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ABSTRACT
Speech perception is optimal in quiet environments, but noise can
impair comprehension and increase errors. In these situations, lip
reading can help, but it is not always possible, such as during an
audio call or when wearing a face mask. One approach to improve
speech perception in these situations is to use an artificial visual
lip reading aid. In this paper, we present a user study (𝑁 = 17) in
which we compared three levels of audio stimuli visualizations and
two levels of modulating the appearance of the visualization based
on the speech signal, and we compared them against two control
conditions: an audio-only condition, and a real human speaking.
We measured participants’ speech reception thresholds (SRTs) to
understand the effects of these visualizations on speech percep-
tion in noise. These thresholds indicate the decibel levels of the
speech signal that are necessary for a listener to receive the speech
correctly 50% of the time. Additionally, we measured the usabil-
ity of the approaches and the user experience. We found that the
different artificial visualizations improved participants’ speech re-
ception compared to the audio-only baseline condition, but they
were significantly poorer than the real human condition. This sug-
gests that different visualizations can improve speech perception
when the speaker’s face is not available. However, we also discuss
limitations of current plug-and-play lip sync software and abstract
representations of the speaker in the context of speech perception.
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1 INTRODUCTION
Humans leverage and integrate both auditory and visual sensory
information to understand speech, making speech perception a
multi-modal process. For example, people who are deaf or hard of
hearing depend on the visual component of speech. Lip reading, or
speech reading, is our ability to understand speech by interpreting
the facial movements of the speaker. However, there are situations
where we cannot access the visual component of speech, such as
when we make an audio call or the speaker wears a face mask. For
the listener, it may become difficult to understand the speaker if
the listener’s and/or speaker’s environment is noisy, which can be
functionally equivalent to a decrease in the acoustic signal-to-noise
ratio (SNR). In similar situations, where the SNR is low, humans
typically benefit from the visual component significantly more than
when the SNR is high [31]. However, in audio calls, we cannot see
the speaker. Those situations present an opportunity to improve
speech perception by adding visual hearing aids, i.e., artificial visual
speech stimuli to improve speech perception in noise in the absence
of the speaker’s face.

Researchers in the past have proposed different artificial visual
stimuli or alternatives to human lips that could possibly aid speech
perception, such as Bernstein et al. [4], who evaluated an oval shape,
or the “Lissajous” shape, that would modulate its vertical extent
based on the acoustic speech amplitudes. They found that when the
shape was modulated in synchrony with the audio signal, partici-
pants’ speech perception was higher than when no visual stimuli
were presented. This indicates that some artificial visual stimuli are
viable alternatives to human lip movements for speech perception.
Another potential visual aid could be the use of virtual humans
(VHs) with accurate lip synchronization. VHs can provide users a
strong sense of social presence or co-presence, which denote how
much users feel that a VH is socially connected or co-located and
present in the same space with them [19, 27]. A strong sense of
social and co-presence can make users perceive the VH more real-
istic and human-like [7]. It is expected that higher fidelity of social
interactions will provide related benefits and increase engagement
with the VH [18, 28]. Among the different characteristics of a VH
such as appearance and behavior, speech and lip synchronization
are important aspects to creating believable, embodied conversa-
tional VHs [12]. However, in terms of lip reading, it is not known
if and how current VH lip synchronization implementations affect
our ability to understand speech.

In this paper, we simulate a noisy environment and measure
user’s speech perception when presented different visual stimuli.
We prepared three visualizations; the first is akin to Bernstein et
al.’s[4] oval condition, which modulated using the speech signal’s
amplitude or via amplitude-based modulation. The other two are a
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VH and the VH lips alone and feature lip sync or viseme-based mod-
ulation. Therefore, we ran an user study to evaluate our three visu-
alizations (Oval, VH and VH lips) that are modulated synchronously
with speech in two ways (amplitude-based or viseme-based) on
participants’ speech perception. We compare them to two control
conditions: audio only (no visual stimuli) and a real human speak-
ing. In terms of speech perception in noise, we posited the following
research questions:

• RQ1: How do artificial visual speech stimuli compare to an
audio-only condition?

• RQ2: How do artificial visual speech stimuli compare to a
real human speaking?

• RQ3: How do artificial visual speech stimuli compare to each
another?

We additionally measured the usability of the system, the user
experience, and asked participants subjective questions about their
preferences and the reasoning behind them.

The remainder of this paper is structured as follows. Section 2
provides an overview of related work. Section 3 describes our ex-
periment. The results are presented in Section 4 and discussed in
Section 5. Limitations and future work are discussed in Section 6.
Section 7 concludes the paper.

2 RELATEDWORK
In this section, we discuss related work on human audio-visual
speech perception and relevant findings about virtual humans, their
lip movements for increased social presence, and alternative visual-
izations for speech reading.

2.1 Audio Visual Speech Perception
To understand how human listeners recognize speech and use it
to understand spoken language, researchers have been extensively
studying human speech perception. It has been traditionally as-
sumed that speech perception in face-to-face contexts is a purely
uni-modal (i.e., auditory) process and that visual cues are indepen-
dent or additive. Since then, seminal work done on the McGurk
Effect [17] and by McDonald et al. [16] demonstrated the impor-
tance of visual cues for human speech processing.

Today, it is known that lip reading, or speech reading, is part of
our daily lives, and we depend on visual cues to clearly understand
another person speaking [11, 23, 32]. We naturally take advantage
of the patterns created by our lips, tongue, teeth, etc. as we speak.
While vision has proven beneficial, especially for people who are
deaf or hard of hearing, work done by Fowler et al. [9] and Sam
et al. [25], showed that speech can also be felt, providing further
evidence for the multi-modal nature of speech perception [24].

On a daily basis, humans are expected to clearly listen to, under-
stand, and respond to a wide variety of visual and aural conditions.
Some conditions might aid communication, while others may have
adverse effects, such as environmental aural noise or the absence
of visuals [3]. In such adverse or difficult listening situations, it
can be considered to be functionally equivalent to a decrease in
the acoustic SNR. Humans have demonstrated significant tolerance
for audiovisual speech perception at low SNRs by relying on vi-
sual cues significantly more than in situations with higher SNRs
[31]. Furthermore, Jordan et al. [14] showed that we are tolerant

of substantial occlusions on different parts of the speaker’s face as
well. This suggests that audiovisual speech perception overcomes
significant losses in aural clarity and facial visibility in everyday life
and employs speech reading cues from across the face, which, when
combined with experience-based processes, contribute to a robust
and adaptable system of visual and audiovisual speech perception
that can accommodate a wide range of visual needs.

2.2 Virtual Humans and Artificial Visual
Stimuli

In situations with low SNR and no visual cues, we cannot benefit
from the visual modality. These scenarios are fairly common, partic-
ularly when we make audio calls or wear face masks, and they may
become even more common as head-mounted displays (HMDs) be-
come more widely available and popular for social VR experiences.
HMDs can share audio and deliver realistic virtual environments,
but tracking of facial movements, in particular lip movements, for
the virtual humans we embody is not widely available yet.

Across various domains, such as animation and gaming, different
types of lip-sync tools have emerged. These include plug-and-play
software, deep learning approaches [33], and hand-drawn anima-
tions. The difficulty of implementation and the accuracy of speech
reading cues vary among these approaches. Plug-and-play pro-
grams are typically easier to set up, but they may offer less accurate
speech reading cues than hand-drawn animations [20].

Researchers have investigated different human and non-human
visualizations that could provide speech reading cues similar to lips.
Thomas et al. [34] compared different face representations such
as lips only, eyes and lips etc., along with different modulations
with speech, such as whole face movement, oral area movement
and extraoral movement. Their results showed that visual speech
and the type of modulation substantially influence auditory speech
recognition.

Similarly, Bernstein et al. [4] tested an oval-like shape, or a Lis-
sajous shape, which is modulated based on the acoustic speech am-
plitudes. This means that the shape scaled up as the speech became
louder, and scaled down as the speech became softer. This study
highlighted the potential of artificially generated visual speech
stimuli by showing that participants’ perception of speech was
improved by a straightforward graphic with an amplitude-based
modulation over no visuals at all. While the oval shape does not
provide much information about the speech itself, work done by
Yuan et al. [37] and Vroomen et al. [36] demonstrated that the tim-
ing of the audiovisual interaction plays a crucial role, and provided
enough speech reading cues to show an improvement.

In our study, we consider the same scenario where the speech sig-
nal is noisy and the visuals are not available to the listener. Broadly
we attempt to compare a non-human visualization (Bernstein et
al.’s oval-like shape) and a more human visualization (VH with
lip sync). More specifically, in these scenarios we propose three
visualizations – oval, virtual human lips, and virtual human face
– with two modulation types – amplitude-based and viseme-based.
We investigate their potential when compared to no visuals and a
real person speaking. We describe our experiment in the following
section.
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Logitech G Pro 
Headphone

Google Pixel 3XL

(a) Setup (b) Keypad

Figure 1: (a) Annotated photo showing a participant com-
pleting the experiment on a Google Pixel 3XL wearing the
Logitech G Pro Headphones. (b) The keypad interface partic-
ipants used to input the three digits they heard in each trial.

3 EXPERIMENT
In this section, we describe the speech perception experiment we
ran to look into the research questions we posed in Section 1.

3.1 Participants
We ran an a-priori power analysis using G*Power [8] application
version 3.1. Based on previous work [6], we assumed an effect size
of 0.35, and used default values for power and error probability of
80% and 5%. The analysis recommended a total sample size of 16
participants. We obtained participant’s demographics using ACM’s
DIE Demographics Questionnaire 1. We recruited 17 participants
from our university community, 9 male, 7 female, and 1 non-binary.
13 were born between 1981 and 2000, while 4 participants were
born after 2000. None of the participants reported any visual, mo-
tor, or cognitive disabilities. All of the participants had normal or
corrected-to-normal vision and none of them reported any visual
or vestibular disorders, such as color or night blindness, dyschro-
matopsia, or a displacement of balance. The participants were either
students or non-student members of our university community who
responded to open calls for participation, and received monetary
compensation of $15 for their participation. The experiment took
participants on average 75 minutes to complete.

3.2 Materials
The setup and stimuli we used for our study are described below.

3.2.1 Setup. Participants were seated in a quiet "whisper room"
booth in our laboratory, see Figure 1a. They used the Google Pixel
3XL, which has a 6.3 inch display, a native resolution of 1440× 2960
1https://community.acm.org/demographics/welcome.cfm

pixels, and runs on Android 12. Based on an article [1], the average
smartphone display size from 2021 to 2022 was 6.3 inches, hence, we
selected a handheld device with the same display size. Additionally,
participants wore Logitech G Pro VR Headphones [2], characterized
as full bandwidth with passive noise cancellation. To develop the
audio-visual environment, we prepared an Android application in
the Unity Engine version 2020.3.f1. The application was deployed
onto the smartphone and the data was logged locally.

3.2.2 Audio Stimuli. In this study, we used audio stimuli similar
to what Smiths et al. [29] and Krishnamurthy et al. [15] had done
previously. The audio stimuli consisted of a speech signal based
on triplets of digits presented simultaneously with background
noise. During the trials, the decibel levels of the speech signal were
varied while the background noise remained constant at 60 dBA.
The speech signal and the background noise are described below.

(1) Speech Signal: The speech signal was a triplet of digits spo-
ken by a female speaker in American English and digitally
recorded by a professional Blue Yeti USB microphone2. Only
monosyllabic digits (i.e., 1, 2, 3, 4, 5, 6, 8, and 9) were included
in the study. These captured audio clips were then cleaned
up with the Audacity audio software’s noise reduction filter.
We next created a look-up table with the adjustments needed
for each of the eight audio clips to duplicate relative changes
of +4,dB, +2,dB, and -2,dB. To ensure that these exact decibel
changes were received by participants, we calibrated them
using an SLM25TK Sound Level Meter3. It has a measure-
ment range of 30–130 dBA, 0.1 dB resolution, and a frequency
response of 31.5Hz–8.5 KHz. The same speech recordings
were used throughout the experiment.

(2) Background Noise: To simulate background noise, we cre-
ated an 8-talker babble, following Krishnamurthy et al. [15]
guidelines. We decided to go for multi-talker babble over
other noises, such as white noise, because it can be expected
in a real-life context, and would also lie within a typical
environmental noise spectrum [13]. Similar to Choudhary et
al [6], to create the 8-talker babble, we generated four female
and four male speaker audio clips using Google Cloud’s text-
to-speech API4, and superimposed them. All 8 clips played
simultaneously, and at the end of the created babble clip, it
was looped. This was played during the presentation of all
audio-visual stimuli, and was calibrated on the headphones
to the level of 60 dBA.

3.2.3 Visual Stimuli. During this study, all visual stimuli were
presented in portrait mode within the 6.3 inches display of the
handheld device. The background was set to black at all times to
not distract participants from what was presented to them. All
visual stimuli are shown in Figure 2. We used two methods to
modulate the visual stimuli synchronously with the verbal signal:
amplitude-based and viseme-based.

(1) Amplitude-based: The stimuli are modulated based on the
acoustic speech amplitudes. This was obtained by using a
Fourier transform to perform a spectral analysis on the audio

2https://www.bluemic.com/en-us/products/yeti/
3https://www.tekcoplus.com/products/slm25tk
4https://cloud.google.com/text-to-speech/
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(a) Audio-Only (b) Oval (c) VH Lips (d) VH Full Face (e) Real Human

Figure 2: Visual stimuli used in the experiment conditions: (a) audio-only, (b) oval, (c) virtual human’s lips, (d) virtual human’s
full face, and (e) real human (black bar added for de-identification, participants experienced without the black bar).

data. This helped us interpret the amplitudes by revealing
the spikes in the signal.

(2) Viseme-based: The visual stimuli modulate based on the
viseme(s) of the speech material. A viseme is the visual de-
scription of a phoneme in spoken language. Over time, these
visemes are interpolated to simulate natural mouth motion.

We describe the implementations of the visual stimuli and the
speech modulation below.

(1) Oval Visualizer: This comprised of a oval which had a fixed
width of 1.5 cm, and had a minimum and maximum height
of 0.5 cm and 1.5 cm respectively. Bernstein et al. [4] found
that participants could extract some speech reading cues to
improve their speech perception when a similar oval shape,
known as the Lissajous shape in their paper, was modulated
based on the speech amplitude.
As a result, for the amplitude-based modulation, similar to
their implementation, the oval shape scales up and down
along the acoustic amplitudes of the speech.
For the viseme-based modulation, the oval shape changes
analogous to the humans mouth. So when the mouth is
closed, the shape is flat. Similarly when the mouth opens,
the shape size increases vertically by the same amount.

(2) Virtual Human:We used a hi-poly Caucasian female Unity
Multipurpose Avatar (UMA)5 with black hair and brown
clothes. The avatar blinked and made slight eye saccades
when she was not speaking.
For the amplitude-based modulation, the mouth of the virtual
human opened and closed based on the acoustic speech am-
plitudes. We did so by preparing a custom script to modulate
the blendshapes offered by the UMA virtual human.

5https://assetstore.unity.com/packages/3d/characters/uma-2-unity-multipurpose-
avatar-35611

For the viseme-based modulation, we used UMA’s OneClick
preset from the SALSA LipSync Suite 6. This provided real-
time lip-sync for our UMA virtual human.

(3) Real Human:We captured a Caucasian female actor pro-
nouncing the different digits in American English in front
of a Logitech 4K Brio HDR webcam and a green screen with
shadow-free illumination so that the lip, jaw, and tongue
movements were clearly visible. All video edits were done
using the DaVinci video editing software 7.

3.3 Study Design
We performed a partial-factorial within-subjects design with the
following factors and control conditions (see Figure 2).

• Visualization (3 levels): All visualizations were synced to
the speech signal based on the modulation type.

(1) Oval: Along with the speech, participants would see an
oval that scaled vertically based on the modulation type.

(2) VH Full Face: Participants would see the full face of the
VH.

(3) VH Lips: Participants would only see the VH’s lips.
• Modulation Type (2 levels): These modulation types were
implemented for the three visualizations in sync with the
speech.

(1) Amplitude-based: Modulation based on the acoustic
speech amplitudes.

(2) Viseme-based: Modulation based on human lip move-
ments.

• Control Conditions (2 levels):
(1) Audio-Only: In this condition, the human was not visible

to participants. They only heard the speech.

6https://crazyminnowstudio.com/unity-3d/lip-sync-salsa/
7https://www.blackmagicdesign.com/products/davinciresolve/

https://assetstore.unity.com/packages/3d/characters/uma-2-unity-multipurpose-avatar-35611
https://assetstore.unity.com/packages/3d/characters/uma-2-unity-multipurpose-avatar-35611
https://crazyminnowstudio.com/unity-3d/lip-sync-salsa/
https://www.blackmagicdesign.com/products/davinciresolve/
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Table 1: Table illustrating the six experimental conditions,
including the three levels of visualizations and the two levels
of modulations. The two control conditions are not shown
in this table.

Modulation Type
Visualization Amplitude-based Viseme-based

Oval Oval𝐴𝑚𝑝 Oval𝑉𝑖𝑠

VH Lips VHLips𝐴𝑚𝑝 VHLips𝑉𝑖𝑠

VH Full Face VH𝐴𝑚𝑝 VH𝑉𝑖𝑠

(2) Real Human: Along with the speech, participants would
see a video recording of the speaker.

In total, participants experienced 8 conditions, including 2 control
conditions and 3×2 (Visualization×Modulation Type) experimental
conditions. All 8 conditions were presented and randomized based
on a Latin Square table.

3.4 Procedure
To participate in the experiment, the participants read through
a consent form, and were asked to give their verbal consent to
participate. The experimenter then described the task protocol and
overall flow of the experiment to the participants. The experimenter
explained to the participants that they would hear a 3-digit number
and see one of the different visual stimuli (except in the audio-only
condition). After hearing the 3-digit number, the participants would
then be asked to repeat that number on a keypad (see Figure 1b). The
experimenter explained all the visual stimuli that the participants
would experience with respect to the factors that we described in
Section 3.2.3. Participants then put on the Logitech headphones
and started the application on the phone. The application began by
welcoming the participant and asked for their unique participant
ID. After this, the participants were familiarized with the task and
all the visual stimuli in a practice session.

Once they completed the practice session, the experimental trails
began. In each trial, they were exposed to the visual stimuli (except
in the audio-only condition, in which the display was black) and
the audio of a 3-digit number. After this, a keypad appeared, par-
ticipants enter the 3-digit number, pressed the “save” button, and
then the keypad disappeared. This was one trial, while a condition
contained at least 24 trials. There were in total 8 conditions. When
participants completed a condition, they were asked to answer the
SUS (System Usability Scale) and UEQ-S (User Experience) ques-
tionnaires (see Section 3.5) on a laptop. To minimize participants’
eyestrain and to help them regain focus, answering the question-
naire after every condition provided a short break away from the
device. Additionally, after four conditions, we provided a 10-minute
break. At the end of all 8 conditions, participants proceeded to
complete a post-questionnaire, which assessed their demographics,
prior VR experience, and general perception and preference of the
different visual stimuli they experienced, along with their reasoning
behind their answers.

3.5 Measures
We collected participants’ speech perception in noise by measuring
their Speech Reception Thresholds (SRT), and obtained subjective
measures via questionnaires.

3.5.1 Speech Reception Threshold in Noise. To measure SRT, we
followed the adaptive protocol as described by Plomp & Mimpen
[21] with minor adjustments. We presented a random triplet of non-
repeating monosyllabic English digits (1, 2, 3, 4, 5, 6, 8 and 9), and
the participants attempted to repeat the triplet. The original triplet
digit test by telephone [29] consisted of 23 trials, and later versions
presented between 23 and 30 trails [35]. We presented a minimum
of 25 presentations. In the test, a constant 8-talker babble noise was
fixed at 60 dB and the speech level was varied. The response triplet
was judged to be correct only when all digits were correctly replied.

Adaptive SRT Protocol:
(1) The first triplet is presented repeatedly, each time increasing

the speech level (step size 4 dB) until the triplet is entered
correctly.

(2) The speech level is decreased by 2 dB, and the second triplet
is presented.

(3) Based on the user’s response, the subsequent triplets are
presented at a 2 dB higher level (incorrect response) or a
2 dB lower level (correct response).

(4) The SRT is calculated as the average signal-to-noise ratio of
the last 10 triplets.

3.5.2 Questionnaires. Weused the following questionnaires to gain
insights about participants’ sense of the usability of the system,
user experience, and subjective preferences for all the conditions.

• System Usability Scale (SUS): We employed Brooke et
al.’s [5] system usability scale questionnaire to rate each
condition’s usability. Answers were given on a 1-to-5 scale to
express agreement or disagreement with the questionnaire’s
statements, where 1 denotes strongly disagree and 5 denotes
strongly agree. The sum of the contributions from each item
determines the final SUS scores, which ranges from 0 to 100.

• User Experience Questionnaire (UEQ-S): We used the
short version of the user experience questionnaire developed
by Schrepp et al. [26] to assess participants’ user experience
with each condition. The questionnaire consists of 8 items
through which scores are calculated for two dimensions of
their experience, pragmatic and hedonic quality. Pragmatic
qualities describe qualities that relate to the tasks or goals
the user aims to reach when using the product, while hedo-
nic qualities do not relate to tasks and goals, but describe
aspects related to pleasure or fun while using the product.
After every condition, participants rate each item in the
questionnaire on a 7-point Likert scale (from -3 to +3). A
weighted sum of their item ratings determine the pragmatic
and hedonic quality scores.

• Preferences: We asked participants to indicate their subjec-
tive preferences among all five visual conditions (3 visual-
izations and 2 control) in terms of speech understanding by
ranking the five visualizations from most preferred (rank of
1) to least preferred (rank of 5).
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Table 2: Statistical test results for the 3× 2 (visualization×modulation type) experimental conditions for the SRT measure,
Usability (SUS) ratings, and User Experience (UEQ-S) ratings for pragmatic and hedonic qualities.

Measure RM-ANOVA Factor df𝐺 df𝐸 F p 𝜂2𝑝 Pairwise-Comparisons

SRT
Two-way
Visualization (3 levels)
Modulation (2 levels)

Visualization 1.77 28.41 9.4 0.24 0.09 N/A
Modulation 1 16 6.6 0.02 0.29 N/A
Visualization *
Modulations 1.93 31.01 3.76 0.03 0.19 p<0.02: (Oval𝐴𝑚𝑝 < 𝑂𝑣𝑎𝑙𝑉𝑖𝑠 ),

(VHLips𝑉𝑖𝑠 < 𝑂𝑣𝑎𝑙𝑉𝑖𝑠 )

Usability
(SUS)

Two-way
Visualization (3 levels)
Modulation (2 levels)

Visualization 1.88 30 0.74 0.48 0.04 N/A
Modulation 1 16 0.29 0.59 0.01 N/A
Visualization *
Modulations 1.87 30 1.27 0.30 0.07 N/A

User Experience
(UEQ-S)
Pragmatic Quality

Two-way
Visualization (3 levels)
Modulation (2 levels)

Visualization 1.59 25.37 1.23 0.04 0.19 p<0.05: (Oval, VH )
Modulation 1 16 1.23 0.28 0.007 N/A
Visualization *
Modulations 1.35 21.53 3.16 0.08 0.16 N/A

User Experience
(UEQ-S)
Hedonic Quality

Two-way
Visualization (3 levels)
Modulation (2 levels)

Visualization 1.63 26.05 3.33 0.06 0.17 N/A
Modulation 1 16 0.72 0.40 0.04 N/A
Visualization *
Modulations 1.44 22.96 1.66 0.21 0.09 N/A

3.6 Hypotheses
We developed the following hypotheses based on our motivation
and the research questions we posed in Section 1:
H1 Better speech perception for our six experimental conditions

than the audio-only control condition.
H2 Worse speech perception for our six experimental conditions

than the real human control condition.
H3 Among our experimental conditions, we expect the Oval𝐴𝑚𝑝 ,

VHLips𝑉𝑖𝑠 , and VH𝑉𝑖𝑠 conditions to result in better speech
perception than the Oval𝑉𝑖𝑠 , VHLips𝐴𝑚𝑝 , and VH𝐴𝑚𝑝 con-
ditions.

4 RESULTS
We analyzed the responses with repeated-measures analyses of
variance (RM-ANOVAs) and Tukey multiple comparisons with Bon-
ferroni correction at the 5% significance level. We confirmed the nor-
mality with Shapiro-Wilk tests at the 5% level and QQ plots. Degrees
of freedom were corrected using Greenhouse-Geisser estimates of
sphericity when Mauchly’s test indicated that the assumption of
sphericity was not supported.

4.1 Speech Reception Thresholds in Noise
4.1.1 Effects with Control Conditions. Here, we present our
comparative analysis between all six artificial visual conditions and
both control conditions, one at a time. Therefore, we started by
analyzing the responses with one-way RM-ANOVAs with seven
conditions (6 artificial and 1 control), followed by pairwise compar-
isons with Bonferroni correction, as shown in Figure 3.

With Audio Condition. We found a significant main effect
of the conditions on the SRTs, 𝐹 (4.12, 65.88) = 5.60, p< 0.001,
𝜂2𝑝 = 0.26. Post-hoc tests with Bonferroni correction showed that

noise level 
fixed at 60 dB
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Figure 3: SRT results are shown in a bar graph with our eight
experimental conditions on the x-axis. The SRT denotes
the required speech level relative to the noise level (fixed
at 60 dB) for participants to understand 50% of the speech
stimuli (lower is better). The vertical error bars indicate the
standard error. The horizontal bars and asterisks indicate
statistical significance (∗ p<0.05). All pairs with the real hu-
man are significant.

the following conditions paired with the Audio-only condition were
significant: Oval𝐴𝑚𝑝 , VHLips𝐴𝑚𝑝 , and VH𝐴𝑚𝑝 .

Our results show that the Audio-only condition was significantly
worse than all conditions with the Amplitude modulation type in
terms of participants’ SRTs.



Visual Hearing Aids: Artificial Visual Speech Stimuli for Audiovisual Speech Perception in Noise VRST ’23, October 09–11, 2023, Christchurch, NZ

With Real Human Condition. We found a significant main
effect of the conditions on the SRTs, 𝐹 (6, 96) = 333.52, p< 0.001,
𝜂2𝑝 = 0.95. Post-hoc tests with Bonferroni correction showed that all
conditions paired with the Real Human condition were significant.

Our results show that the Real Human conditionwas significantly
better than all conditions in terms of participants’ SRTs.

4.1.2 Effects between Experimental Conditions. In this sec-
tion, we compare all six of our experimental conditions (exclud-
ing the control conditions). The statistical test results of the RM-
ANOVAs and pairwise comparisons are shown in Table 2 and Fig-
ure 3. We analyzed the responses with a two-way RM-ANOVA with
3 visualization levels × 2 modulation types.

We did not find a significant main effect of visualization on SRT.
However, we did find a significant main effect of modulation type
on SRT. We further found a significant interaction effect between
visualization and modulation type on SRT.

Our results show that the abstract condition Oval𝐴𝑚𝑝 performed
better than an abstract visualization with a more human-like mod-
ulation, Oval𝑉𝑖𝑠 . Furthermore, participants performed better when
we used a more human-like pair, VHLips𝑉𝑖𝑠 , compared to when we
replaced the VH with an abstract oval, Oval𝑉𝑖𝑠 .

4.2 Questionnaires
4.2.1 SUS. Among the six experimental conditions, we did not
find a significant main effect with visualization or modulation or an
interaction effect on SUS scores, as shown in Figure 4.

4.2.2 UEQ-S. Among the six experimental conditions, we did not
find a significant main effect with visualization or modulation or an
interaction effect on UEQ-S scores, as shown in Figure 4.

4.2.3 Preferences. Participants ranked the Real Human condition
as the best and the Audio-only condition as the worst. Among the
experimental conditions, VH Full Face was preferred over VHLips,
and lastly Oval, as shown in Figure 5.

5 DISCUSSION
Our experiment demonstrated that in the presence of noise and the
absence of the speaker’s face, some artificial visual speech stimuli
can improve users’ speech perception. In this section, we discuss
the research questions and hypotheses we posited in Section 1 and
Section 3.6, respectively. We go into further detail on comparisons
with no visuals, with the real human, and among the artificial visual
speech conditions.

Artificial Visual Speech compared to Audio-Only. In this
study, we presented three visualizations: an oval shape, virtual hu-
man lips, and a virtual human face. These representations weremod-
ulated in two different ways dependent on the speech: amplitude-
based and viseme-based. Our first research question,RQ1, enquired
if our experimental conditions improved speech perception in com-
parison to an empty screen, which simulates an audio call. Due to
the lack of any visuals or any speech reading cues, we considered an
empty screen as the worst case situation. Hence, our Hypothesis
H1 stated that our experimental conditions would offer sufficient
speech reading clues to be significantly better than the audio-only
condition with no visuals. However, we can only partially accept

H1 based on the results in Section 4.1.1. We found that only the
experimental conditions with the amplitude-based modulation type
(Oval𝐴𝑚𝑝 , VHLips𝐴𝑚𝑝 , and VH𝐴𝑚𝑝 ) improved participants’ speech
perception over the audio-only condition, while viseme-based con-
ditions did not. This is an interesting finding, and we think there
are at least two reasons for it, or a combination of them.

First, the amplitude-based modulation is more basic in nature
and relies only on the signal’s loudness, whereas the viseme-based
modulation is more complex and naturally pairs visually with a
human face. Three abstract visualizations – an oval, a virtual hu-
man’s lips, and a virtual human’s face – were paired with these
modulation types; the oval was simple and non-human like, and the
virtual human was almost cartoonish in appearance. We think the
amplitude-based conditions performed better than the viseme-based
conditions because they paired better with our non-human-like
visualizations. Hence, when viseme-based modulation is paired with
a more realistic virtual human, like Unreal Engine’s MetaHuman 8,
we can expect significantly more speech reading cues.

Second, we used a plug-and-play lip sync solution for the viseme-
based modulations. We believe that more precise and accurate lip
movements, similar to how animation studios do them, can be
produced. Furthermore, other facial movements, such as tongue
movements or breathing, can provide additional speech reading
cues when we speak. Viseme-based modulations could be made
more accurate and precise by combining lip movements with other
facial movements. Here are examples of comments we received
from two participants that illustrate how challenging it was to read
the virtual human’s lips.

P16: “The virtual human was helpful with showing the
whole virtual face or a person, but the lips did not move
like a real human so it was not the most beneficial.”
P17: “The mouth movements were difficult to memorize
and map to certain numbers. Unnatural movement of
the mouth made it hard.”

Artificial Visual Speech compared to a Real Human. Our
second research question, RQ2, compared our experimental con-
ditions to a real human speaking in terms of audio-visual speech
perception. All the speech reading cues we need come from a real
human speaking, which led to our Hypothesis H2 that all of our
experimental conditions would perform poorly in comparison. We
can acceptH2 based on our results in Section 4.1.1 and participants’
ranking in Section 4.2.3. Participants ranked the real human the
best, and their required speech levels improved from 4 dB above
the noise level for experimental conditions to 36 dB below the noise
level with a real human, at a noise level of 60 dB. If we consider a
real human the standard for speech reading, we are seeing much
room for improvement.

Artificial Visual Speech compared to each other. Since our
conditions amplitude-based oval and viseme-based virtual humans
are natural pairs, ourHypothesis H3 stated that they would be the
best when comparing the conditions to each other. Based on our
findings this can only be partially accepted. Oval𝐴𝑚𝑝 was better
than Oval𝑉𝑖𝑠 and VHLips𝑉𝑖𝑠 was better than Oval𝑉𝑖𝑠 , but nothing

8https://www.unrealengine.com/en-US/metahuman

https://www.unrealengine.com/en-US/metahuman
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else. This suggests that using natural pairs results in some improve-
ment in SRT scores, whereas using non-natural pairs, according to
some participants’ anecdotes, causes more confusion. For example,
for non-natural pairs Oval𝑉𝑖𝑠 and VH𝐴𝑚𝑝 , two participants stated
the following:

P2: “Sometimes it seemed as if the lips were moving but
nothing was coming out.”
P10: “Certain numbers looked almost identical so when
I focused on the oval I got more confused.”

For the virtual human conditions, we believe the level of anthropo-
morphism plays an important role. Higher levels of virtual human
anthropomorphism would provide more familiar speech reading
cues, improving social presence as well [10]. It is important to note
that, while visual realism and behaviors are important for social
presence, for speech perception it is for necessary facial behaviors
such as lip movements, eye saccades, and facial expressions to be
in synchrony. Our virtual human, for example, had natural eye
saccades and facial movements, which were intended to make them
more believable and present, but they distracted participants from
speech reading:

P1: ”Having the whole face was nice, it felt more like
actual lip reading. I think I was able to pick it up better
in this condition. Maybe it was actually harder than
another condition but it was the most familiar as it most
closely resembled an actual person’s face.”
P3: “The lips helped me understand numbers but still
it wasn’t as easy a real human. Maybe due to facial
expressions not being as exact as real human.”
P7: “Her sporadic eye movements were distracting mak-
ing it harder to focus on her lips when I couldn’t hear.”

When we compare the oval visualization to the virtual humans,
we find that they have similar SRT scores, but they are ranked the
worst in terms of user preference. Reinforcing Vroomen et al.’s [36]
results, we believe that the oval provides important time cues about
the speech signal, which aids users in anticipating the speech signal.
However, it lacks the various speech reading cues that a real human
face provides, which limits its ability to be as good as a real human
speaking.

P2: “It only helped with when to expect to hear a num-
ber (when the shape started moving). But it did not
help with what the number was as its motion was very
inconsistent with the digit.”
P10: “Difficult to lip read but simple graphic, so not
overwhelming”

Overall, our findings show that when there is a noisy audio signal
but no visuals, we can use some artificially generated visual stimuli
to improve speech perception. However, the techniques we cur-
rently have available still perform poorly when compared to a real
human speaking. Nonetheless, in the absence of any visuals, such
as an audio call these findings are useful. In situations with partial
facial visibility, such as a user wearing a VR HMD or wearing a face
mask, parts that are occluded (such as the lips or eyes) could be
replaced by a similar looking VH. Furthermore, larger (and more
space-consuming) visualizations, such as a full virtual human, have
the best chance of being as good as a real human speaking. That
said, when we have limited screen space available, such as on a
smartphone or with a low field of view VR/AR HMD, visualizations
like the oval or virtual human lips may still be helpful in improving
speech perception.
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6 LIMITATIONS AND FUTUREWORK
Our study showed that artificial visual stimuli can improve speech
perception in the presence of noise and the absence of the speaker’s
face. However, there are a few limitations to the current work that
can lead us to interesting research vistas that may be investigated
in the future.

To begin with, we used a 2D display to simulate an audio call
situation. An audio call may be the most typical scenario with
respect to our daily lives where the listener does not have access to
visuals of the speaker’s face. Another scenario in which we have
poor or no visuals of the speaker is when they are wearing a face
mask or a head-mounted display, be that when multiple users try
to communicate in the real world while wearing augmented reality
head-mounted displays, or be it that they are meeting in a virtual
environment while they are only able to see each other’s virtual
avatars. Because the listener does not have to use a 2D display
in these scenarios, another line of research could look into 3D
visualizations in a virtual or augmented reality setting to improve
speech perception.

Secondly, our study used a female speaker and a similar looking
virtual human. The type of speaker has been shown to affect our
speech perception [30], so future work could look into different
speaker types, such as race, skin color, age, and gender, as well as
different levels of anthropomorphism (for virtual humans), such as
photorealistic or abstracted cartoonish characters.

Last but not least, in our study we tested only one popular plug-
and-play lip sync software (UMA OneClick preset from the SALSA
LipSync Suite). There are alternatives, such as Oculus Lipsync 9

or RogoDigital Lipsync 10, and other lip sync approaches, such as
based on deep learning [22] or hand drawings. We propose that
future research should explore these lip sync solutions with respect
to SRTs to understand which of them is best suited for enhancing
speech perception.

7 CONCLUSION
In this paper, we presented a human-subject experiment in which
we tested different artificial visual stimuli to aid human speech
perception in the presence of noise and the absence of the speaker’s
facial visuals. We tested three levels of visualizations, oval, virtual
humans lips, and virtual humans face, and two levels of modulation,
amplitude-based and viseme-based. First, our results showed that
some of our tested artificial visual stimuli proved better than an
audio-only condition with no visuals. Second, while there were
benefits in terms of speech perception, participants’ results were
considerably worse compared to seeing a real person speaking,
which indicates that there is still much room for improvement.
Overall, our results show that using artificial visual speech stim-
uli is a viable option in settings with poor speech signals and no
visuals. We discussed potential explanations and implications to
help practitioners who want to use these techniques, as well as the
limitations of our experiment and future research directions.

9https://developer.oculus.com/documentation/unity/audio-ovrlipsync-unity/
10https://lipsync.rogodigital.com/
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