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AUDIOVISUAL DETECTION OF
EXPECTATION VIOLATIONS IN DISPARATE
HOME AUTOMATION SYSTEMS
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Informative Home Automation Systems” filed Aug. 31,
2022, and U.S. Non-Provisional patent application Ser. No.
18,240,731 entitled “Audiovisual Detection of Expectation
Violations in Disparate Home Automation Systems” filed
Aug. 31, 2023, the contents of which are herein incorporated
by reference.

GOVERNMENT INTEREST

This imnvention was made with Government support under
Grant No. N00014-21-1-2578 awarded by the Ofiflice of

Naval Research and Grant No. 1800961 by the National
Science Foundation. The Government has certain rights in
the 1nvention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The described embodiments generally relate to automa-
tion systems specifically to detecting anomalies by audio-
visual capture of an automation system, fraining an unsu-
pervised machine learning model and generating contrastive
output of nominal and exceptional observations.

BRIEF SUMMARY OF THE INVENTION

Anomaly detection 1n heterogenous autonomous systems
1s achieved by several new and non-obvious systems. A {irst
system extrapolates observations made of a home automa-
tion system to detect expectation violations and initiate
communications or even remedial action. A second system
approach executes a scripted training mode of a first home
automation system to provide detectable cues to a second
home automation system to provide a logical bridge between
modalities 1n operation in the first system and environmental
changes detectable in the second system. A third system
approach trains the second home automation on expectations
for nominal operation of the first system by unscripted
tramning of a model during which time both systems are
presumed to be operating properly.

For example, a function of a first autonomous system
imparts a substantially reproducible change 1n an environ-
mental condition. The environment condition may include
light, temperature, vibration, 1magery, humidity, proximity
or sound. A second system having a sensor detects the
change 1n the environmental condition. An anomaly man-
ager communicatively coupled to the first autonomous sys-
tem and the observing system has a first event listener that
detects the execution of the function on the first autonomous
system and a second event listener accessing values from the
sensor on the observing system.

A logic engine operable 1n the anomaly manager returns
a first operational state when the environment condition
detected by the sensor i1s consistent with the anticipated
environment condition responsive to the function of the first
autonomous system operating properly and returns a second
operational state when the environment condition detected
by the sensor 1s inconsistent with the anticipated the envi-
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2

ronment condition responsive to the function of the first
autonomous system operating properly. Finally, an alert
module communicatively coupled to the anomaly manager
signals an output device when the second operational state
1s returned by the logic engine. The alert module optionally
sends a designated human operator an alert message that
includes options to take certain actions 1n response to the
anomaly.

In one example, an energy consumption module commu-

nicatively coupled to the anomaly manager and integrated
into the logic engine detects a change 1n energy consumption
responsive to the function of the first autonomous system.
The system processes energy consumption not just for
measures of efliciency but for direct and indirect inferences
ol environmental state and operational status of other sys-
tems. For example, a door sensor that malfunctions and does
not register an open state value during cold outside tem-
peratures triggers an oflline thermostat to activate a heat
pump to warm the building interior. In this case, the opera-
tional state of two oflline systems (door sensor and thermo-
stat) are supplemented by detection of an electricity draw of
magnitude and time consistent with a door left open 1n the
winter.

Alternatively, if the thermostat was online as an IoT
(Internet of things) device, the drop 1n temperature could be
measured directly. In similar fashion, 1f the thermostat 1s set
to activate heat at a threshold and there 1s a lack of energy
consumption yet another anomaly 1s detected by inference.
The detection 1s applied to the determination of whether the
logic engine returns the first optional state or the second
operational state. In an embodiment, a rendering engine
communicatively coupled to the anomaly manager generates
an XR-viewable spatial representation of the first autono-
mous system in the second operational state annotated with
corrective annotations.

Another embodiment of the invention 1s adapted for
configuring and integrating automation systems. That
embodiment includes a first autonomous system performing
a first function and broadcasting information such as its
location, i1dentity, parameters, functions, and operational
specifications. A second autonomous system performing a
second function broadcasts information such as its location,
identity, parameters, functions, and operational specifica-
tions. An integration manager communicatively coupled to
the first autonomous system and the second autonomous
system receives the location, 1dentity, and operational speci-
fications for both the first autonomous system and the
second autonomous system. A rendering engine communi-
catively coupled to the integration manager generates an
XR-viewable spatial representation of the first autonomous
system and the second autonomous system with information
such as configuration and operational annotations displayed
in context of each system to guide an end user to completing
an integration task, diagnosing system anomalies or even
planning additions or improvements between the two sys-
tems.

The 1invention includes methods for extrinsic monitoring,
of the operational status of home automation systems, either
through visual or auditory means, using digital cameras
and/or digital microphones located on the premises. The
system works by {first accessing 1mage or audio data cap-
tured during an 1nitial training period. This data represents
nominal operations of a home automation system that 1s
otherwise non-communicative with the capturing devices. A
computer processor then processes this data, applying
machine vision processes for visual data or auditory scene
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analysis for audio data, to extrapolate operational indicators
that are representative of the home automation system’s
nominal functioning.

The processed operational indicators are used to train an
unsupervised machine learning model, building a model of
normalcy for the system. This training phase concludes
when a stopping criterion 1s met. The stopping criterion can
be met through several means: achieving a predetermined
accuracy on a validation set (which may be at least 80%),
training the model for at least 72 hours of observation, or
when the model’s loss function ceases to decrease for a
predetermined number of epochs between 10 and 100.

Post-training, the system 1initiates real-time expectation
violation monitoring, capturing and storing substantially
real-time 1mage or audio data. Should an expectation vio-
lation be detected, a contrastive collage or sequence 1is
generated. This contrastive element juxtaposes a nominal
operation (either visual or auditory) with an anomalous
event, retrieved from the respective data stores.

Finally, the contrastive collage or sequence 1s transmitted
to an end-user of the home automation system, effectively
conveying the context of the expectation violation. Addi-
tionally, a deep link may be transmitted to the end-user,
allowing them to launch a smartphone configuration appli-
cation for the home automation system. The mvention also
provides for methods where the audio and visual contrastive
clements can be combined into an audiovisual collage,
oflering a more comprehensive contextual conveyance of
the expectation violation to the end-user.

The system operates as middleware, utilizing a series of
soltware layers and data abstraction to instantiate an inter-
mediary communication channel between discrete, non-
integrated, and non-communicatively linked home automa-
tion systems. This 1s achieved through several components
and stages.

Audiovisual Capture Apparatus. Integral to the first home
automation system, this component encompasses modalities
like high-resolution surveillance cameras and audio devices
equipped with signal processing capabilities. These devices
capture multifaceted video and audio signals, including
specific frequency bands, i1mage resolutions, and frame
rates, depending on the operational needs.

Discovery Module Intertace. The captured data 1s trans-
mitted, often after preliminary processing, to a discovery
module. This module leverages algorithms like 1mage rec-
ognition, edge detection, and acoustic pattern matching to
extrapolate operational indicators from the ambient envi-
ronment. For example, 1t may apply Fourier transformations
to detect specific sound signatures or use computer vision
techniques to recognize particular visual cues or patterns.

Machine Learning Processing. Post-identification of these
operational indicators, they are converted into structured
data sets and disseminated to a machine learning module.
This module 1s equipped with machine learning algorithms,
such as neural networks, support vector machines, or deci-
sion trees, and has been trained on large data sets to
recognize the customary operational pattern of the home
automation system. The capability to detect anomalies or
expectation violations 1n this habitual pattern imvolves sta-
tistical analysis, outlier detection, and pattern recognition
techniques.

Communication and Proxy Establishment. On the event
ol an expectation violation report, the communication mod-
ule, employing protocols such as MQT'T (Message Queuing,
Telemetry Transport) or CoAP (Constrained Application
Protocol), optionally initiates the establishment of a proxy
communication channel, using techniques like VPN (virtual
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private network) tunneling or API (application program
interface) bridging. This mechanism permits interaction and
response between the first and second home automation
systems, despite the absence of direct integration or cou-
pling.

Adaptation and Feedback Loop. The discovery module
continually monitors the second system through continuous
data sampling and adaptive filtering, perpetually updating 1ts
database of operational indicators. In parallel, the machine
learning module refines 1ts knowledge base using techniques
like online learning, thereby enhancing its discernment of
normal patterns and dewviations. Furthermore, the commu-
nication module can autonomously trigger specific
responses 1n the first system based on the feedback from the
machine learning module, employing rule-based engines or
event-driven programming.

Integration with Various Systems: An embodiment of the
invention facilitates communication between an array of
systems within the home automation environment so when
an expectation violation occurs, communication back to the
observed, second home automation system 1s 1nitiated.
These include Smart Home Systems responsible for man-
aging the automation of various household functions. Often,
these systems use protocols such as Zighee, Z-Wave, or
Thread, which ensure communication between wvarious
devices. Integration with controllers like AMAZON’s Echo
or APPLE’s HomePod 1s common, allowing users to com-
mand devices through voice or application interfaces.

Security Apparatus forms another significant component,
including biometric scanners like fingerprint or facial rec-
ognition systems from manufacturers like HONEYWELL,
and 1ntrusion detection systems that utilize advanced sensors
and algorithms. Adherence to security protocols like Secu-
rity Assertion Markup Language (SAML) 1s essential to
maintain secure communication across these devices. Cli-
mate Control Systems in the home automation framework
typically utilize Proportional-Integral-Derivative (PID) con-
trollers or fuzzy logic to regulate heating, cooling, and
ventilation.

[llumination Systems rely on the Digital Addressable
Lighting Interface (DALI) or Digital Multiplex (DMX)
protocols to control lighting attributes. Manufacturers like
PHILIPS employ these standards to ensure compatibility
with different controllers. Entertainment Systems in the
smart home environment often include Universal Plug and

Play (UPnP) devices from brands like SONY and SAM-
SUNG. The UPnP standard enables integration of audio and

video components and facilitates the sharing of media across
different devices 1n the home.

Real-world Implementation Scenario. For example, 1 a
security network equipped with high-definition cameras and
intelligent motion detectors, the captured video data can be
utilized to extract operational indicators representative of an
automated sprinkler system’s usual functioning using tech-
niques like object tracking and temporal pattern analysis.
The operational indicators, representing events like sprinkler
activation and 1rrigation timing, are processed using time-
series analysis in the machine learning module. If the
security camera doesn’t capture the sprinkler system func-
tioning at the usual time, 1t triggers predefined automated
actions, such as alert notifications through SMS or push
services or engagement of another module to activate an
auxiliary irrigation system using programmable logic con-
trollers (PLCs) or similar automation equipment.

Adaptive and Interactive Response. Based on the sys-
tem’s configuration and integration level, it can instigate
various remedial actions, ranging from generating detailed
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error logs and system notifications to interfacing with other
interactive home automation systems to autonomously rec-
tify detected anomalies, such as remotely adjusting settings
through secure cloud interfaces.

By intertwining technologies across multiple domains,
this system achieves a novel integration of otherwise non-

communicative systems, greatly enhancing the overall effec-
tiveness and efliciency of home automation paradigms.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference
should be made to the following detailed description, taken
in connection with the accompanying drawings, in which:

FIG. 1 1s a diagrammatic view ol an embodiment of the
invention showing a robot vacuum generating anticipated
environmental conditions confirmed by a home security
system.

FIG. 2 1s a diagrammatic view of an embodiment of the
invention showing a home-automation-controlled light fail-
ing to generate anticipated environmental conditions, the
anomaly confirmed by a home security system.

FIG. 3 1s a diagrammatic view of an embodiment of the
invention showing a home-automation-controlled electric
clothes drying generating anticipated electrical draw con-
firmed by an energy consumption module.

FIG. 4 1s a diagrammatic view ol an embodiment of the
invention showing a home-automation-controlled electric
clothes drying not starting and failing to draw electricity
confirmed by an energy consumption module.

FIG. 5 1s a diagrammatic view of an embodiment of the
invention showing an augmented reality display of a plu-
rality of home automation system annotated with call-out
indicia spatially positioned to corresponding equipment and
used for configuration, integration and anomaly nvestiga-
tion.

FIG. 6 1s a diagrammatic view of an embodiment of the
invention showing a training system to create a model of
nominal operation between two heterogenous autonomous
systems.

FIG. 7 1s a diagrammatic view ol an embodiment of the
invention showing an exceptional operation detected using
two heterogenous autonomous systems and a machine learn-
ing model.

FIG. 8 1s a flow chart view of an embodiment of the
invention using unsupervised learning for visually detecting
expectation violations of an automated system.

FIG. 9 1s a flow chart view of an embodiment of the
invention using unsupervised learning for audibly detecting
expectation violations of an automated system.

FIG. 10 1s an illustration of a graphics user interface of a
smartphone receiving a contrastive collage of 1images rep-
resenting both nominal and exceptional observations.

FIG. 11 1s an illustration of a graphics user interface of a
smartphone receiving a contrastive collage of images rep-
resenting both nominal and exceptional observations
wherein the image of the exception 1s rendered with modi-
fied graphic eflects.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENT

L1

Today’s homeowners or residents (system “users™) are
increasingly incorporating sophisticated home automation
devices and robotics into their homes. For example, home
automation systems based on protocols such as Insteon,
/-Wave, or Zigbee can turn lights off and on at different
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times. Beyond simple “if this do that” relationships, home
automation programming can become quite complex,
involving devices that act in ways that depend on various
conditions mncluding time of day, motion, temperature, and
the geographic proximity of the residents (“geofencing™).
The “connections” between devices, and the associated
signals and events, are increasingly diflicult to comprehend
via conventional programming mechanisms, €.g., smart
phone applications. This 1s true both at the time of program-
ming and at the time of execution. Similarly, the use of home
robotics system such as robotic vacuum cleaners can mnvolve
many conditions and constraints related to time of day,
motion, pets, etc. Simply programming the planned robotic
movement through the home, and understanding the actual
robotic movement and actions through the home, can be
difficult as one has to mentally connect maps shown on a
smart phone to the actual home structure, furniture, etc. 1n
the home. Visualizing the constraints associated with time of
day, etc. makes this even more difficult.

Beyond the programming or setup phase of use, both
home automation and home robotics systems olten encoun-
ter anomalies during operation. For example, anomalies
might occur due to user mistakes in programming, device or
system failures, or environmental circumstances such as a
lamp being unplugged or a toy blocking the path of a robot.
More often than not a system does not even know there 1s an
issue—i11 1t commands another device or system to do
something, 1t “assumes™ 1t was done. In that case the user 1s
usually the one to become aware, e.g., “Why didn’t my lamp
turn on at 6 pm like 1t was supposed to?” If a system 1s
aware, the typical means for conveying the problem to a user
1s a textual message or perhaps a simple diagram on their
smart phone, leaving the user to try and relate the message
on their smart phone with the physical devices, structures,
etc. 1 their home.

There are multiple complementary aspects of this mven-
tion that seek to address these problems. First, Augmented
Reality (AR) systems and methods can be used by the
residents to visualize otherwise nvisible programmed elec-
trical or logical connections between home automation
devices, including robotics, and systems, along with the
associated constraints, dependencies, etc. The same AR
systems can be used to visualize the otherwise invisible
real-time signals and events associated with the home auto-
mation/robotics devices and other systems.

Second, the manufacturers of discrete home automation
devices, IoT devices, appliances, HVAC equipment, etc.
could include mechanisms for storing or embedding (e.g. at
the time of manufacture or shipping) and conveying helpiul
descriptive and operational information to the system being
used to wvisualize otherwise invisible information. Such
information could be made available via Bluetooth (near
field) or other similar well-known technologies. For
example. the manufacturer of a light switch, a kitchen
appliance, or a robotic vacuum could embed persistent
detailed static information about the device model, specifi-
cations, capacities, and capabilities. The devices/systems
could also transmit detailed dynamic mformation about the
real-time use and state of the device. Manufacturers of
devices could also embed mechanisms for the storage,
updating, and conveyance of longer-term dynamic informa-
tion such as maintenance schedules or needs, device/system
updates, and recall notices. All this information could be
visualized using AR 1n situ at the device, along with all of
the other invisible information about the connections, sig-
nals, pathways, etc. as described with the first aspect of the
invention above.
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Third, the home automation and robotics systems, includ-
ing all sources, actuators, and sensors, can be used to
automatically detect, and in some instances correct for,
faults or anomalies. For example, cameras can be used to
detect failures of lights to turn on, cameras can be used to
detect the collision of a robotic vacuum with an un-antici-
pated object mn the room (causing the vacuuming to be
incomplete), microphones can be used to detect collisions or
other physical anomalies, and motion sensors can be used to
detect failures of cameras to “see” motion. When motion
sensors trigger and cause lights to be turned on, both
cameras and IR sensors might see the motion. These feed-
back mechanisms can be employed during normal use, e.g.,
a light that was programmed to turn on failed to do so, or 1n
a “self-test” mode during times when there are no people 1n
the home, e.g., the system could turn on a light and make
sure the light (on) was “seen” 1n a camera.

Fourth, the AR mechanisms used to visualize otherwise
invisible signals, pathways, etc., as described above, can be
employed to help the user understand the detected failures/
anomalies. including where they happened in the home,
what time, the nature of the failures/anomalies, and how
they were detected (what makes the system “believe” there
1s a failure).

This applies to larger systems also, and systems where the
fallure symptoms are slower to manifest themselves, e.g.,
HVAC systems. Given one or more temperature sensors
around the home/space, e.g., in thermostats. one can learn
(e.g., machine learning) about changes 1n temperature that
are expected when the system 1s working properly, and the
home 1s secure but can also learn to detect windows/doors
being open (from the temperature changes). One can also
detect system (e.g., HVAC) failures, including “hard” fail-
ures or more gradual “soft” failing trends. One form of
HVAC failure (e.g., loss of coolant) would have tempera-
tures rise while energy also spikes (e.g., AC keeps runming,
to no avail), another form of HVAC {failure (e.g., compressor
circuit breaker tripped) would see temp rise but no energy
(electricity) use. The system can also learn to correlate
environmental temperature changes with devices or condi-
tions that are expected to alter the temperature, e.g., an oven
or other apphance, or a window or door open. IR cameras/
sensors could also be used to spot temperature 1ssues, detect
lights or appliances on, etc. (IR sensors are commonly found
already 1n some motion sensors, for example.) All of this
could be integrated with other systems such as energy
monitoring systems. €.g., <sense.com=>. More direct causes
and eflects can be correlated and used to detect conditions
through IoT or similar mechanisms, e.g., signal that appli-
ance (e.g., washing machine) turned on should correspond to
energy increase, door open sensor signal could (should,
depending on time of day and weather for example) cause a
short temperature and light change.

More generally. some things are intended to produce
environmental effects. some things do unintentionally. Some
have direct eflects some are indirect. Some eflects are
unimodal some are multimodal. Some eflects are short in
duration. some have more lasting eflects. All of these
relationships might comprise one set of conditions when
functioning properly, and another when there 1s an anomaly.
Anomalies can correspond to failures, some to simply unex-
pected circumstances. The system can learn from unex-
pected conditions that are not failures. Help learning can
come from various sources. e.g., the individuals 1n the home
or crowd sourced learning. including people 1n other homes.
One could use a simulator to both model effects, and to teach
ML system about expected behaviors and anomalies.
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For example, the state of exterior openings (e.g., doors or
windows) might be correlated with temperatures rising or
falling, light appearing or not, etc. Automatic shades/blinds
should lower temperatures iside when 1t 1s hot and sunny
outside, failure of them with sun will not. Appliances and
other devices might make sounds, light, etc., everything
from microwaves to TV to robotic vacuums. Electricity use
will change as devices change state (see “sense” company
above). Mechanical changes, e.g., window/door open, robot
vacuum moving, lamp moved, can have multiple eflects,
¢.g., they might be seen 1n a camera, make sounds, change
the temperature, etc.

Systems can know more/less about diflerent objects, e.g.,
characteristics and state, and have diflerent levels of confi-
dence 1n those characteristics/states. E.g., a microwave oven
1s very unlikely to move, humans/animals/robots (e.g., a
robotic vacuum) are very likely to move, and a floor lamp 1s
in between—it won’t normally move on 1ts own, but 1t can
be moved. Knowing such characteristics and current state
can aid i1n detecting anomalies, e.g., because a lamp that 1s
moved might appear to be “burned out” 11 not seen 1n one
place, but might have simply been moved (and might appear
somewhere else). Humans can help systems learn about
objects, people, etc., e.g., directly by indicating or labeling,
or indirectly through machine learning (with human
“crowd” mput from other homes/homeowners) can learn to
recognize patterns. ML examples today for electrical energy
(sense), water (Flume and Streamlabs), and temperature
(HVAC). Today all perform ML for their own purpose. But
what they recognize can be useful for other systems to
know-11 they share information the signals and information
together can convey far more than any alone.

In some 1nstances, the same home automation and robot-
1ICs sources, actuators, and sensors, that are used to auto-
matically detect faults or anomalies can also be used to
automatically or optionally act on behalf of the user to
correct the anomaly or mitigate unwanted eflects caused by
the anomaly. For example, if the system detects anomaly
related to a possible water leak, e.g., a water sensor 1s
triggered or a lawn sprinkler head has detached (FIG. 6-7),
the system can command a solenoid or similar device to shut
ofl the whole house water supply, or to shut off the supply
to the problematic lawn sprinkler/irrigation circuit. In some
circumstances the system can then take programmed or
learned (e.g., via ML) action to take follow actions, e.g.,
command the lawn sprinkler/irrigation system to transition
to the next scheduled 1rrigation task. Such corrective actions
can be undertaken automatically, or the user can be notified
and offered the option to take the corrective action. Classes
of anomalies, or specific anomalies, can be assigned a
severity rating (e.g, 1=information only, . . . , 10=critical
action needed) that can be used to determine whether to act
automatically or to involve the user in the decision.

Mechanisms such as connectivity graphs, for example,
can be used to determine whether an anomaly appears to be
associated with a specific device or a collection of devices,
¢.g., a single sensor/source failure vs. a controller (multiple
sensors/sources) failure. (We refer to a “‘source” as any
device/system that creates an eflect, intentionally or not,
¢.g., a sensor can act as a source 11 1t emits IR light.) Finally,
all of the same systems and methods associated with the
three complementary aspects of this invention can also be
used/applied in other contexts, for example at a workplace,
in a vehicle, 1 a bulding, or around a city.

Turning to FIG. 1, anomaly manager 10 1s communica-
tively coupled to both automation system 12 and audiovisual
capture 14. As part of automation system 12, robot vacuum
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13 received activation instructions 16 to clean. As a result,
environmental parameters sound, vibration and proximity 18
are detectable by audiovisual capture 14 which 1s, 1n this
example, a security camera 15. Data recorded initially by
camera 135 1s understood to be in a nominal operational state
20. Nominal operational state 20 1s necessary so that devia-
tions may be detected by anomaly manager 10 which are
forwarded onto an alert module 22. Additionally, an XR
spatial presentation of operation 24 may be generated 1n
certain applications to provide additional information on the
location and status of home automation components. In the
example of FIG. 2, automation system 12 actuates lamp 30
on and off on a set pattern. Audiovisual capture 14 received
timestamped 1mages of the lamp or at least an area that
would be illuminated by the lamp. Audiovisual capture 14
during an 1nitial traiming prior or from a training set expects
illumination at 9:00 PM every evening but does not detect 1t
this case. The second operation state (non-functioning) 1s
sent to anomaly manager 10. As audiovisual capture 14 has
both an 1mage of nominal operation from 1ts prior training
set or archived data and also a detected anomalous 1mage of
a non-1lluminated state, anomaly manager 10 may generate
a contrastive collage of both images and send them to alert
module 22 which conveys them to end user by email,
application notification, text messaging or the like. Thus,
without pre-configuration or other human intervention,
audiovisual capture 14 does not know the context of the
anomaly. However, by conveying the contrastive collage of
the nominal and anomalous 1mages to the end user 1t
conveys what 1t was expecting versus what 1t observed. In
this manner, the audiovisual capture 14 may find anomalous
cvents that were never anticipated or predicted by a human.

In FIG. 3, a similar principle is illustrated wherein the
automation system 12 1s a clothes dryer that consumes a
relatively significant amount of energy 1n a typical house-
hold. In an embodiment of the invention, an application
programming interface (API) connection for the clothes
dryer conveys to the anomaly manager 10 that it has (or
believes 1t has) started a drying cycle. Anomaly manager 10
also receives data from energy consumption module 40
communicatively coupled to a breaker system 1n a residence
wherein energy draw 1s monitored. An unsupervised learn-
ing model receiving either API data or even audio or visual
indicium eventually expects to observe concurrent imitiation
of a drying cycle with a draw on power from the breaker
system. When a deviation or anomaly occurs, the alert
module 22 conveys at least three values: (1) the event
expected to occur (start of a drying cycle); (2) the energy
draw expected as a result; and (3) the anomalous lack of
energy draw which 1s shown 1n FIG. 4.

FIG. 5 1s an illustrative view of an embodiment of the
invention wherein devices in home automation systems are
identified by an augmented reality system 1n a configuration
process. Similar information may be conveyed once they are
spatially registered on their operation whether nominal or
non-functional.

FIG. 6 shows an embodiment of the invention wherein a
training mode 60 cycles an automated sprinkler system
through zones of operation which is labeled data of nominal
operation which trains diagnostic machine learning model
62 based on 1mages recerved from audiovisual capture 14.
Thus, as shown 1n FIG. 7, when automated sprinkler system
12 exhibits anomalous operation observed by audiovisual
capture 14 an exception notification 72 1s generated.

In light of the capabilities intrinsic to unsupervised
machine learning models, 1t becomes apparent that they ofler
substantial advantages 1n the realm of anomaly detection
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within home automation systems, encompassing devices
such as robot vacuums, sprinkler systems, and automated
lighting solutions. Deploying unsupervised algorithms for
the real-time analysis of multi-modal sensor data-compris-
ing video streams Ifrom surveillance cameras and digital
microphone outputs-presents a scalable approach for moni-
toring the nominal operational state of various automated
systems and flagging expectation-violating, anomalous
events.

Incorporating a K-means clustering algorithm into the
architecture allows for the categorization of multi-dimen-
sional data points mnto a predefined number of clusters,
thereby facilitating the i1dentification of distinctive patterns
corresponding to routine events or activities, such as the
scheduled activation of sprinklers or the cyclical operation
ol robot vacuums. The 1terative refinement of cluster cen-
troids ensures optimal intra-cluster homogeneity and inter-
cluster heterogeneity, thereby oflering a robust model of

‘normality” against which anomalous instances can be
benchmarked.

In instances requiring a more nuanced understanding of
different operational states or levels of automation interac-
tion, hierarchical clustering could be integrated. This algo-
rithm functions by constructing a tree (an undirected graph)
based on distance metrics, eflectively capturing hierarchical
relationships between clusters and enabling the 1dentifica-
tion of nested levels of abstraction. Such functionality 1s
valuable for deciphering complex dependencies between
different rooms or operational states of multi-device auto-
mation schedules, enhancing the anomaly detection capacity
of the system.

Dimensionality reduction techniques like Principal Com-
ponent Analysis (PCA) ofler computational efliciency and
tacilitate easy data interpretability by transforming the origi-
nal feature set into orthogonal components, which are linear
combinations of the original variables. By applying PCA on
high-dimensional video frames and audio signals, a com-
pressed representation retaining most of the original vari-
ance can be obtained. This facilitates the rapid 1dentification
of significant features indicative of anomalous behavior
while minimizing computational overhead. For instance, i
an unknown face appears on the surveillance camera or an
unfamiliar voice 1s detected via the digital microphone, PCA
could efliciently flag these as anomalies based on recon-
struction errors.

Statistical-based anomaly detection mechanisms could be
layered upon these clustering and dimensionality reduction
techniques for more granular surveillance. One such mecha-
nism involves Gaussian Mixture Models (GMM), which
employ probabilistic models to understand the data distri-
bution. Utilizing Expectation-Maximization, GMMs delin-
cate multiple Gaussian distributions and their corresponding
parameters, and classily data points based on the likelihood
that they belong to these distributions. This approach 1s
especially effective when the underlying data follows a
complex, multi-modal distribution, such as varying lighting
conditions during diflerent times of the day.

In scenarios that demand the detection of hitherto unseen
anomalies or require real-time analysis, ensemble methods
like Isolation Forests or One-Class Support Vector Machines
could be utilized. Isolation Forests are particularly effective
in handling high-dimensional data, as they randomly parti-
tion the feature space and recursively 1solate anomalies,
thereby offering an eflicient mechanism for real-time
anomaly detection. On the other hand, One-Class SVMs
train exclusively on the nominal state data to construct a
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hyperplane that separates normal behavior from outliers,
making them adept at identifying novel types of anomalies.

Additionally, deep learning-based techniques like Auto-
encoders can be integrated for capturing intricate dependen-
cies 1n the data. By learning a compressed latent represen-
tation of the normal operational state, Autoencoders
tacilitate the detection of subtle anomalies that other algo-
rithms might overlook. For example, a slight but consistent
deviation 1n the trajectory of a robot vacuum or the timing
of sprinkler activation could be flagged as anomalies based
on the reconstruction error metrics.

To complement the existing algorithms and offer a sec-
ondary layer of validation, t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) could be employed for the visual-
ization ol high-dimensional datasets. While not directly
involved in anomaly detection, the reduced-dimensional
representation provided by t-SNE could serve as a qualita-
tive metric for assessing the performance of the deployed
algorithms.

The synergistic integration of these unsupervised machine
learning algorithms provides a robust and versatile frame-
work for real-time anomaly detection in home automation
systems. These algorithms operate 1n concert to learn the
normal operational behavior across multiple devices and
modalities, thereby facilitating the immediate identification
and flagging of anomalous events that deviate from the
established normative patterns.

Returning to FIGS. 6-7, to detect sprinkler system anoma-
lies using unsupervised machine learning, we can use a
video camera to record the sprinkler system. The video
camera should be positioned to capture at least one zone 1n
the sprinkler system and should be recording at a high
enough frame rate to capture the sprinkler system turning on
and off. The video footage can then be analyzed using
unsupervised machine learming algorithms to identify
anomalies.

One way to 1dentily anomalies 1s to use feature 1dentifi-
cation. For example, we can extract features such as the
number of sprinkler heads, the water pressure, and the
duration of the watering cycle. We can then use these
features to cluster the video footage into different groups.
For example, we could cluster the video footage 1into groups
of “sprinkler system 1s on” and “sprinkler system 1s off.”

Once the video footage has been clustered, we can use
anomaly detection algorithms to 1dentify data points that are
significantly different from the rest of the data. For example,
we could use anomaly detection to identify a video clip
where the sprinkler system 1s not turned on at 10 AM on a
Sunday morning, even though 1t 1s supposed to be turned on.
In addition to the features mentioned above, we can also
extract features that indicate whether water 1s spraying from
the sprinkler head. This could be done by analyzing the
brightness of the video footage, or by using a machine
learning algorithm to identily the presence of water 1n the
video footage.

By extracting these features and using unsupervised
machine learning algorithms, we can develop a system that
can detect sprinkler system anomalies with high accuracy.
This system can then be used to send alerts to the home-
owner or to contact a service technician, preventing damage
to the sprinkler system or the property.

As shown 1n FIG. 8, an embodiment of the system works
by first accessing 1mage data 82 captured during an 1nitial
training period 81 or previously archived. This data repre-
sents nominal operations 84 of a home automation system
that 1s otherwise non-communicative with the capturing
devices. A computer processor then processes this data,
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applying machine vision processes for visual data or audi-
tory scene analysis for audio data, to extrapolate operational
indicators that are representative of the home automation
system’s nominal functioning.

The processed operational indicators are used to train an
unsupervised machine learning model 80, building a model
of normalcy for the system. This training phase concludes
when a stopping criterion 86 1s met. The stopping criterion
can be met through several means: achieving a predeter-
mined accuracy on a validation set (which may be at least
80%), training the model for at least 72 hours of observation,
or when the model’s loss function ceases to decrease for a
predetermined number of epochs between 10 and 100.

Post-training, the system imtiates real-time expectation
violation monitoring 83, capturing and storing substantially
real-time 1mages 85 by visual monitor 87. Should an expec-
tation violation be detected 90, a contrastive collage 92 1s
generated. This contrastive element juxtaposes a nominal
operation 1mage 94 with an anomalous event image 93,
retrieved from the respective data stores.

Finally, the contrastive collage 92 1s transmitted to an
end-user 96 of the home automation system, eflectively
conveying the context of the expectation violation. FIG. 9
shows a similar system that uses audio nstead of 1images.
Here, audio data 102 1s used to train the unsupervised
machine learning model 80 and then audio monitor 107
detects expectation violations 90 from real-time audio data
105. Instead of a visual contrastive collage of 1mages, a
contrastive sequence of audio 112 1s generated from what
sound was expected (nominal operation audio 104) and from
what sound was unexpected which 1s the anomalous opera-
tion audio 103. This contrastive sequence 112 1s then sent to
end user 96. The sequence 112 may be configured to always
start with the expected nominal sound followed by the
exception or vice-versus. Alternatively, an audio annotation
may 1indicate which sound was expected and which was
unexpected. It should be noted for example, that null values
of nominal operation 84 may be valid, for example, 1n
facilities or rooms that would normally be unoccupied
wherein the presence of a sound during that time constitutes
the expectation violation 90. Another aspect of the invention
1s that the unsupervised machine learning model 80 naturally
looks for patterns over a particular time 1nterval (e.g., daily,
weekly or the like). Digital files whether images or audio
nearly umversally include timestamp data including the
datetime of generation. Accordingly, an aspect of the inven-
tion 1s that the collage and/or sequence may not simply be
a pair of media files but may include a plurality of nominal
operation examples to contrast with the detected expectation
violation.

In another embodiment of the invention, the expectation
violation may be that of a deviation of anticipated audio or
lack thereof. However, either in the alternative or in con-
junction with the contrastive sequence of audio, a contras-
tive collage may also be mformative to end user 96. For
example, 11 a robot vacuum was scheduled to activate at
11:30 AM daily a home monitoring camera with an inte-
grated microphone might pick up video 1mages of 1ts move-
ment as well as 1ts sound. A possible malfunction of the
vacuum might be that 1t moves from room to room but its
cleaning function 1s not activated so the sound difference (or
absence) creates an audible expectation violation but not a
visual expectation violation. Therefore, sending only the
contrastive collage of images would not fully convey to the
end user the possible problem.

FIG. 10 show an exemplary contrastive collage wherein
an 1mage ol nominal operation 120 1s displayed concurrently
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with the detected expectation violation 122 image. Option-
ally, end user may provide human feedback. Here, the end
user may annotate a label 124 “Zone 4 sprinkler head off” to
put context to the expectation violation and save 126 the
annotation back to the system for future reference or to
direct repair of the condition. Additionally, end user may
validate 127 that an expectation violation has occurred
(positive feedback) and give validation to the detection or
may 1gnore 128 (negative feedback) to convey to the model
it made a mistake and 1t needs to adjust 1its threshold for
finding an expectation violation.

FIG. 11 shows an embodiment wherein a graphic altera-
tion or color manipulation 130 1s made 1n the 1image of the
expectation violation 122 (for example, changing the color
to a monochromatic red). The color manipulation may
include changing the hue, saturation, bright or contrast.
Additional graphic alternations may include adding indicia
indicators, borders, text or filters to either the nominal or
exceptional 1image. This assists the end user 1n immediately
discerning what 1s expected (nominal operation) and the
expectation violation (possible malfunction). While FIGS.
10-11 show the images above and below each other, they
may be presented 1n a sequence such as 1n an animated GIF
(graphics interchange format). Furthermore, embodiments
of the mmvention may show the nominal and exception
violation as animated loops to provide additional context
and information to the end user to better understand the
difference between the two.

Generating a contrastive collage for monitoring home
automation systems serves a dual purpose: enabling intuitive
visualization of the nominal state while simultaneously
offering a comparative analysis of expectation-violating
events. Given the multidimensional complexity of video,
image and audio data streams, an eflective implementation
of such a contrastive collage (or sequence 1n the case of
audio) would optionally include some preprocessing, post-
processing, and visualization strategies.

At the outset, imncoming visual data streams from the
camera may undergo normalization and feature extraction.
Algorithms like Convolutional Neural Networks (CNNs)
can be deployed to segment and classily regions of interest
in the visual frames. For example, the regions corresponding
to a sprinkler system, lighting fixtures, or the entry point
through which a child 1s expected to return home at a
regularly scheduled time could be identified and demar-
cated. Additionally, a time-series analysis of these seg-
mented regions using Recurrent Neural Networks (RNNs) or
Long Short-Term Memory (LSTM) networks can capture
the temporal dynamics of these elements, thereby allowing,
the system to associate specific segments with expected
time-sensitive events. Such a ftime-series association
becomes critical 1n defining the notion of “expected opera-
tion” 1n a rigorous manner.

Once the critical regions and their time-based associations
are determined, the captured frames may be augmented by
incorporating derivative visual markers such as contouring
or heatmap overlay, eflectively emphasizing the components
in action. For example, the stream ol water from a func-
tioming sprinkler could be outlined, or the face of the
arriving child could be highlighted. Conversely, during
expectation violations, the absence of these elements could
be marked by a color-inverted silhouette or a dynamic
dashed outline pulsating at a frequency to indicate urgency.
Such graphical markers could be generated by leveraging
computer graphics libraries like OpenGL for real-time ren-
dering or employing Shader Language for customized
graphical eflects.
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To render this as a cohesive visual package, several
additional techniques could be mvoked. For a side-by-side
comparison, techniques like alpha-blending or gradient-
based fusion could be employed to seamlessly integrate the
two 1mages. For a more dynamic presentation, the two
contrasting states-expected operation and expectation vio-
lation-could be compiled into an animated GIF or an
HTML5-based animated vector graphic, employing a
smooth transitional phase using cubic Bezier curves or
spline-based interpolations for visual continuity. A further
enhancement could be the application of a radiometric
transformation, such as histogram equalization or gamma
correction, to adjust the luminance levels or color balance of
cach frame, providing a heightened sense of contrast
between the two states.

Beyond traditional visual rendering techniques, alterna-
tive paradigms could be mmplemented for a novel user
experience. A Temporal Photo Slicing approach could splice
together slivers of each frame at chronologically spaced
intervals, rendering a single composite image that provides
a continuous temporal cross-section of the evolving states. A
multilayered approach, akin to the parallax effect, could be
designed wherein each layer scrolls at a different speed,
creating a sense of depth and making 1t easier for the end
user to focus on anomalies. Alternatively, an iteractive 3D
mesh could be generated from the frames, thereby allowing
the user to rotate, zoom, and explore the contrastive collage
in a more immersive environment. Advanced techniques like
Ray Tracing could be incorporated to simulate realistic
lighting effects, thereby accentuating the contrast.

While a variety of techniques can be employed to accen-
tuate the visual contrast between normal and anomalous
states, the underlying objective remains the same: to facili-
tate the mmmediate cognitive recognition ol expectation-
violating events against a backdrop of nominal operational
states. Leveraging a confluence of advanced machine learn-
ing algorithms, computer graphics techniques, and interac-
tive user interface design, such a contrastive collage would
serve as an integrative dashboard, offering a nuanced yet
intuitive snapshot of the monitored environment’s opera-
tional health.

Additionally, when a collage and/or sequence 1s sent to an
end user, a deep link may be transmitted, allowing them to
launch a specific smartphone configuration application for
the home automation system.

Additional Use-Case Scenarios.

Scheduled Lights. The model could be trained on the
standard on-ofl patterns of lights 1n the home. Should lights
turn on or off outside of their normal schedule, a contrastive
collage would be created and sent to the homeowner.

Garage Door Left Open. The system could be trained to
recognize a closed garage door as the norm. If the door
remains open for an extended period, an expectation viola-
tion 1s detected. A contrastive collage showing the garage
door both closed and open would be generated and sent.

Anthropomorphic Form Near Light Switch. A machine
vision process could be applied to recognize the shape of a
human or anthropomorphic figure standing near a light
switch. If no change 1n lighting 1s detected within a certain
time frame, an anomaly 1s considered to have occurred,
prompting the generation and transmission of a contrastive
collage.

Unusual Wait Time for FElevator. Audio or visual cues
could be used to detect when a person has pressed the
clevator button. It the elevator takes an unusually long time
to arrive, this 1s recognized as an expectation violation, and
a contrastive collage or sequence 1s sent to the end user.
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Computer and Software Technology

The present invention may be embodied on various plat-
forms. The following provides an antecedent basis for the
information technology that may be utilized to enable the
invention.

Embodiments of the present invention may be imple-
mented 1n hardware, firmware, software, or any combination
thereol. Embodiments of the present mnvention may also be
implemented as instructions stored on a machine-readable
medium, which may be read and executed by one or more
processors. A machine-readable medium may include any
mechanism for storing or transmitting information 1n a form
readable by a machine (e.g., a computing device). For
example, a machine-readable medium may include read-
only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; tlash
memory devices; electrical, optical, acoustical or other
forms of propagated signals (e.g., carrier waves, inirared
signals, digital signals, etc.), and others.

Further, firmware, soitware, routines, instructions may be
described herein as performing certain actions. However, 1t
should be appreciated that such descriptions are merely for
convenience and that such actions, 1n fact, result from
computing devices, processors, controllers, or other devices
executing the firmware, software, routines, istructions, etc.

The machine-readable medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer-
readable storage medium would 1nclude the following: an
clectrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the
context of this document, a computer-readable storage
medium may be any non-transitory, tangible medium that
can contain, or store a program for use by or in connection
with an instruction execution system, apparatus, or device.
Storage and services may be on-premise or remotely, such as

in the “cloud” through vendors operating under the brands,
MICROSOFT AZURE, AMAZON WEB SERVICES,

RACKSPACE, and KAMATERA.

A machine-readable signal medium may 1nclude a propa-
gated data signal with machine-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
machine-readable signal medium may be any machine-
readable medium that 1s not a computer-readable storage
medium, and that can communicate, propagate, or transport
a program for use by or in connection with an 1nstruction
execution system, apparatus, or device. However, as indi-
cated above, due to circuit statutory subject matter restric-
tions, claims to this invention as a software product are those
embodied 1n a non-transitory software medium such as a
computer hard drive, flash-RAM, optical disk, or the like.

Program code embodied on a machine-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
radio frequency, etc., or any suitable combination of the
foregoing. Machine-readable program code for carrying out
operations for aspects of the present imvention may be
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written 1n any combination of one or more programming
languages, including an object-oniented programming lan-
guage such as Java, C#, C++, Visual Basic or the like and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. Additional languages may include scripting lan-
guages such as PYTHON, LUA, and PERL.

Aspects of the present invention are described below with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by machine-readable program instructions.

Glossary of Claim Terms

Alpha-blending: A computational technique used 1n com-
puter graphics to combine 1mages based on their transpar-
ency levels. In the invention, alpha-blending could be uti-
lized to overlay anomaly images onto nominal operation
images to create a more mformative contrastive collage.

Ambient Environment: The surrounding conditions 1in
which a system operates, including temperature, lighting,
and other variables that are not directly controlled by the
system.

Anomalies: Vanations or deviations from a quantified
standard pattern of operation within a system. Anomalies are
identified through specific statistical or machine learning
models that can detect abnormalities 1n operational patterns.
These models compare real-time operational data waith
established baseline data, identifying deviations that may
signal errors, malfunctions, or unexpected behavior within a
system.

Audiovisual Capture Apparatus: A set of devices that
includes cameras and microphones. The cameras must have
a minimum resolution of p1080, allowing for detailed visual
capture, while the microphones must be capable of record-
ing audio signals within a frequency range of 20 Hz to 20
kHz. These apparatuses are essential in-home automation
systems for surveillance, interaction, and monitoring pur-
poses.

Autoencoders: A type of artificial neural network used for
unsupervised learning. Autoencoders are designed to encode
input data as internal fixed-form representations in reduced
dimensionality and then reconstruct the output from this
representation. In the context of the mvention, Autoencoders
could capture complex interdependencies 1n the operational
indicators, tlagging subtle deviations as potential anomalies.

Automated Sprinkler System: An 1rrigation system elec-
tronically controlled to dispense water at specific intervals,
times, and volumes. The system 1s regulated through elec-
tronic scheduling and environmental sensing, including soil
moisture sensors, weather forecasts, and flow meters. It
ensures eflicient water usage in gardens, lawns, or agricul-
tural fields, and can be part of broader home automation
systems.

Auxihary Irrigation System: A supplemental watering
system designed to activate under predefined conditions,
such as the failure of the primary irrigation system or
specific environmental factors. This system can be con-
trolled by quantitative sensors that measure soil moisture
levels, temperature, and other critical parameters, thereby
providing a contingency watering mechanism when needed.

Climate Control Systems: Systems that employ various
technologies to regulate temperature, humidity, and air qual-
ity within defined ranges. They utilize sensors to measure
current environmental conditions and controllers to adjust
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heating, cooling, humiditying, or dehumidifying compo-
nents accordingly. These systems can be integrated into
home automation environments to provide energy-eflicient
and comiortable living spaces.

Communication Module: A unit consisting of hardware
and software components designed to manage and facilitate
communication between non-integrated systems. The mod-
ule operates according to specific communication protocols
and standards, translating messages between diflerent sys-
tems and enabling interoperability. It may include wired or
wireless communication channels, encryption, and other
security measures.

Convolutional Neural Networks (CNNs): A class of deep
neural networks particularly suited for image recognition
and computer vision tasks. The architecture includes mul-
tiple layers of artificial neurons that convolve the mnput data.
In the context of the invention, a CNN could be used to
process the image data captured by the digital camera during,
the mitial training period, extracting operational indicators
that are representative of the home automation system’s
nominal operation.

Contrastive Collage: A composite of 1images or data that
juxtaposes normal operational indicators with those indicat-
ing expectation violations to facilitate rapid understanding
ol discrepancies.

Cubic Bezier Curves: Mathematical curves defined by
four control points, used in computer graphics for creating
smooth transitions. These curves could be employed to
smoothly interpolate between different operational indica-
tors or 1mages when generating the contrastive collage.

Database of Operational Indicators: A structured, rela-
tional database that stores quantifiable signals reflecting the
standard operation of a system. These indicators may
include measurements, timestamps, event logs, and other
quantified data essential for monitoring and pattern recog-
nition. The database design includes tables, relationships,
and constraints to ensure data integrity and retrieval eth-
ciency.

Deep Link: A type of hyperlink that launches a specific
application, not simply the default web browser. Deep links
may also include parameters such as an indicator that an
anomaly has been detected 11 the application 1s so developed
to accept it.

Discovery Module: A software component that processes
and analyzes captured data, employing specific algorithms
to extrapolate quantifiable operational indicators. This mod-
ule performs data preprocessing, feature extraction, and
modeling, enabling the system to recognize and understand
operational patterns. It provides msights mto the underlying
mechanisms of the system and contributes to monitoring and
control functions.

Eclectic Combination: An assembly of various subsys-
tems, integrated within a home automation environment
through middleware. This integration facilitates the coordi-
nated operation of different devices, such as security, climate
control, and entertainment systems. Standard communica-
tion protocols are followed, and a common interface 1s
provided to manage the various elements, ensuring a scam-
less user experience.

Epochs: One complete forward and backward pass of all
the training examples, commonly used as a unit of measure-
ment 1n machine learning training.

Expectation Violations: Quantifiable deviations from an
established pattern, recognized by machine learming algo-
rithms. These violations are measured through statistical
testing against predefined norms or learned patterns. A
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violation occurs when observed data significantly differ
from expected data, triggering alerts or actions within a
system.

Gamma Correction: A technique used to encode and
decode luminance 1n 1mages. Gamma correction could be
applied to the contrastive collage to make the images appear
more natural to the human eye.

Gaussian Mixture Models (GMM): A probabilistic model
employing a weighted sum of Gaussian distributions to
represent the underlying data. The Expectation-Maximiza-
tion algorithm 1s generally used for parameter estimation.
For the mvention, GMM could model complex, multi-modal
distributions of operational states, making 1t easier to 1den-
tify outlier events that may sigmify anomalies.

Gradient-based Fusion: A technique used in 1mage pro-
cessing for blending multiple 1mages into a composite
image. This could be applied 1in creating the contrastive
collage by seamlessly combining the first nominal operation
image and the second anomaly 1mage based on their local
gradients.

Hierarchical clustering: A clustering algorithm that builds
a dendrogram, which represents nested levels of similarity
between data points. This 1s accomplished either through
agglomerative  (bottom-up) or divisive (top-down)
approaches. Within the invention, hierarchical clustering
could elucidate nested relationships between different auto-
mation states, enhancing the system’s capability to detect
anomalies at multiple levels of abstraction.

High-Definition Cameras: Imaging devices capturing
visual data at a resolution of at least pl1080. These cameras
offer a level of detail suitable for various applications within
home automation, such as surveillance, object recognition,
and facial recognition. They often come equipped with
teatures like autofocus, zoom, infrared capability, and inte-
gration with other devices, such as motion detectors.

Histogram Equalization: An 1image processing technique
that enhances the contrast of an image by redistributing pixel
intensity levels. In the invention, this could be applied to
improve the visibility of operational indicators or anomalies
within the contrastive collage.

Home Automation Systems: Systems that enable automa-
tion and control of various household functions through a
combination of hardware and solftware components. These
systems can manage lighting, heating, security, and other
household tasks by following industry-standard communi-
cation protocols. Home automation systems ofler centralized
control through user interfaces such as smartphones, tablets,
or wall-mounted panels.

HTML5-based Animated Vector Graphic: Utilizes
HTMLS5, CSS (cascading style sheets), and JavaScript to
create scalable and resolution-independent animations. This
technology could be used to animate the contrastive collage
or other interface elements to better convey the context of
expectation violations to the end user.

[llumination Systems: Technologically driven lighting
management systems that provide control over brightness,
color, timing, and other attributes. Brightness can be mea-
sured 1 candela, and color in Kelvin, with adjustments
made through dimmers, color control units, or program-
mable controllers. These systems can be part of broader
home automation, oflering energy-saving, ambiance cre-
ation, and adaptive lighting solutions.

Interactive 3D Mesh: A polygonal model that represents a
3D object and allows for real-time manipulation. In the
invention, an interactive 3D mesh could be used to represent
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the premises or components of the home automation system,
enabling the end user to explore anomalies 1n a more
Immersive manner.

Isolation Forests: An ensemble-based algorithm designed
for anomaly detection that i1solates anomalies rather than
normal instances. It partitions the feature space recursively
and 1dentifies outliers based on the number of splits required
to 1solate them. In the invention, Isolation Forests could
provide eflicient real-time anomaly detection given their
ability to handle high-dimensional data.

K-means clustering: A partitioning method that segregates
n-dimensional data points into ‘k’ non-overlapping clusters.
The algorithm iteratively assigns data points to the nearest
centroid, and updates the centroid based on the mean of the
points within the cluster. In the context of the invention,
K-means clustering could categorize operational indicators
into discrete clusters, aiding 1n the definition of ‘normal’
behavior against which anomalies could be detected.

Intermediary Communication Channel: A communication
pathway facilitating interaction between discrete, non-inte-
grated systems. This channel employs middleware that uti-
lizes specific commumication techniques and protocols to
bridge differences in data format, transmission rate, or other
attributes between systems. It plays a crucial role in 1nte-
grating various subsystems within a heterogeneous environ-
ment, such as home automation.

Long Short-Term Memory (LSTM) networks: A special-
1ized RNN architecture designed to mitigate the vanishing
gradient problem, allowing the network to learn long-term
dependencies. LSTMSs could be applied in the invention to
analyze long sequences of operational indicators, effectively
building a model of normalcy over extended periods.

Loss Function: A mathematical function that calculates
the difference between the predlcted output and the actual
output (ground truth), aiming to minimize this difference
during the training of a machine learning model.

Machine Learming Module: An assembly of algorithms
that employs specific learning methods, trained to recognize
quantifiable patterns 1n data. The module can be supervised
or unsupervised and may utilize techniques like regression,
classification, clustering, or anomaly detection. It 1s crafted
to adapt to new data and make predictions or decisions
without being explicitly programmed for the task.

Machine Vision Process: A computational procedure that
interprets and analyzes visual information from the world,
typically through a digital camera, to produce operational
indicators or other types of meaningiul data.

Middleware: A solftware layer that acts as a bridge
between diflerent operating systems or applications. It pro-
vides essential services for communication and data man-
agement, using a defined architecture such as message-
oriented middleware or object request brokers. Middleware
enables different systems to communicate and share data
without direct integration, promoting modularity and scal-
ability.

Nominal Operation: The standard, expected functioning
ol a system under normal or predefined conditions.

Notification Alert: An automated message generated
through rule-based algorithms to notily users or systems of
specific, quantifiable events. These alerts can be transmitted
through various channels like email, SMS, push notifica-
tions, or visual indicators, depending on the nature and
urgency of the notification. They play a vital role 1n keeping,
users informed and systems responsive.

One-Class Support Vector Machines: A variant of SVMs
trained only on the data representing the ‘normal’ state. It
constructs a hyperplane in a high-dimensional space to
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separate normal behavior from outliers. In this mnvention,
One-Class SVMs could be used to 1identify novel anomalies
by traiming exclusively on nominal operation data.

OpenGL: A cross-platiorm graphics rendering API used
for generating 2D and 3D graphics. OpenGL could be
employed to create the visual contrastive collage that is
transmitted to the end user, especially 11 3D visualizations
are needed for depicting operational statuses.

Operational Indicators: Quantifiable metrics derived from
multi-modal sensor data intrinsic to the home automation
system, including but not limited to video streams, digital
microphone outputs, and other performance metrics such as
system states. These indicators are formalized using unsu-
pervised machine learning models like K-means clustering,
Gaussian Mixture Models, and Principal Component Analy-
s1s, among others, as delineated in the invention. These
operational indicators serve as the baseline for real-time
anomaly detection, functioming as the comparative dataset
against which deviations are measured to flag anomalous
events.

Parallax Eflect: A visual illusion where objects appear to
move at diflerent speeds based on their distance from the
viewer. This could be used to add depth to the contrastive
collage, aiding 1n the conveyance of operational context.

Principal Component Analysis (PCA): A dimensionality
reduction technique that transforms the original variables
into a new set of uncorrelated variables, known as principal
components, which are linear combinations of the original
variables. In the mnvention, PCA could be applied to high-
dimensional 1mage and audio data to extract the most
informative features for more eflicient anomaly detection.

Proxy Communication Channel: An indirect communica-
tion link that employs specific protocols and techniques to
establish a connection between non-integrated systems. This
channel acts as a substitute for direct communication, trans-
lating and routing messages between systems. It can be
implemented through hardware or software components and
may include encryption or other security measures.

Radiometric Transformation: A systematic alteration of
image pixel intensities. This could be applied to the color
mamnipulation step for an anomaly 1mage enhancing its visual
distinction from the nominal operation 1mages.

Ray Tracing: A rendering technique that simulates the
physical behavior of light to produce realistic images. While
computationally intensive, ray tracing could be employed to
create a highly detailed contrastive collage or other visual-
izations to represent the operational status of the home

automation system.

Recurrent Neural Networks (RNNs): A type of neural
network optimized for sequential data handling. RNNs
maintain a hidden state across time steps to capture temporal
dependencies. They could be employed to analyze
sequences of 1mage or audio data over time, i1dentifying
patterns or anomalies 1n the operation of the home automa-
tion system.

Security Apparatus: A set of devices, including detectors
and cameras with a minimum resolution of pl1080, used to
survell and respond to quantifiable secunity-related events.
The apparatus may include motion detectors, door/window
sensors, smoke alarms, and integration with a central control
unit. It ensures comprehensive security coverage within the
context of home automation.

Spline-based Interpolations: Techniques used to approxi-
mate data points with polynomial segments connected
smoothly. In the invention, spline-based interpolations could
be used to create smooth transitions 1n the contrastive
collage or 1n the representation of operational indicators.
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Stopping Criterion: A predefined condition or set of
conditions that, when met, halts the traimning of a machine
learning model.

Temporal Photo Slicing: A technique combining slices of
multiple 1mages over time into a single composite 1mage.
This could be employed in the invention to create a time-
based contrastive collage, visually representing changes in
the operational status over a period.

Unsupervised Machine Learning Model: A machine
learning model that finds patterns in data without being
explicitly programmed to perform a specific task, typically
by 1dentifying clusters or anomalies.

Validation Set: A subset of data used to provide an
unbiased evaluation of a machine learning model during
training.

The advantages set forth above, and those made apparent
from the foregoing description, are efliciently attained. Since
certain changes may be made 1n the above construction
without departing from the scope of the invention, 1t 1s
intended that all matters contained in the foregoing descrip-
tion or shown in the accompanying drawings shall be
interpreted as 1llustrative and not 1n a limiting sense.

What 1s claimed 1s:

1. A method for extrinsic visual monitoring of an opera-
tional status of a home automation system on a premises, the
method comprising the steps of:

a. processing image data representative of nominal opera-
tion of the home automation system with a computer
processor, the computer processor applying a machine
vision process to extrapolate operational indicators
from the ambient environment of the premises repre-
sentative of nominal operation of the home automation
system;

b. training an unsupervised machine learming model with
the operational indicators to build a model of normalcy
and detect expectation violations i1n the operational
pattern of the home automation system:;

c. concluding the iitial training period when a stopping
criterion for the unsupervised machine learning model
1S met;

d. initiating expectation violation monitoring of the home
automation system responsive to the conclusion of the
initial training period, a digital camera capturing sub-
stantially real-time 1mage data to an 1image store which
1s processed by the model to confirm nominal operation
and to detect expectation violations;

¢. responsive to detecting an expectation violation, gen-
crating a conftrastive collage comprising i1mages
retrieved from the image store, the retrieved 1mages
including a first nominal operation image and a second
anomaly 1image of the expectation violation; and

f. transmitting the contrastive collage to an end user of the
home automation system wherein the context of the
expectation violation 1s visually conveyed to the end
user by the contrastive collage.

2. The method of claim 1 further comprising the step of
color manipulating the second anomaly 1mage of the expec-
tation violation.

3. The method of claim 1 further comprising the step of
transmitting to the end user a deep link to launch a smart-
phone configuration application of the home automation
system.

4. The method of claim 1 wherein the image data 1n the
initial traiming period 1s archived from prior, known nominal
operation of the home automation system to form a valida-
tion set against which the unsupervised machine learnming
model 1s trained.
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5. The method of claim 1 wherein the stopping criterion
1s met when the unsupervised machine learning model has

reached a predetermined accuracy on the validation set of at
least 80%.

6. The method of claim 1 wherein stopping criterion 1s
met when the unsupervised machine learning model has
been trained for at least 72 hours of observation.

7. The method of claam 1 wherein stopping criterion 1s
met when the unsupervised machine learning model has
reached a point where a loss function for the unsupervised
machine learning model has stopped decreasing for a pre-
determined number of epochs between 10 and 100.

8. A method for extrinsic audible monitoring of an opera-
tional status of a home automation system on a premises, the
method comprising the steps of:

a. processing audio data representative of nominal opera-
tion of the home automation system with a computer
processor, the computer processor applying an auditory
scene analysis to extrapolate operational indicators
from the ambient environment of the premises repre-
sentative of nominal operation of the home automation
system:

b. training an unsupervised machine learning model with
the operational indicators to build a model of normalcy
and detect expectation violations in the operational
pattern of the home automation system;

¢. concluding the mitial training period when a stopping
criterion for the unsupervised machine learning model
1S met;

d. mitiating expectation violation monitoring of the home
automation system responsive to the conclusion of the
initial training period, a digital microphone capturing
substantially real-time audio data to an audio store
which 1s processed by the model to confirm nominal
operation and to detect expectation violations;

¢. responsive to detecting an expectation violation, gen-
erating a contrastive sequence comprising audio
retrieved from the audio store, the retrieved audio
including a first nominal operation audio clip and a
second anomaly audio clip of the expectation violation;
and

f. transmitting the contrastive sequence to an end user of
the home automation system wherein the context of the
expectation violation 1s audibly conveyed to the end
user by the contrastive sequence.

9. The method of claim 8 further comprising the step of
transmitting to the end user a deep link to launch a smart-
phone configuration application of the home automation
system.

10. The method of claim 8 wherein the audio data in the
initial traiming period 1s archived from prior, known nominal
operation of the home automation system to form a valida-
tion set against which the unsupervised machine learning
model 1s trained.

11. The method of claim 8 wherein the stopping criterion
1s met when the unsupervised machine learning model has
reached a predetermined accuracy on the validation set of at
least 80%.

12. The method of claim 8 wherein stopping criterion 1s
met when the unsupervised machine learning model has
been trained for at least 72 hours of observation.

13. The method of claim 8 wherein stopping criterion 1s
met when the unsupervised machine learning model has
reached a point where a loss function for the unsupervised
machine learning model has stopped decreasing for a pre-
determined number of epochs between 10 and 100.
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14. The method of claim 8 wherein the auditory scene
analysis 1s performed by spectrograms.

15. The method of claim 8 wherein the auditory scene
analysis 1s performed by temporal coherence.

16. The method of claim 8 wherein the digital microphone
1s integral to a digital camera, the method further comprising

the steps of:
a. generating an audiovisual clip by combinming a first

image of nominal operation captured by the digital
camera and correlated to the first nominal operation
audio clip and combining a second 1image of anomalous
operation captured by the digital camera and correlated
to the second anomaly audio clip of the expectation
violation; and

b. generating a contrastive audiovisual collage comprising

the first and second images and the first and second
audio clips; and

c. transmitting the contrastive audiovisual collage to an

end user of the home automation system wherein the
context of the expectation violation 1s audio-visually
conveyed to the end user by the contrastive audiovisual
collage.

17. A method for extrinsic audible monitoring of an
operational status of a home automation system on a prems-
1ses, the method comprising the steps of:

a. processing audio data with a computer processor, the

computer processor applying an auditory scene analy-
s1s to extrapolate operational indicators from the ambi-
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ent environment of the premises representative of
nominal operation of the home automation system;

. training an unsupervised machine learning model with

the operational indicators to build a model of normalcy
and detect expectation violations in the operational
pattern of the home automation system:;

. concluding the 1itial training period when a stopping

criterion for the unsupervised machine learning model
1S met;

. In1tiating expectation violation monitoring of the home

automation system responsive to the conclusion of the
initial training period, a digital camera having a digital
microphone capturing substantially real-time audio
data to an audio store which 1s processed by the model
to confirm nominal operation and to detect expectation
violations;

. responsive to detecting an expectation violation, gen-

crating a confrastive collage comprising images
retrieved from an image store, the retrieved 1mages
including a first nominal operation image and a second
anomaly 1mage captured concurrently with the expec-
tation violation i1dentified by the real-time audio data;
and

home automation system wherein the context of the
audibly-detected expectation violation 1s visually con-
veyed to the end user by the contrastive collage.
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