bands but double-check the nearest AR tag
each time they identified a potential target based on a red arm band; (d) Real-Only: participants were asked to scan the environment for arm bands while
completely disregarding the AR tags.

– AR-First: When making a selection, participants ini-
tially looked at the AR tag and then double-checked
their impression by looking at the simulated humans’
arm bands.

– Real-First: When making a selection, participants
initially looked at the simulated humans’ arm bands
and then double-checked their impression by looking
at the AR tag.

– Real-Only: Participants focused on the simulated hu-
mans’ arm bands and disregarded the AR tags while
completing the task.

Before and after each trial, we incorporated two baseline as-
sessments where participants wore the AR HWD but it did not
display any AR imagery. In these baselines, participants relied
solely on the simulated real environment for decision-making.
The primary purpose of these baselines was to serve as a control
mechanism for evaluating potential learning effects throughout
the study.

We tested all task behaviors in randomized order. For each
task behavior, we further randomized the order of the tested
tracking factor conditions. Each condition was tested twice,
once while rotating clockwise and once in counterclockwise di-
rection to avoid that our participants get entangled in the cables
that were suspended from the ceiling.

3.4. 360◦ Search-and-Selection Task and Behaviors

Participants were tasked with swiftly scanning the entire 360◦

environment within the experimental area, identifying and se-
lecting all simulated humans marked as red while refraining
from selecting those marked as blue. Simulated humans were
distinguished by colored arm bands and AR tags above their
heads. Only the “red team” had AR tags appear above their
heads. These AR tags, presented via the SA-147/S AR HWD,
took the form of a red diamond.

As detailed in Section 2.1, the design of stimuli and tasks
mirrored applications utilizing AR spatial cues integrated with
real objects to aid users in spatial tasks. Despite AR cues techni-
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cally offering redundant information compared to environmen-
tal cues, they benefit from their clear visibility, salience, and
ease of comprehension.

Baseline trials conducted before and after each condition
omitted AR tags, requiring participants to rely solely on col-
ored arm bands, simulating a scenario without an AR display.

Participants were timed for each trial (comprising one 360◦

sweep) and instructed to complete the task swiftly and accu-
rately. Each trial started with a click on a ”start” button and
ended with a click on an ”end” button.

The characteristics of AR imagery varied across experimen-
tal conditions. Given the multitude of variables influencing AR
users’ behavior, participants were given explicit instructions re-
garding their expected behaviors as illustrated in Figure 4.

3.5. Objective Data
We assessed the duration it took in each trial for participants

to conduct a complete 360◦ sweep of the environment. This
measurement encompassed the time from initiating the trial by
clicking the “start” button to indicating completion by clicking
the “end” button.

Additionally, we recorded the instances of false-negative
(Type II errors) where participants missed simulated humans
marked red and false-positive (Type I errors) where they se-
lected simulated humans marked blue.

3.6. Subjective Data
We gathered subjective data from our participants by having

them complete questionnaires on a laptop immediately after fin-
ishing the search-and-selection trials:

TOAST Questionnaire [51]: In the Trust of Automated Sys-
tems Test (TOAST), participants read ten statements and in-
dicate on a 7-point Likert scale the extent to which they dis-
agree (1) or agree (7) with each. The TOAST measures “proxi-
mate causes of trust in an automated system” using a two-factor
structure: system performance and system understanding [51].

• System Understanding: Higher understanding scores indi-
cate that users have a high confidence that their trust in the
system is well calibrated.

• System Performance: Higher performance scores indicate
that users trust the system to help them perform their task.

For each of these two subscales, the average of the responses to
items in that subscale is computed.

Single Item Questionnaires: We asked participants to rate
their perception of the different experimental conditions with
respect to the following 7-point, single-item Likert scales:

• Trust: On a scale from 1 (Not Trustworthy) to 7 (Very
Trustworthy), how much would you trust the AR system?

• Reliance: On a scale from 1 (cannot rely) to 7 (very re-
liable), how much reliance on the AR system would you
have?

• Confidence: How would you rate your confidence in your
performance? (1=low, 7=high)

• Difficulty: How would you rate the difficulty of the task?
(1=low, 7=high)

• Advantageous: On a scale from 1 (Disadvantageous) to 7
(Advantageous), how would you rate the AR system?

3.7. Task Behavior Sanity Check
As discussed in Section 2.1, we modeled four task behav-

iors (see Figure 4) according to different levels to which par-
ticipants rely on the AR system when completing the experi-
mental task. This allowed us to isolate the effects of errors in
registration accuracy and precision for users experiencing dif-
ferent levels of reliance in the system. To be confident with the
results of these analyses (reported in the following sections),
we performed a sanity check to see whether the instructed task
behaviors corresponded to participants’ actual perception of
how much they relied on the AR system. We analyzed par-
ticipants’ subjective assessments of their own reliance in the
AR system in each of the four behavior conditions. Our re-
sults confirmed our assumption, showing that our participants
rated the four behaviors in descending reliance order as AR-
Only>AR-First>Real-First>Real-Only (see Table 1 for de-
scriptive statistics). In other words, despite using a controlled
experimental method, in which we instructed the participants
to adopt a specific behavior, it matched participants’ estimated
reliance of the AR system, thus passing our sanity check.

Table 1. Results for reliance estimates by task behavior.

Mean SD
AR-Only 3.69 0.98
AR-First 3.60 1.29
Real-First 3.53 1.56
Real-Only 2.83 1.77

3.8. Procedure
Upon arrival, participants were provided with a physical copy

of the informed consent document, which they read and signed
along with the experimenter. Participants were escorted to the
CAVE-like simulation environment, where verbal consent was
obtained to place the SA-147/S AR HWD on their head.

An experimenter adjusted the AR HWD for the participants
so that it fit properly and the AR imagery was displayed clearly.
Then, participants were instructed to look straight ahead at a
simulated horizon line, and a one-time tracker pitch rotation off-
set was applied (boresight calibration). Then, participants per-
formed the horizontal angular registration calibration described
in Section 3.2. Subsequently, the experimenter briefed partic-
ipants on the search-and-selection task, behaviors, and experi-
mental conditions. Participants were then allowed to practice
the task until they felt comfortable performing it.

The experiment comprised baseline tasks conducted before
and after a series of tasks that combined accuracy and preci-
sion tracking factors and behaviors as described in Section 3.3.
Upon completing the selection tasks, the AR HWD was re-
moved, and participants completed questionnaires for each ex-
perienced accuracy and precision level. Finally, participants
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completed a demographics questionnaire, received a debriefing,
and were compensated monetarily.

4. Experiment E1: Tracking Accuracy

As described in Section 3.3, Experiment E1 investigated the
relationships between tracking accuracy and participants’ task
behaviors, task performance, and trust. Experiment E1 used a
3 × 4 within-subjects design with the following factors:

• Accuracy (3 levels): As described in Section 3.2,we sim-
ulated three different tracking accuracy levels of +0◦, +1◦,
and +2◦ of horizontal angular offset.

• Task Behaviors (4 levels): As described in Section 3.3,
we modeled four distinct task behaviors corresponding to
different degrees of trust in and reliance on the AR system:
AR-Only, AR-First, Real-First, and Real-Only.

Experiment E1 involved the participants, materials, methods,
task, data, and procedure described in Section 3. The rest of
this section describes and discusses our experimental results.

4.1. Results
We analyzed the responses with repeated-measures analy-

ses of variance (RM-ANOVAs) and Tukey multiple compar-
isons with Bonferroni correction at the 5% significance level.
We confirmed normality with Shapiro-Wilk tests at the 5%
level and QQ plots. Degrees of freedom were corrected using
Greenhouse-Geisser estimates of sphericity when Mauchly’s
test indicated that the assumption of sphericity was violated.

We found no significant difference between the clockwise
and counterclockwise trials as well as the pre and post base-
lines, so we pooled the responses with respect to our analysis.

Objective Data. The descriptive statistics for the elapsed trial
times as well as the Type I and Type II errors are shown in
Figures 6 and 7. The statistical test results are shown in Table 2.

Our results show significant main effects for the accuracy
levels and task behaviors on elapsed time as well as Type I
and Type II errors. We further found significant interaction ef-
fects for Type I and Type II errors. Specifically, we found that
elapsed times were significantly higher (=worse) for the Real-
First than the Real-Only condition. Additionally, we found that
both Type I and Type II errors were significantly higher for the
AR-Only condition than all other task behaviors. Moreover, in
the AR-Only condition, the +2◦ accuracy offset resulted in sig-
nificantly higher errors than the +0◦ and +1◦ accuracy offsets.

Lastly, it is important to note that “Baseline” in Figures 6
and 7, as discussed in Section 3.3, refers to trials conducted
without any AR imagery shown.

Subjective Data. The descriptive statistics for the subjective re-
sponses are shown in Figure 5, and the statistical test results are
shown in Table 2.

Our findings reveal significant main effects of accuracy levels
on both subscales of the TOAST questionnaire and our single-
item questionnaires for Trust, Reliance, Confidence, and Diffi-
culty. Regarding the TOAST subscales, participants exhibited

the least trust in the system for the +2◦ accuracy offset com-
pared to the +1◦ and +0◦ accuracy offsets. Consistent responses
were also observed across the single-item Trust, Reliance, and
Confidence scores. Additionally, participants perceived the +2◦

accuracy offset as significantly more difficult than the +1◦ and
+0◦ accuracy offsets, while no significant difference was ob-
served between the +0◦ and +1◦ accuracy offsets.

4.2. Discussion

In this section, we discuss the results of Experiment E1.

Accuracy. The results of Experiment E1 indicate that the accu-
racy of the AR tracking system had a significant effect on partic-
ipants’ performance in our search-and-selection task. In partic-
ular, the accuracy of the system had a significant main effect on
participants’ task completion time. Further, each additional de-
gree of accuracy error caused an increase in the Type I and Type
II errors that participants made. In other words, participants
made more false-positive (selecting a blue team member) and
more false-negative (failing to select a red team member) mis-
takes as the system’s tracking accuracy decreased. In general,
as the accuracy of the system decreased, so did participants’
task performance, even for +1◦ of accuracy error. This finding
is not particularly surprising by itself, though it is important to
keep in mind when developing AR HWD systems for deploy-
ment into real-world situations that have high time pressure and
performance demands with cluttered target environments.

It is further important to note that participants’ reported trust
in the AR system decreased significantly with each decrease
in system accuracy. Participants felt that decreased accuracy
made the task significantly more difficult and overall reduced
their confidence in their own performance with the AR sys-
tem. Similarly, decreased accuracy significantly reduced par-
ticipants’ sense of wanting to rely on the AR system and how
advantageous they rated the AR system. This finding shows that
users have a low tolerance for accuracy errors before it starts
impacting their sense of trust in and reliance on the AR system,
which in turn may push them towards behaviors that correspond
to lower trust levels. If the tracking accuracy of the AR system
is not perfect, it could pose substantial barriers to users adopt-
ing the technology in real-world settings [52], or getting the
best out of it by adopting sub-par behaviors.

Task Behaviors. The task behaviors participants used to make
their decisions had a significant main effect on participants’ task
completion time, but the only significant pairwise difference
we found was that the Real-First behavior slowed participants
down compared to the Real-Only behavior. One could argue
that this particular result is expected because participants had an
additional step in their decision process in the Real-First con-
dition: the Real-First condition required participants to look at
the simulated humans’ arm bands (as they do in the Real-Only
condition) and then check the AR tag to confirm their red/blue
team membership.

Moreover, there were significant differences in how the task
behaviors affected the number of errors participants made. The
AR-Only task behavior led to significantly more false-negatives
and false-positives than the Real-Only, Real-First, and AR-First
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Table 2. Results for Experiment E1: Statistical test results for the accuracy tracking factor.

Measures RM-ANOVA Factors dfG dfE F p η2
p Pairwise Comparisons

Elapsed Time Two-way

Accuracy 2 34 3.76 0.034 0.18 None
Task Behavior 3 51 3.57 0.02 0.17 p<0.05: (Real-First > Real-Only)
Accuracy *
Task Behavior 3.71 63.13 0.99 0.44 0.06 N/A

Type I Errors Two-way

Accuracy 2 34 12.91 < 0.001 0.43 All p<0.05: (+2◦ offset > +0◦ offset),
(+2◦ offset > +1◦ offset)

Task Behavior 1.01 17.24 34.87 < 0.001 0.67 All p<0.05: (AR-Only > Real-Only),
(AR-Only > Real-First), (AR-Only > AR-First)

Accuracy *
Task Behavior 2.09 35.54 11.22 < 0.001 0.40 All p<0.05:

For +0◦ offset: None
For +1◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For +2◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For Real-Only: None
For Real-First: None
For AR-Only: (+2◦ offset > +0◦ offset),
(+2◦ offset > +1◦ offset)

For AR-First: None

Type II Errors Two-way

Accuracy 2 34 14.22 < 0.001 0.46 All p<0.05: (+2◦ offset > +0◦ offset),
(+2◦ offset > +1◦ offset)

Task Behavior 1.19 20.28 26.49 < 0.001 0.61 All p<0.05: (AR-Only > Real-Only),
(AR-Only > Real-First), (AR-Only > AR-First)

Accuracy *
Task Behavior 6 102 7.84 < 0.001 0.32 All p<0.05:

For +0◦ offset: None
For +1◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For +2◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For Real-Only: None
For Real-First: None
For AR-Only: (+2◦ offset > +0◦ offset),
(+2◦ offset > +1◦ offset)

For AR-First: None
TOAST One-way Accuracy 1.44 24.61 18.38 < 0.001 0.52 p= 0.033: (+2◦ offset > +3◦ offset),

System Understanding All other pairs p<0.001
TOAST One-way Accuracy 1.5 25.5 68.27 < 0.001 0.8 All pairs p<0.001

System Performance
Trust One-way Accuracy 1.29 21.96 36.76 < 0.001 0.68 All pairs p<0.001

Reliance One-way Accuracy 1.13 19.21 47.92 < 0.001 0.74 All pairs p<0.001
Confidence One-way Accuracy 1.18 23.23 20.16 < 0.001 0.66 All pairs p<0.001
Difficulty One-way Accuracy 1.36 22.23 6.97 0.009 0.29 p= 0.04: (+0◦ offset easier than +2◦ offset),

p= 0.024: (+1◦ offset easier than +2◦ offset)
Advantageous One-way Accuracy 1.23 20.96 53.36 < 0.001 0.76 All pairs p<0.001

task behaviors. Even in the 0◦ angular offset AR-Only condition
participants made both Type I and Type II errors — around one
error each among ten target selections in one full 360◦ sweep
— due to the base accuracy error of our system. This finding
is not unexpected: When AR is the only source of information
to be relied upon, a less accurate AR system will produce more
errors.

For real-world scenarios where tracking accuracy will not be
better than in our laboratory settings, this means that this AR-
Only task behavior is not a good choice in practice. In other
words, users should not rely only on AR information to make
their decisions in such task environments, even if they have high
trust in the AR system. Instead, it appears preferable to rather

rely on one of the other task behaviors, which were shown to
effectively reduce Type I and Type II errors. If faced with the
decision between one of these task behaviors, a decision which
will likely be affected by participants’ level of trust in and re-
liance on the system. Both the AR-First and Real-First task
behaviors reduce errors, but the Real-First task behavior was
the slowest (=worst) condition among the tested task behav-
iors, i.e., significantly slower than the Real-Only task behavior.

5. Experiment E2: Tracking Precision

As described in Section 3.3, Experiment E2 investigated the
relationships between tracking precision and participants’ task
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Fig. 5. Experiment E1: Subjective data results for the three levels of accuracy with (a) Single-Item Questionnaires and (b) TOAST Questionnaire. The
colored bars indicate the accuracy levels. Higher is better (except for Difficulty). The error bars show the standard error. The horizontal lines with crosses
in the middle indicate those pairs that were not significant (p > 0.05).
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Fig. 6. Experiment E1: Results for (a) Type I errors and (b) Type II errors for the four task behaviors and baseline condition. Lower is better. The error
bars show the standard error.
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Fig. 7. Experiment E1: Results for elapsed time for the four task behaviors
and baseline condition. Lower is better. The error bars show the standard
error.

behaviors, task performance, and trust. Experiment E2 used a
3 × 4 within-subjects design with the following factors:

• Precision (3 levels): As described in Section 3.2, we sim-
ulated the three different precision range levels of 0◦, ≤1◦,
and ≤2◦ of horizontal angular jitter.

• Task Behaviors (4 levels): As described in Section 3.3,
we modeled four distinct task behaviors corresponding to
different degrees of trust in and reliance on the AR system:
AR-Only, AR-First, Real-First, and Real-Only.

Experiment E2 involved the participants, materials, methods,
task, data, and procedure described in Section 3. The rest of
this section describes and discusses our experimental results.

5.1. Results

We analyzed the responses with repeated-measures analy-
ses of variance (RM-ANOVAs) and Tukey multiple compar-
isons with Bonferroni correction at the 5% significance level.
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Table 3. Experiment E2: Statistical test results for the precision tracking factor.

Measures RM-ANOVA Factors dfG dfE F p η2
p Pairwise Comparisons

Elapsed Time Two-way

Precision 2 34 3.31 0.049 0.16 None
Task Behavior 1.91 32.44 3.84 0.034 0.18 All p<0.05: (Real-First>Real-Only),

(Real-First>AR-First)
Precision *
Task Behavior 2.91 49.48 0.77 0.60 0.04 N/A

Type I Errors Two-way

Precision 2 34 4.88 0.014 0.22 None
Task Behavior 1.01 17.21 27.34 < 0.001 0.62 All p<0.05: (AR-Only>Real-Only),

(AR-Only>Real-First), (AR-Only>AR-First)
Precision *
Task Behavior 1.89 31.99 5.43 0.010 0.24 All p<0.05:

For 0◦ offset: None
For 1◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For 2◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For Real-Only: None
For Real-First: None
For AR-Only: (1◦ offset > 0◦ offset)
For AR-First: None

Type II Errors Two-way

Precision 2 34 3.74 0.034 0.18 None
Task Behavior 1.07 18.16 20.35 < 0.001 0.55 All p<0.05: (AR-Only>Real-Only),

(AR-Only>Real-First), (AR-Only>AR-First)
Precision *
Task Behavior 2.14 36.45 4.48 0.016 0.21 All p<0.05:

For 0◦ offset: None
For 1◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For 2◦ offset: (AR-Only>Real-Only),
(AR-Only>Real-First), (AR-Only>AR-First)

For Real-Only: None
For Real-First: None
For AR-Only: None
For AR-First: None

TOAST
System Understanding One-way Precision 1.28 21.72 16.57 < 0.001 0.49 All pairs p<0.05

TOAST
System Performance One-way Precision 1.78 30.25 37.63 < 0.001 0.69 All pairs p<0.02

Trust One-way Precision 1.21 20.61 39.72 < 0.001 0.7 All pairs p<0.001
Reliance One-way Precision 1.16 22.29 19.8 < 0.001 0.69 All pairs p<0.001

Confidence One-way Precision 1.07 20.08 18.28 < 0.001 0.47 All pairs p<0.005
Difficulty One-way Precision 1.06 28.05 2.71 0.116 0.13 N/A

Advantageous One-way Precision 1.04 17.69 42.08 < 0.001 0.71 All pairs p<0.001

We confirmed normality with Shapiro-Wilk tests at the 5%
level and QQ plots. Degrees of freedom were corrected using
Greenhouse-Geisser estimates of sphericity when Mauchly’s
test indicated that the assumption of sphericity was violated.

We found no significant difference between the clockwise
and counterclockwise trials as well as the pre and post base-
lines, so we pooled the responses with respect to our analysis.

Objective Data. The descriptive statistics for the elapsed trial
times as well as the Type I and Type II errors are shown in Fig-
ures 9 and 10. The statistical test results are shown in Table 3.

Our results show significant main effects and interaction ef-
fects for the precision levels and task behaviors on Type I and
Type II errors but not for elapsed time. Specifically, we found
that both Type I and Type II errors were significantly higher for
the AR-Only condition than the other conditions. Moreover, in

the AR-Only condition, the 1◦ angular jitter resulted in signifi-
cantly higher Type I errors than the 0◦ angular jitter.

Lastly, it is important to note that “Baseline” in Figures 9
and 10, as discussed in Section 3.3, refers to trials conducted
without any AR imagery shown.

Subjective Data. The descriptive statistics for the subjective re-
sponses are shown in Figure 8, and the statistical test results are
shown in Table 3.

Our results show significant main effects of the precision lev-
els on both subscales of the TOAST questionnaire and on our
single-item questionnaire for Trust, Reliance, and, Confidence,
but not for Difficulty. Regarding the TOAST subscales, partic-
ipants exhibited significantly less trust in the system for 2◦ an-
gular jitter compared to 1◦ and 0◦ angular jitter. Consistent re-
sponses were received for the single-item Trust, Reliance, Con-
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Fig. 8. Experiment E2: Subjective data results for the three levels of precision with (a) Single-Item Questionnaires and (b) TOAST Questionnaire. The
colored bars indicate the precision levels. Higher is better (except for Difficulty). The error bars show the standard error. The horizontal lines with crosses
in the middle indicate those pairs that were not significant (p > 0.05).
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Fig. 9. Experiment E2: Results for (a) Type I errors and (b) Type II errors for the four task behaviors and baseline condition. Lower is better. The error
bars show the standard error.
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Fig. 10. Experiment E2: Results for elapsed time for the four task behaviors
and baseline condition. Lower is better. The error bars show the standard
error.

fidence, and Advantageous scores, but not for Difficulty scores,
for which we did not find significant results.

5.2. Discussion

In this section, we discuss the results of Experiment E2.

Precision. Our results show that the precision of the AR track-
ing system had a significant effect on participants’ performance
in the search-and-selection task. In particular, the tracking sys-
tem’s precision had a significant main effect on participants’
task completion time as well as Type I and Type II errors. How-
ever, compared with the results for accuracy in Experiment E1,
we did not observe as strong and noticeable of increases in time
and errors for increased precision errors.

Participants’ subjectively reported trust in the AR system de-
creased significantly with each decrease in system precision.
Participants felt that decreased precision made the task signif-
icantly more difficult and overall reduced their confidence in
their own performance with the AR system. Further, decreased
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precision significantly reduced participants’ sense of wanting to
rely on the AR system and how advantageous they rated the AR
system. While objectively the precision levels did not have a
strong effect on participants’ performance, their subjective rat-
ings indicate that users have a low tolerance for precision errors
before such errors impact their sense of trust on and reliance in
the AR system, which could then push them towards behaviors
that correspond to lower trust levels.

Task Behaviors. The results we found for our tested task behav-
iors with respect to the precision levels are very similar to those
we found with respect to our accuracy levels in Experiment E1.
The task behavior showed a significant main effect on partic-
ipants’ task completion time. Specifically, the Real-First task
behavior slowed participants down compared to the Real-Only
and AR-First task behaviors. Moreover, the AR-Only task be-
havior led to significantly more false-negative and false-positive
errors than the Real-Only, Real-First, and AR-First task behav-
ior. As in Experiment E1, the AR-Only behavior even resulted
in higher errors than the other behaviors for the condition where
we did not introduce any additional precision errors due to the
base accuracy error of our system. Hence, practically, the AR-
Only task behavior does not stand out as a good choice for such
cluttered target scenarios, and users should not rely entirely on
AR information to make their decisions, even if they have high
trust in the AR system. Instead, the other task behaviors in
which participants either ignored (Real-Only) or used and in-
tegrated information from both the AR system and the real en-
vironment (AR-First and Real-First) are preferable as they ef-
fectively reduced Type I and Type II errors. The AR-First task
behavior is generally preferable to the Real-First task behavior
as it not only reduces errors but also does not slow users down.

6. General Discussion

In this section, we summarize the main results from our two
AR tracking factor experiments and provide a general discus-
sion of our findings.

6.1. Higher task performance for higher accuracy and preci-
sion

We found significant main effects of both accuracy and pre-
cision on participants’ task performance (see Figures 6, 7, 9
and 10). We found a significant impact of these factors on
users’ task completion time, and each additional degree of ac-
curacy/precision error leading to an increase in errors. This de-
cline in accuracy/precision corresponds to a decrease in overall
task performance, even with just one degree of angular error.

6.2. Higher trust, reliance, confidence, and perceived advan-
tages of the AR system for higher accuracy and precision

Our results showed that subjective ratings of trust in AR
(measured via the TOAST questionnaire and single-item ques-
tions) significantly increased for both tested tracking factors,
i.e., for higher accuracy and higher precision. In particular, our
results show that trust ratings were significantly higher when no
additional accuracy errors were introduced above our baseline

system accuracy (+0◦ accuracy offset condition) compared to
additional errors of one degree (+1◦ accuracy offset condition),
which in turn resulted in significantly higher trust than an addi-
tional error of two degrees (+2◦ accuracy offset condition). We
found similar effects for our three tested precision levels (0◦,
≤1◦, ≤2◦ precision error conditions). In other words, partici-
pants indicated that both tracking factors are important for trust
in AR and their effects should not be ignored by researchers and
practitioners when developing systems and applications that re-
quire users to trust AR. It is clear that trust is highly affected by
the AR system being able to present AR information to users in
a way that is free from ambiguities, i.e., the accuracy and preci-
sion of the AR tracking system must exceed the task demands.

We found these patterns in our results not only for partici-
pants’ ratings of trust in AR but also with respect to their in-
dicated reliance on AR, confidence in their task performance,
and how much they perceived AR to be advantageous for the
completion of the task.

6.3. Differences between subjective trust and objective perfor-
mance differences

It is interesting to observe that participants’ subjective re-
sponses for trust and reliance were more sensitive than their
objective performance to differences in accuracy and precision
error levels. In other words, differences in accuracy and pre-
cision errors have significant effects on user experience even
when user task performance is not affected. While it is not
generally surprising that lower accuracy/precision may reduce
task performance, these findings together highlight the critical
importance of maintaining a sufficiently high tracking accu-
racy/precision to mitigate substantial barriers to user adoption
and ensure optimal performance in real-world settings, prevent-
ing the adoption of subpar task behaviors.

6.4. Highest trust in and reliance on AR does not necessarily
result in highest task performance

In both Experiments E1 and E2, we observed that partici-
pants made significantly more errors (false-positives and false-
negatives) with the AR-Only task behavior compared to the
Real-First, Real-Only, and AR-First task behaviors. The AR-
Only task behavior indicates the behaviors users adopt when
they reach the highest trust in and reliance on the AR system. It
is important to note that for this experimental task, low accuracy
or precision would result in visual ambiguities between the reg-
istration of AR tags and simulated humans in the environment.
Hence, if participants were asked to rely only on AR informa-
tion (i.e., the AR-Only task behavior), a less accurate or precise
AR system will result in more errors. This point is emphasized
by the fact that in both experiments participants made errors in
the 0◦ offset conditions using the AR-Only task behavior, indi-
cating that there was registration error present in the AR cues
even after completing the self-calibration procedure described
in Section 3.2. Even so, the total levels of accuracy and pre-
cision error we tested in these experiments were relatively low
compared to levels of error that can be expected in more real-
istic situations “in the wild,” such as in outdoor environments.
Current consumer AR tracking systems may be better suited
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for tasks less sensitive to accuracy and precision errors, such as
cueing in clutter-free environments. In sum, for tasks that are
sensitive to ambiguities caused by an AR system’s accuracy and
precision, users should not adopt the AR-Only task behavior as
it will cause significant errors.

While the AR tracking errors affected not only the AR-Only
task behavior but also the AR-First and Real-First task be-
haviors, it is noteworthy that the latter two task behaviors ef-
fectively reduced the Type I and Type II errors by using and
integrating information from both the AR system and cross-
checking this information against the real environment. Hence,
for situations in which users perceive value in AR information
but do not fully trust it to the level of wanting to rely only on
it (i.e., adopt the AR-Only task behavior), the two intermediate
task behaviors of AR-First and Real-First appear to be valu-
able options as they reduce errors and result in high task per-
formance. Additionally, the AR-First task behavior resulted in
lower elapsed time compared to the Real-First task behavior in
our experiment testing different precision error levels. How-
ever, we did not find any significant task performance differ-
ences between the Real-Only task behaviors and the AR-First
or Real-First task behaviors. Based on these findings, we rec-
ommend that AR systems may include a self-monitoring system
that assesses the quality of the tracking data in real time to po-
tentially turn off the AR imagery in cases where the accuracy or
precision is too low to be helpful and not distract users.

In addition, the differences we found based on task behav-
ior have important implications for the design of future user
studies and evaluations of AR systems. We recommend that re-
searchers control for or account for task behavior, especially in
studies evaluating the effects of factors directly impacting user
trust and reliance. As we have found, different strategies re-
flecting varying levels of trust and reliance on the AR system
can have significant effects on end user performance. Of note
is that higher trust and reliance on a given AR system may not
translate to optimal user behavior. It may no longer be suffi-
cient to administer a usability questionnaire or a trust scale to
assess AR systems—their downstream effects on user behav-
ior also has significant effects on the performance of the overall
human-AR system.

6.5. Evidence for task behavior compliance

As discussed in Section 3.7, it was important to perform a
sanity check to see if the task behaviors were correctly imple-
mented by participants. In addition to the sanity check, the con-
spicuously high error rate in the 0◦ offset conditions for the AR-
Only task behaviors we discussed above would also suggest that
participants correctly implemented the AR-Only task behavior.
Further, we found that when utilizing the AR-First task behav-
ior, the errors seen in the AR-Only condition diminish signifi-
cantly, which would be expected if participants were following
the task behavior instructions. Additionally, we found that in
both experiments participants utilizing the Real-First task be-
havior produced higher elapsed times than with the Real-Only
task behavior, an expected result as Real-First requires partic-
ipants to perform a similar procedure to Real-Only, but with

the added burden of verifying with the AR cue. This would
support the notion that participants correctly implemented the
Real-First and Real-Only task behaviors. While these compar-
isons do not serve as manipulation checks, they do support the
notion that participants correctly understood and implemented
the task behaviors in this study.

6.6. Limitations and future work

In the experiments presented here, we observed task behav-
iors that are presumed to be indicative of users’ trust in and re-
liance on AR systems (see Figure 4). However, it is important
to note that in our experimental setup, participants were specif-
ically directed to exhibit certain behaviors. This is in contrast
to real-world scenarios where AR users are not typically given
explicit instructions on how to engage with a task; instead, they
navigate the task based on their personal perceptions and atti-
tudes towards the AR system. As outlined in Section 2.1, there
are multiple factors that may influence a user’s decision to adopt
a certain behavior or to alter their behavior during a task. The
exploration of the varying behavioral patterns that lead to differ-
ent interactions with AR systems presents a promising avenue
for future research.

In our two experiments, we manipulated the presentation of
AR cues in terms of their registration accuracy and precision
and investigate their effects on performance, reliance, and trust.
However, participants were instructed that the AR cues were
always correct. Introducing ambiguity in the trustworthiness
of the AR cues themselves (i.e., uncertainty whether a given
cue correctly corresponds to a selection target) is an interesting
direction for future work in this area.

Because our experiments had a large number of conditions,
we did not include more than three levels of the two tracking
factors accuracy and precision. We chose the angular offset lev-
els because they are whole numbers and appeared qualitatively
different in our pilot testing. We acknowledge that the tested
levels do not include many extremes and leave out many values
in between them that are worthy of inquiry. Future work could
investigate other ranges of angular errors.

Lastly, our experiment’s sample size (N=18) and skewed
gender representation (15 male, 3 female), limits the generaliz-
ability of our work. Though we did not find a reason to investi-
gate the degree to which gender could have an affect on the way
that registration errors change user performance and trust, it is
historically known that gender differences can appear in many
different spatial cognition contexts [53]. Given the movement
towards improved rigor and replicability in HCI communities
related to our work [54], it would be valuable to verify our re-
sults across a larger demographic in future work.

7. Conclusion

In this paper, we investigated the relationships between AR
tracking accuracy and precision and four task behaviors (AR-
Only, AR-First, Real-Only, and Real-First) on users’ subjective
assessment of the AR system and objective performance when
completing a 360◦ search-and-selection task. We conducted
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two within-subjects experiments, one for each AR tracking fac-
tor, while evaluating all four behaviors. By controlling for dif-
ferent task behaviors in AR, we were able to show significant
issues in task performance that were introduced by even small
amounts of AR tracking errors. However, our results also show
that some of the evaluated task behaviors in AR were able to
compensate for the tracking errors, suggesting that users’ abil-
ity to integrate cues from AR and the real world may be effec-
tive and helpful even if the tracking accuracy or precision are
less than optimal.
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