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ABSTRACT

The ability of human beings to physically touch our surroundings has had a profound impact on

our daily lives. Young children learn to explore their world by touch; likewise, many simulation

and training applications benefit from natural touch interactivity. As a result, modern interfaces

supporting touch input are ubiquitous. Typically, such interfaces are implemented on integrated

touch-display surfaces with simple geometry that can be mathematically parameterized, such as

planar surfaces and spheres; for more complicated non-parametric surfaces, such parameterizations

are not available. In this dissertation, we introduce a method for generalizable optical multi-

touch detection and semantic response on uninstrumented non-parametric rear-projection

surfaces using an infrared-light-based multi-camera multi-projector platform.

In this paradigm, touch input allows users to manipulate complex virtual 3D content that is regis-

tered to and displayed on a physical 3D object. Detected touches trigger responses with specific

semantic meaning in the context of the virtual content, such as animations or audio responses. The

broad problem of touch detection and response can be decomposed into three major components:

determining if a touch has occurred, determining where a detected touch has occurred, and de-

termining how to respond to a detected touch. Our fundamental contribution is the design and

implementation of a relational lookup table architecture that addresses these challenges through

the encoding of coordinate relationships among the cameras, the projectors, the physical surface,

and the virtual content.

Detecting the presence of touch input primarily involves distinguishing between touches (actual

contact events) and hovers (near-contact proximity events). We present and evaluate two algo-

rithms for touch detection and localization utilizing the lookup table architecture. One of the
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algorithms, a bounded plane sweep, is additionally able to estimate hover-surface distances, which

we explore for interactions above surfaces.

The proposed method is designed to operate with low latency and to be generalizable. We demon-

strate touch-based interactions on several physical parametric and non-parametric surfaces, and

we evaluate both system accuracy and the accuracy of typical users in touching desired targets

on these surfaces. In a formative human-subject study, we examine how touch interactions are

used in the context of healthcare and present an exploratory application of this method in patient

simulation. A second study highlights the advantages of touch input on content-matched physical

surfaces achieved by the proposed approach, such as decreases in induced cognitive load, increases

in system usability, and increases in user touch performance. In this experiment, novice users were

nearly as accurate when touching targets on a 3D head-shaped surface as when touching targets on

a flat surface, and their self-perception of their accuracy was higher.
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CHAPTER 1: INTRODUCTION

One of the fundamental aspects of human life is our ability to touch: to allow for the use of tools,

as a means to learn about our surrounding environment, or even as a form of communication

with others. The first sense a human fetus is able to detect is touch, which remains central to the

development of a growing child, who learns by touching objects in his or her environment [54,108].

As a communication tool, touch has been shown to be capable of conveying a wide variety of

emotions and meanings, including anger, fear, love, compliance, support, greetings, departures,

sympathy, and companionship [65,66,67,80,152,156,157]. In the modern world, a significant and

growing number of technologies support touch input.

Inspired by this, there is a growing desire to study and leverage the psychological effects of hu-

man touch in human-computer interaction, especially in the context of three-dimensional inter-

faces [23, 24, 86, 136, 137, 138]. Many interfaces consider ISO 9241-9, a standard which provides

guidelines for “non-keyboard input devices,” including touch interfaces, along with mechanisms

for comparing input methods [75]. Fitts designed a model representing the difficulty of a target

selection task [49]; known widely as Fitts’ Law, the model suggests that the amount of time re-

quired for a user to select a target—whether by physical touch or mouse input—increases as the

distance from the starting point to the target increases and as the width of the target decreases [12].

Touch may be incorporated either directly, through the use of tangible interfaces, or indirectly,

through haptic simulation [104]. Touch interfaces that incorporate some form of tactile feedback,

such as small vibrotactile devices that are attached to a user’s fingers or hands [3, 111, 128], can

lead to decreases in task time and increases in accuracy [4, 118]. In particular, user response times

to tactile stimuli have been shown to be significantly faster than responses to visual or auditory

stimuli [110].
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User performance in touch tasks can be measured in a variety of ways:

• Accuracy and precision: How closely does a user’s detected touch position match the in-

tended touch position? Can users correctly and consistently select specific touch input loca-

tions when many are available?

• Response time: How long does it take a user to select—both locate and touch—a specific

target?

• Cognitive load and usability: What sorts of mental, physical, or temporal demands are placed

on users of a system? Can they complete other secondary tasks simultaneously?

• Subjective feedback: Do users prefer one touch input system over another? Do they generally

consider one to be easier or harder than another?

In this dissertation, we investigate the problem of uninstrumented multi-touch detection and se-

mantic response on non-parametric rear-projection surfaces. Such surfaces provide physical af-

fordances, requiring no simulation or alternate presentation of tactile feedback, and allow the

direct tactile manipulation of virtual content such as graphical imagery (Figure 1.1). Often, we

describe these as physical-virtual surfaces, being composed of a physically perceivable shape onto

which virtual imagery is displayed. For example, Figure 1.2 shows interactions with virtual pa-

tient models on matching physical surfaces in which touch input can be used to examine the teeth

and eyes of the simulated patients. Additionally, we show that physical surfaces with geometry

that matches or closely matches the geometry of the virtual content promote improved touch per-

formance, lower cognitive load, increased usability, and greater subjective enjoyment compared

to other touch input paradigms. While the proposed methodology is designed to be general, we

specifically consider supporting touch input in the context of physical-virtual agents for human
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patient simulation, where—despite the importance of touch for both diagnostic and therapeutic

reasons in healthcare—touch is not typically an available input modality.

Figure 1.1: Graphical touch interactions on rear-projection surfaces. The imagery projected on the
surface updates in response to user touch input.

1.1 Challenges

Supporting touch as an input modality in human-computer interfaces is a challenging problem.

Each specific touch-sensitive interface imposes certain requirements on both itself and its users.

For instance, interfaces that require the display of dynamic, touch-responsive imagery must have

a mechanism for realizing that imagery. If the imagery is projected using spatial augmented real-

ity [13], practical concerns include the position of the projector or projectors and the availability of

touch sensing methods that can successfully operate alongside projected imagery. Alternatively, if
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the touch-sensitive interface is directly integrated with a graphical display surface using hardware

touch sensing elements, there may be practical limitations on the geometry of the surface, includ-

ing shape and size, and on the resolution of touch input that can be achieved. In many ways, the

nature of the touch-sensitive surface itself dictates the approaches that are available, since certain

classes of touch detection methods are not capable of handling surfaces with arbitrary curvature.

Figure 1.2: Touch interactions on virtual patient simulators. The graphical model projected onto
each surface updates in response to touch input.

In this dissertation, we describe a general methodology to detect and respond to touch input on non-

parametric rear-projection surfaces. Accordingly, we address the following specific assumptions

and requirements:

• Non-planar and non-parametric surfaces: Typical touchscreens are often limited in form

factor to flat surfaces, such as in smartphone and tablet devices. While suitable for many ap-

plications, such planar input surfaces may pose increased difficulty when users interact with

three-dimensional virtual content. Additional manipulation techniques, such as rotating and
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translating the virtual content, might be necessary for users to accurately touch specific vir-

tual components, which may prove less intuitive than more direct interaction on a matching

three-dimensional physical surface. Furthermore, the representation of 3D content on flat

surfaces removes a variety of cues about the content’s geometry, such as its shape, its size,

and the physical relationship between its components. Thus, we focus on extending touch

sensing to non-parametric surfaces.

• Generalizability: Though we are motivated by applications to the healthcare domain, our

proposed method is designed to support a variety of both parametric and non-parametric

rear-projection surfaces through the same fundamental underlying software architecture. As

such, it is appropriate for simpler surfaces, such as planes and hemispheres (Figure 1.1), and

more complicated surfaces, such as human shapes for patient simulation (Figure 1.2).

• Semantically defined touch responses: To ensure highly responsive, interactive physical-

virtual experiences, we describe a mechanism for assigning semantic meanings to touch

input in a virtual content engine supporting a variety of output modalities, such as updated

projected imagery and sound effects. The touch sensing and response systems are designed

to be tightly linked so that detected touches rapidly trigger appropriate responses. For exam-

ple, a healthcare practitioner can examine the gums of a patient by moving his or her lips, or

an artist may paint an object via touch-based controls.

• Dynamic imagery: One of the core components of our proposed system is the ability for users

to interact with and affect dynamic visual imagery registered to the touch surface. While

flat touchscreens generally comprise integrated touch-display surfaces, our desire to support

non-parametric surfaces is more suitable to imagery from multiple projectors. Moreover,

since touch input is another integral aspect, we specifically rely on rear-projection solutions

so that the user’s arms, hands, and fingers do not occlude the virtual imagery.
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• Multi-touch detection: A key advantage of touch input methods compared to traditional

computer mouse input is the ability to interpret multiple simultaneous touches, including

multiple fingers and multiple hands, which provides a far richer set of available interaction

techniques. Thus, our methodology is designed to detect, localize, and track multiple touches

over time.

• Uninstrumented touch: Instrumenting users—for instance, with tracked markers or touch

controllers—to allow for input may induce additional cognitive load that interferes with

learning or training objectives. Likewise, instrumenting the surface itself to achieve touch

sensing may disrupt projected imagery or might be limited in resolution, which could have

similar negative effects. As opposed to any instrumentation of the users or the surface, we

instead rely on cameras to detect touch input.

• Accurate localization: To assess the reliability of our methodology, we perform an evaluation

of system consistency across multiple rear-projection surfaces. Furthermore, we investigate

the distances between localized user touch input and intended targets.

• Touch and hover disambiguation: Certain touch sensing approaches potentially experience

interference due to hovers—non-contact proximity events, such as a user holding his or her

hand close to the surface without actually touching it. Our proposed methodology is de-

signed to distinguish such events from actual touch input, which we demonstrate through

user-collected datasets of touches and hovers. Additionally, we consider this problem from

a secondary viewpoint that interprets hovers as intended input events by estimating the dis-

tance from the user’s fingers to the surface—for example, in the context of a musical instru-

ment interface that emits notes determined by this distance (Figure 1.3).

• Low-latency processing: The latency between touch input and semantic output can greatly

impact a user’s experience. For instance, in the context of touch-based interactions with a
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virtual human, excessively high processing latency can diminish the user’s perceived realism

of the virtual human, perhaps leading to unintended behavioral differences. As such, many

of our design decisions focus on reducing latency throughout this process.

Our proposed methodology addresses these challenges by establishing specific relationships be-

tween optical devices—cameras used for touch sensing and projectors used for visual output—and

the interaction content—the touch surface along with the accompanying graphical model and se-

mantic behavior.

Figure 1.3: Proximity-based interactions for a musical instrument interface. The distance between
the surface and the control wand is estimated and used to control the pitch of an emitted musical
tone, which is visualized in a frequency graph.
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1.2 Thesis Statement

TS1) A device-content relational lookup table architecture can be used to realize a general-

izable system for rendering application-based content, with integrated and registered

optical multi-touch sensing, for interactions on uninstrumented non-parametric sur-

faces.

TS2) The use of such a device-content relational lookup table architecture:

(a) supports both non-parametric and parametric surfaces;

(b) supports low-latency runtime processing linear in the number of touch input re-

gions;

(c) supports constant-time conversions between the coordinate frames of the optical

devices (cameras and projectors), the physical surface, and the virtual content;

(d) supports refinement based on existing reference models and functions;

(e) supports direct registration of rendered content and touch sensing; and

(f) encodes touch input to affect content-specific semantic output.

TS3) A bounded plane sweep method can be used to distinguish touches from hovers and

to estimate hover-surface distances for interactions above the surface.

TS4) Touch sensing with a content-matched physical surface results in improved touch per-

formance compared to both a non-matching physical surface and a virtual surface.

8



1.3 High-Level Overview

Building on methods initially developed for touch interaction and display on planar surfaces (such

as Matsushita and Rekimoto’s HoloWall [103] and Wilson’s TouchLight [153]) and spherical sur-

faces (Benko, Wilson, and Balakrishnan’s Sphere [7]), we introduce a camera-based system with

rear infrared (IR) illumination and rear-mounted projected imagery specifically designed to be

generalizable to a variety of non-parametric surfaces. Our system comprises three tightly linked

components:

1. The touch sensing system analyzes camera imagery for touches. It has two primary goals:

determining if and where a touch has occurred on the surface. This includes distinguishing

touches from near-contact hover events.

2. The semantic content engine determines how to respond to a detected touch, such as by

updating the projected imagery or playing audio, via predefined state- and region-based se-

mantic mappings between touch input and responses.

3. The rendering system provides output to the user in a variety of modalities, such as visual

and audio, as instructed by the semantic content engine.

Touch sensing RenderingSemantic
content engine

Physical-virtual
surface

Detections Responses

Displays onUser touches

Figure 1.4: Simplified high-level overview of the proposed method, showing the connections be-
tween the touch sensing system, the semantic content engine, and the rendering system.
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One of our core contributions is the design and implementation of a relational lookup table ar-

chitecture that links these components to achieve touch sensing and response. At a high level,

this lookup table encodes relationships between camera pixels, projector pixels, virtual content

coordinates, and virtual content behavior. Figure 1.4 shows a simplified summary of the overall

methodology.

The general physical realization of our proposed touch sensing methodology comprises multiple

IR cameras and light sources located below and oriented toward a rear-projection surface. IR light

from these light sources passes through the surface; as a user’s fingers or hands approach the sur-

face and eventually contact it, this IR light is increasingly reflected back down through the surface

and imaged by the set of IR cameras. Subsequently, the system determines whether or not the

user has touched the surface by processing these camera images, using information encoded in

the lookup table. Fingers or hands in close proximity to the surface may produce imagery that is

largely similar to images of actual touches in terms of pixel intensity and contour sizes; by consid-

ering the imagery from the entire collection of IR cameras, the touch sensing system can determine

whether a true touch or a non-contact hover has occurred. Alongside the rear-mounted IR cameras

and lights, visible light projectors augment the surface with registered dynamic imagery, such as

from a three-dimensional virtual model or a graphical touch-based interface. As IR light is largely

invisible to the human eye, it does not interfere with imagery projected onto the surface; likewise,

since the projected imagery exists in the human visible light spectrum, it is invisible to the IR

cameras and thus does not disrupt touch sensing.

When a touch has been detected, the touch sensing system again utilizes the lookup table rela-

tionships to process the same collection of camera imagery to determine the touch’s location in

the three-dimensional space of the virtual content so that an appropriate semantic response can be

initiated. For planar or simple parametric objects, this localization step is straightforward, gen-

erally requiring at most the evaluation of a simple equation or set of equations whose inputs are

10



the two-dimensional touch coordinates as observed by the cameras and whose outputs are three-

dimensional coordinates on the physical touch surface. However, for non-parametric objects, no

such equation or set of equations exists. The lookup table serves as a substitute for these equations,

providing instantaneous conversions between camera pixels, projector pixels, and 3D coordinates

on the surface to support highly responsive touch interactions on such non-parametric surfaces.

The virtual content displayed to the user can range from lightweight touch-based interfaces to

sophisticated 3D simulations with associated visual and audio behaviors. Interaction with this

content is handled by the semantic content engine, which is responsible for assigning region- and

state-based semantic meanings to detected touches, again via the lookup table. For instance, touch

input at a particular location in one semantic state may trigger a sound effect, while touch input at

the same location may initiate an animation in a different state. Detected touches are transmitted

from the touch sensing system to the semantic content engine via messages that encode all of

the relevant information used to determine the appropriate response; in general, at runtime, the

semantic content engine simply needs to evaluate a few conditionals or mathematical expressions.

Once the response has been identified, the rendering system outputs this to the user through the

use of the rear-mounted projectors, speakers, or other output devices.

1.4 Healthcare Training: Physical-Virtual Patients

We are particularly interested in applying this technique to the healthcare training domain as a

complement to existing patient simulator technologies, for which integrated touch input and re-

sponse is generally not available. This is in spite of the fact that touch is a common component of

patient care, including for diagnostic or comfort-related purposes (summarized in Figure 1.5), sug-

gesting the value of supporting touch as an input modality for patient simulators. While the ability

to touch a simulated patient is itself useful, the primary benefits arise from the manner in which
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the simulator responds to or exhibits awareness of touch. In fact, in an exploratory study, we found

that even external, manual control of virtual patient touch awareness by an observer monitoring

trainee behavior over a video camera—often referred to as a Wizard of Oz paradigm [37]—can be

a valuable component of a patient simulator [34]. However, in this dissertation, we are focused on

supporting automatic touch detection and response, particularly for the kinds of touch input that

are not practically achievable in such human-in-the-loop paradigms due to the level of accuracy,

responsiveness, and dynamic interactivity needed—for instance, if a nurse needs to examine a

patient’s teeth by manually moving his or her lips or touch a patient at extremely precise locations.
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Figure 1.5: Common types and purposes of touch in patient care. Table contents developed to-
gether with (alphabetical) Kelly Allred, Laura Gonzalez, Mary Lou Sole, Steve Talbert, and Gre-
gory Welch.

Rather than targeting this application exclusively, this dissertation presents a generalizable ap-

proach that is suitable to a variety of scenarios, including healthcare training. However, this spe-

cific motivation informed some of our design decisions, and so we briefly cover relevant aspects.

Before we describe typical healthcare simulators, we first introduce a few important definitions.

Lombard and Ditton define presence as “the perceptual illusion of nonmediation” [95]. They

further expand this notion as follows:
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An “illusion of nonmediation” occurs when a person fails to perceive or acknowledge

the existence of a medium in his/her communication environment and responds as

he/she would if the medium were not there.

This concept has important implications on healthcare training, which often relies on patient simu-

lation: as the presence of a particular medium increases, training can be more effective [41], users

are more likely to treat the medium as a social entity, and user behavior becomes more typical of

human-human interactions.

Other researchers have extended this definition, examining related and more specific types of

presence. Biocca et al. define social presence as “the sense of being with another” [14]. Co-

presence has been described as a person’s perception of another person and their sense of being

perceived by the other person [56]; Harms and Biocca consider co-presence to be one of six sub-

dimensions of social presence [62]. Furthermore, the physicality of an agent or avatar includes the

fidelity of its physical occupancy—attributes such as size, shape, and position—and its ability to

change or sense changes in the surrounding environment [28]. Increasing the physicality of agents

and avatars has been shown to increase social presence and lead to more realistic behavior from

users [29, 78, 89, 94, 123].

From these findings, there are immediate benefits arising from the methodology presented in this

dissertation. When representing simulated patients, non-parametric surfaces afford increased phys-

icality, which results in increased social presence. Likewise, surfaces of any shape and size can

exhibit greater awareness of the environment with the addition of touch-triggered behavior, which

further increases physicality and thus social presence. Such increases ultimately promote more

realistic trainee behavior and thus more effective and engaging training.
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Typically, patient simulators in modern healthcare training can be categorized as standardized pa-

tients, computer-based simulators, mannequin-based simulators, or mixed-reality simulators [93].

• Standardized patients are humans who have been trained to simulate a specific patient or

patients in a consistent, replicable manner [96]. Along with mimicking symptoms, standard-

ized patients present an accompanying patient history and simulate the various physical and

emotional behaviors that an actual patient representing these symptoms would exhibit. Sim-

ulations with humans naturally benefit from an extremely high degree of realism, physical

presence, and social presence. However, certain situations preclude the usage of standard-

ized patients, such as symptoms that are difficult to realistically replicate or scenarios that

involve pediatric patients.

• Computer-based simulators instead portray these symptoms and other aspects through com-

puter screens and audio speakers [96]. Compared to standardized patients, computer-based

simulators can be advantageous due to their ability to display dynamic imagery, potentially

allowing for the portrayal of complicated visual symptoms. One notable disadvantage is the

lack of physicality resulting from the two-dimensional representation of the patient, which

may make simulations less compelling or prevent learners from treating the simulated pa-

tient in a realistic manner. As they are controlled via software, computer-based simulators

can provide extremely consistent experiences through specific predefined behaviors; they

can also be integrated with artificial intelligence control.

• Mannequins are life-sized, human-like models of the entire body or a particular subset [96].

Many mannequins support various physiological functions, including detectable pulses and

simulated breathing capabilities. Like standardized patients, they exhibit a high degree of

physicality as a result of their realistic shapes and sizes, but they are generally static in

appearance and unable to simulate certain visual symptoms. A task trainer represents only
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a subset of the human body, such as an arm, which is sometimes all that is necessary for a

particular training scenario; if desired, both a task trainer and another simulation technique

can be used in a hybrid approach.

• Mixed-reality simulators are a special class of computer-based simulators [96] across a wide

spectrum of techniques. Virtual reality patients can be presented in a fully three-dimensional

virtual environment via head-mounted displays, affording a high sense of spatial presence.

Additionally, spatial augmented reality supports the addition of virtual imagery, generally

via projectors, to physical objects in the user’s environment, which could include virtual

patients [13]. As they are computer-based, these simulations are all capable of displaying

dynamic imagery, whether using head-mounted displays or projectors.

Each of the above patient simulators has benefits and disadvantages in terms of the variety of

medical symptoms it can portray and its effectiveness in training. Physical-virtual patients [123]

are a hybrid approach that aims to combine the valuable aspects of these simulation paradigms:

• Like mannequins, physical-virtual patients occupy real physical space, providing a sense of

presence and physicality that can promote more compelling training scenarios and prompt

more realistic behavior from trainees and learners.

• Being computer-based, physical-virtual patients support dynamic imagery through the use

of augmented reality, allowing for the expression of complicated visual symptoms and a

diversity of simulated patient appearances.

• Real humans can control physical-virtual patients, increasing the realism of speech and other

behaviors.

Moreover, the increases in presence and physicality resulting from environmental awareness ex-

hibited via touch are applicable to physical-virtual scenarios beyond patient simulation. General
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virtual agents with sophisticated human-like capabilities are known as intelligent virtual agents

(IVAs), described as

...intelligent digital interactive characters that can communicate with humans and other

agents using natural human modalities such as facial expressions, speech, gestures, and

movement. They are capable of real-time perception, cognition, emotion, and action

that allow them to participate in dynamic social environments [10].

With such capabilities, IVAs are natural candidates for computer-based simulations of virtual hu-

mans, including patients. However, IVA research has historically been limited to the visual and

audio input/output domains [113]. Thus, among other such applications, one of our primary moti-

vations for this research involves extending touch input to physical-virtual patient simulators and

to IVAs in general, which is naturally handled by the presented methodology.

1.5 Matched and Mismatched Physical-Virtual Content

Our proposed method is designed to support touch interaction scenarios in which the geometry of

the physical touch surface matches the geometry of the desired three-dimensional virtual content,

such as a human-shaped surface with corresponding virtual imagery. While we emphasize that the

ability to sense touch on such complicated surfaces is an inherent benefit of this approach, we also

consider cases consisting of a mismatch between the physical and virtual geometry. Examples in-

clude the trivial case in which a user interacts with three-dimensional content on a two-dimensional

touchscreen interface and situations for which no physical surface is present, which we compare

to matched-geometry interactions in a human-subject study (Chapter 7).

There are two primary motivations for maintaining an explicit distinction between the geometries

of the touch surface and the virtual model. First, this allows for the display of high-frequency
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visual content on low-frequency objects as a means of supporting coarse animations without lead-

ing to distortions. For example, when projecting a virtual head onto a matching head-shaped

surface, many head movements—such as nodding, shaking, or turning—would appear extremely

unnatural in high-frequency regions such as the nose, possibly leading to breaks in presence, reduc-

ing perceived realism, or otherwise eliciting feelings of discomfort from users. With a smoother

surface—perhaps one with no physical nose—reduced-distortion animations may be possible, but

it may not be desirable to create a specific low-frequency virtual model when a high-frequency one

is already available. In spite of such geometry inaccuracies, smoothed surfaces still promote in-

creased realism and physicality over flat interfaces in touch interactions achieved via this proposed

approach.

Additionally, this separation provides a mechanism for creating the touch-based semantic behavior

of the virtual content directly in the space of that content such that it remains agnostic of the

physical surface. In other words, a particular virtual model can be displayed on rear-projection

surfaces of various geometries—whether matched or mismatched—and the system will interpret

touches on each physical surface appropriately in the context of the virtual content.

1.6 Outline

This dissertation is structured as follows. Chapter 2 presents a survey of touch sensing imple-

mentations, ranging from capacitive hardware sensing elements to camera-based approaches. Our

proposed approach is covered in detail in Chapter 3, including the design of the device-content

lookup table, our algorithms for distinguishing touches from hovers, and mechanisms for achiev-

ing touch-triggered responses in the context of the virtual content. This discussion focuses on the

fundamental aspects of the method, highlighting the manner in which it can be applied to a variety

of non-parametric rear-projection surfaces. In Chapter 4, we present our practical implementation

17



of this methodology as a general software architecture. Additionally, we describe the design and

construction of two physical prototypes we used to test this method on several rear-projection sur-

faces. Demonstrations of the method as applied to these rear-projection surfaces are provided in

Chapter 5, including example photographs of touch-triggered responses and descriptions of the as-

sociated semantic content. System performance metrics are introduced and evaluated in Chapter 6,

and human-subject studies based on this approach are described in Chapter 7. Finally, Chap-

ter 8 discusses potential extensions along with ongoing and future work related to the proposed

approach.
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CHAPTER 2: RELATED WORK

Touch as an input modality in the field of human-computer interaction has a long and varied history.

As an alternative to standard computer input devices, such as mice, touch interfaces have been

studied for several decades [25,90]. This includes touch interfaces both with and without integrated

graphical displays. Buxton et al. [25] list several main distinctions between touch interfaces and

other input devices, including:

• No small devices that can be lost or damaged

• Consistency of position over time

• Ability to indicate multiple touches

• Integration into other equipment (e.g. desks)

• No moving parts

• Ability to partition physical input space into independent regions, whether physically (i.e. a

physical template), graphically (i.e. with an integrated graphical display), or virtually (i.e.

not presented to the user)

• The types of events that can be processed—e.g. whether positioning and selecting are inde-

pendent, whether different degrees of pressure can be sensed, etc.

• Providing feedback to the user

Systems designed to sense and interpret touch must consider a number of important aspects, in-

cluding:
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• What touch sensing technology will be employed (e.g. capacitive sensors, IR light)?

• What kinds of contact can be sensed (e.g. multiple finger touch, single hand touch)?

• Are multiple users supported? Can they be identified uniquely?

• Are other objects supported? Do they cause interference?

• What gestures can be sensed (e.g. swipe, pinch)?

• Can hand or finger hovers be sensed? Can they be distinguished from touches? Do they

cause interference?

• What geometry can be used for the touch surface (e.g. flat, spherical)? Are there shape or

size limitations? Is the surface deformable or rigid?

• From what material is the touch surface constructed?

• How accurate are touch localizations?

• Does or could the system support dynamic imagery (e.g. via one or more projectors)?

• Has the system been evaluated for usability and cognitive load?

• Do users or does the surface need to be instrumented?

• With what type of visual content will users interact (two- or three-dimensional)?

• What other modalities are supported (e.g. audio, haptics)?

• Do the physical surface and virtual content have matching geometry?

• What kinds of responses can be triggered by touch?

• What information is associated with detected touch input (e.g. location, pressure)?
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Due to the wide variety of touch sensing implementations and applications, many permutations

of the above dimensions have been developed and evaluated. Below, we survey the literature and

present many such methods, highlighting noteworthy paradigms and interesting extensions.

2.1 Touch Sensing Technology

There are a variety of methods designed to support touch interactions in interactive computer

graphics applications [129]. The specific technique chosen has important impacts on the types

of interfaces that are available—in terms of interaction capabilities, output modalities, supported

surface geometry, and other characteristics. Generally, typical touch sensing approaches can be

categorized as either hardware-based or camera-based.

Hardware-based touch sensing methods rely on capacitive sensors, resistive elements, or similar

technologies; they require outfitting the surface with grids or other tight configurations of such

sensing elements. While these approaches commonly assume flat surfaces, they have been suc-

cessfully applied to surfaces with more complicated geometry. However, this often leads to practi-

cal considerations concerning how densely the sensing elements can be packed on high-frequency

regions of the surface, which directly impacts the resolution of touch that can be sensed. Also,

hardware-based approaches are often not amenable to dynamic imagery via projectors, as the

hardware elements themselves might interfere with projected imagery. However, they are often

advantageous in terms of space requirements: for instance, many hardware-based touch-sensitive

devices, such as cell phones, are sufficiently small that they allow mobile, handheld use.

Camera-based touch sensing instead uses imagery from cameras, such as infrared (IR) cameras,

depth sensors, or even marker-based motion capture systems. Imagery from cameras mounted

either above or below the touch surface is continuously processed to detect touch or proximity
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events. A popular approach based on frustrated total internal reflection has been commonly used

to support multi-touch interactions on flat tabletop and wall surfaces, with a notable resurgence in

2005 [61]. Rear camera approaches in particular are suitable for dynamic imagery through rear

projection. With the addition of rear IR lighting, camera-based methods have the ability to detect

touches on more complicated surfaces, provided detected touches in 2D camera imagery can be

reliably and quickly converted to their corresponding positions on the 3D touch surface. Compared

to hardware-based approaches, camera-based methods tend to have increased space requirements

due to the need to place cameras throughout the environment at appropriate distances to capture

images of touch input on the surface. As a result, interfaces of this form are often presented on

tabletop or wall surfaces. In some cases, the optical paths of the cameras can be folded to decrease

the amount of space needed, such as through mirrors.

2.1.1 Hardware-Based Touch Sensing

Hardware-based touch sensing generally involves the construction of a grid or other configuration

of sensors which experience a change in resistivity or capacitance when touched by a user’s fin-

gers or hands [68, 76, 90, 112, 149, 150]. Compared to camera-based approaches, these techniques

require significantly less data to be processed, and the desired properties of touch events are more

directly measured rather than inferred from images [68]. However, this often comes at the cost of

decreased touch-sensing resolution [61], the inability to project imagery, and increased difficulties

when considering surfaces with non-planar or non-parametric geometry.

2.1.1.1 Resistive Sensing

Force-sensitive resistance approaches feature arrays of sensors that experience an increase in con-

ductance in response to increasing application of force [48, 68, 77, 98, 124, 147]. Because of this
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relationship, they are capable of detecting variations in pressure. Resistive touch interfaces are

generally cheaper than other hardware-based methods [45]. Unlike capacitive sensing approaches,

they are capable of detecting input from devices like styli—though this limitation may be overcome

in capacitive systems through the construction of special input devices (e.g. [116]).

The UnMousePad achieves multi-touch sensing through the use of resistive elements [124]. The

authors call their technique Interpolating Force Sensitive Resistance (IFSR), which they claim

supports higher resolution than traditional resistive touch sensing approaches that are often limited

in their ability to detect touches in locations between the hardware touch sensors. It is capable

of detecting a large spectrum of pressure variation. The device is flexible and has been applied

to cylindrical surfaces. In addition to detecting finger input, the authors also focused on high-

resolution stylus sensing, noting that many other approaches are completely incapable of detecting

a stylus unless contact occurs directly on one of the sensing elements.

TactileTape is a pliable resistive touch-sensitive material that can be applied to non-planar sur-

faces [73]. Primarily designed to allow for rapid prototyping of simple touch-sensitive objects,

it is composed of a resistive and a conductive layer that forms a closed circuit when combined

with user touch input. The proposed prototype is only capable of sensing the occurrence—but not

location—of touch at some point on the strip. However, as it is made of common materials—a

pencil, tin foil, and shelf liner—designers can quickly and easily experiment with applying it to a

variety of objects to support simple touch sensing.

2.1.1.2 Capacitive Sensing

Similar to resistive touch sensing, capacitive touch sensing is generally achieved through a grid

or other configuration of sensors which experience a change in capacitance when touched by fin-

gers or hands [76, 90, 112, 149, 150]. The raw change in capacitance can be used as a measure of
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touch pressure [90, 149]. Unlike camera-based approaches, capacitive sensing is not susceptible

to interference from ambient lighting [143]. Also, capacitive sensing approaches typically require

significantly less bandwidth than image-based ones. However, because the collection of sensors

is discrete, by default touch sensing resolution can be low, and often a single touch affects the

capacitance of several adjacent sensors. To improve the resolution of detectable touches, such ap-

proaches often include an interpolation scheme that considers the capacitance of many neighboring

sensors [90, 149]; Westerman suggests that a 4 mm spacing of sensors can achieve a precision of

0.2 mm via interpolation [148], though it is important to note that such tightly packed grids may not

always be achievable, especially for non-planar surfaces. Finally, unlike camera-based approaches,

capacitive ones depend on specific electrical properties of the human body, often restricting touch

input to only fingers [124]. However, it is possible to design special objects, such as styli, that can

be tracked by such systems [116].

Using capacitive coupling, DiamondTouch supports touch from multiple users on a tabletop sur-

face [43]. Location-specific electric fields are transmitted throughout the table using a series of

antennas driven by a transmitter. Each user is capacitively coupled to his or her own receiver in

a chair. When touch occurs, a circuit that runs from the transmitter to the table to the appropriate

user’s receiver and back to the transmitter is completed. Thus, detected touches can be immediately

associated with the corresponding user, facilitating multi-user touch input. Depending on the array

of antennas, multiple touches from a single user may be too close together to be distinguished.

Interestingly, even conductive objects left on the surface do not complete the entire circuit, and so

they do not interfere with DiamondTouch; the authors propose creating special objects that could

be used to interact with the table. As an extension, Wu and Balakrishnan explore multi-finger and

hand gesture input on DiamondTouch [154].

SmartSkin comprises a grid of capacitive sensors in the form of transmitter and receiver electrodes

on a table- or tablet-sized surface [122]. Along with detecting the position of a user’s hand on
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the surface, it is also capable of computing the proximity of the hand to the surface. For the

table-sized surface, the system is accurate to within 1 cm and is capable of sensing a hand within

5–10 cm of the surface. The authors suggest that SmartSkin is suitable for non-planar physical

surfaces, though they do not explore this. Additionally, the authors experimented with applying

conductive electrode barcode patterns to objects, which they refer to as “capacitance tags.” As the

objects are ungrounded, they are not directly sensed by SmartSkin; when a user touches them, they

become grounded and hence can be detected.

Villar et al. created an alternative computer mouse based on capacitive sensing [143]. While some

similar approaches have difficulties with detecting multiple touches in close proximity, the Cap

Mouse is able to sense the user’s fingertips separately. Internally, the mouse uses capacitive el-

ements printed with conductive ink in a 5 mm grid, interpolating a touch’s position based on the

specific subset of sensors whose capacitances are affected. Interestingly, the values read from the

capacitive sensors are converted into a grayscale image, which is interpreted by the same touch

sensing processing pipeline used by two camera-based multi-touch mouses the authors created;

however, as the source of this data is a conductive ink grid, we categorize this approach together

with other capacitive sensing methods.

2.1.1.3 Other

Gu and Lee presented TouchString, a flexible multi-touch sensor that can be applied to objects of

various shapes, including planes and cylinders [59]. Their design is somewhat general, supporting

optical, capacitive, or resistive sensors. As examples, they used the TouchString structure with

phototransistors to allow for multi-touch support on a cellphone frame, a plane, and a bottle, using

form-fitting configurations of sensors. However, they note that the prototype is not flexible enough

to be truly general purpose, and they experienced problems when repeatedly folding and unfolding
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it. Also, the spatial resolution of TouchString is a limitation, as the sensors are placed around

18 mm apart. The authors considered the addition of an interpolation scheme once they reduce the

cell spacing by half.

2.1.2 Camera-Based Touch Sensing

Compared to hardware-based approaches, touch sensing via camera imagery is generally capable

of higher resolution touch input [61]. Such approaches are also suitable for dynamic projected

imagery. Camera-based touch sensing tends to require more physical space than hardware-based

approaches [124], but it can often support larger and more complicated touch surfaces.

2.1.2.1 Frustrated Total Internal Reflection

A popular method for camera-based touch sensing relies on a concept called frustrated total inter-

nal reflection (FTIR). A light wave propagating in a medium with a higher refractive index than

an adjacent medium at a sufficient angle of incidence is entirely reflected, known as total internal

reflection [46,61]. Another medium located sufficiently close to this boundary can disrupt (or frus-

trate) the internal reflection, causing the light to escape. Such light can be captured by cameras or

other light sensors and interpreted to perform touch sensing [79, 135, 151]. However, FTIR does

pose certain drawbacks. Most importantly, touch applications relying on FTIR are limited to either

flat surfaces or surfaces with minimal curvature [125]. The traditional FTIR approach is not ca-

pable of detecting hovers, though this may be a benefit in some scenarios. Other IR light sources,

such as sunlight or other optical tracking systems, can interfere with FTIR-based routines [44].

Additionally, fast hand movement can lead to intensity decreases in the camera imagery, which

can make contact detection more difficult [74].
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FTIR has been used to create images of fingerprints [53], including even as early as 1965 [155].

As a natural extension to this idea, Johnson and Fryberger obtained a patent in 1972 describing the

use of FTIR to support touch input on a cathode ray tube (CRT) [79]. Other FTIR touch-sensitive

CRT systems have been developed by Mallos [100] and Kasday [83], and similar methods have

been designed to support CRT drawing applications via fingertip, brush, and pen input, either

using photodetectors [109] or cameras [58] to capture the frustrated light. Han repopularized the

use of FTIR-based touch sensing in 2005, noting several benefits of the technique: low cost, high

resolution, high accuracy, and the ability to integrate with dynamic rear-projection graphics [61].

Davidson and Han later integrated touch pressure information into this approach, allowing users

to “tilt” graphical objects by selectively applying pressure to place them on top of or below other

ones [40].

Some researchers have investigated ways to augment traditional FTIR-based touch sensing ap-

proaches. Echtler et al. combined a standard FTIR multi-touch table with an overhead light source

that allows for the detection of shadows as an additional input modality [46]. The traditional side-

mounted IR LEDs used for touch sensing and the ceiling-mounted IR light for shadow tracking are

enabled in an alternating fashion; as such, a single input comprises a contact image and a shadow

image taken on consecutive frames. When the system detects a shadow, it places a cursor at its

peak, shifted by some amount to prevent occlusion from the user’s hand. Once the user’s finger

contacts the surface, a click is triggered at the cursor’s location. This is analogous to mouse input

in computer interfaces, where placing the cursor over an object and selecting that object by clicking

are two separate events. In a human-subject study, participants touched squares displayed on the

table, either with or without the shadow-based cursors. With the cursors, participants were more

accurate in touching the squares, but this doubled the amount of time required.

Iacolina et al. also experimented with shadow detections in an FTIR setup on a flat tabletop [74].

However, their prototype relies on natural, uncontrolled IR light in the user’s environment, such as
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sunlight, rather than additional controlled IR light sources. The lack of control does not cause ma-

jor issues: the standard IR tracking works better when there is less sunlight, and the supplemental

shadow tracking performs better when there is more. As in similar setups, a primary motivation is

the ability to detect proximity to the touch surface.

Similarly, Dohse et al. added an overhead camera to a traditional FTIR setup to perform hand

tracking [44]. They had two primary motivations: assigning touch ownership to the appropriate

user in a multi-user environment and making the system less susceptible to IR noise due to poor

lighting conditions. The hand-tracking camera could additionally be used to recognize gestures

above the surface, though the authors do not explore this.

Schöning et al. describe interscopic multi-touch surfaces (iMUTS), which leverage both 2D and

3D interaction techniques with both monoscopic and stereoscopic visual content [130]. Their

prototype comprises an FTIR-based multi-touch wall. They describe two interscopic interaction

techniques. The Windows on the World metaphor presents a 2D overlay over 3D content; users

can navigate in three dimensions throughout the virtual world via various touch interactions on the

window. The second interaction technique allows users to cut and subsequently deform the 3D

volume of the presented data by selectively dragging on certain parts of the wall. To simplify the

interface, predefined cutting templates are provided.

While FTIR-based approaches are generally limited to flat surfaces, Weiss et al. designed Bend-

Desk, an interactive hybrid desk featuring a horizontal tabletop and a vertical board connected by

a curve [145]. The imagery from three cameras is interpreted to detect touches across the entire

surface, including the curve. The authors’ findings indicate that users tended to think about the sur-

face in terms of its three constituent components rather than as a single one, and they often avoided

interacting “across” the curve. Likewise, Villar et al. created a curved multi-touch mouse based

on FTIR [143]. The surface of the FTIR Mouse is a smooth arc that still supports total internal
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reflection. However, due to the shape and camera placement, the mouse is only capable of sensing

touch in a small area toward the front.

Using FTIR, Roudaut et al. investigated how surface convexity and concavity affect touch in-

put [125]; due to light bleeding, they made a few modifications to their curved surfaces, including

applying silicone spray and manually smoothing the surfaces to reduce IR hotspots. They found

that pointing accuracy increases as surface convexity increases and that users were less accurate

when touching targets on concave surfaces.

2.1.2.2 Rear Illumination

In an alternative approach, known as rear illumination (RI), IR light sources are placed below the

touch-sensitive surface. Some amount of IR light passes through the surface; when an object, such

as a finger or hand, comes in contact with the surface, this light is reflected and sensed by IR

cameras [129]. In some RI setups, a diffuse material is applied to the touch surface, referred to as

rear-diffused illumination (RDI). In general, setups without a diffuser are better able to interpret

events that occur beyond the display surface, though RDI approaches do not entirely prevent this.

This separates RI methods from FTIR-based approaches, which generally cannot detect hover

events without the addition of supplemental sensors. Furthermore, this allows RI approaches to

detect physical objects, whether through shape cues or fiducials (e.g. [32]). While RI is commonly

used to support touch sensing on flat surfaces, it has also been applied to a variety of non-planar

surfaces and even to deformable surfaces.

The HoloWall comprises a glass wall and a rear-projection sheet on which a projector displays

imagery [103]. Alongside the projector are an array of IR LEDs and a camera. Users can interact

with the other side of the wall via touch. The system is capable of recognizing two-dimensional
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barcodes printed onto objects. As IR light is reflected by objects within 30 cm of the wall, the

authors also propose recognizing and responding to user proximity in addition to touch.

TouchLight uses two cameras in an RI configuration to support touch on a holographic film material

applied to a flat non-diffuse display surface [153]. The system relies on various image processing

routines to reconcile the images from the two cameras in order to determine if contact with the

display surface has occurred. The display surface also has an attached microphone to detect when

users tap on it; the response to such an event depends on where it occurs. Because the display

surface does not have a diffuser, the cameras could potentially perform facial recognition on users

or allow for other input techniques. For instance, the physical display surface and the virtual plane

on which interactions occur can be spatially decoupled so that hovers are accepted as input instead

of touches.

Benko et al. proposed several techniques they called Dual Finger Selections to enable more precise

and accurate interactions on touchscreens [8]. Their multi-touch tabletop uses a standard RDI

setup. All but one of their selection techniques provided a cursor offset from the user’s touch

position to prevent occlusion. However, the single technique that did not provide an offset was

both the most preferred and highest performing method. Known as Dual Finger Stretch, it allows

users to magnify part of the user interface with one hand while making a precise selection with the

other.

RDI-based touch sensing has been applied to more complicated surfaces than walls and tabletops,

such as spherical displays. One known as Sphere supports multi-touch input from multiple users

on a diffuse spherical display surface [7]. An IR camera and a visible-light projector share the

same optical axis through the use of a cold mirror. After IR camera imagery is processed to detect

finger or hand contact, it must be mapped onto the spherical surface in order to relate these touch

events to appropriate locations in the projection imagery. Additionally, visual content projected
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onto the sphere is pre-distorted so that it appears undistorted on the sphere. The authors provide

interesting details regarding content creation and input handling on spherical surfaces. For exam-

ple, to interpret touch events such as dragging an object, Sphere treats movements as quaternions,

which requires care when designing intuitive user interfaces. Objects dragged a sufficient distance

are also automatically oriented, as otherwise they may appear “upside down” or in an unnatural

orientation. Unlike in scenarios with shared walls or tabletops, users can only see approximately

half of the display at once, allowing for an easy separation between the workspaces of multiple

users.

While some touch-sensing interfaces reduce contact information down to single points or gestures,

ShapeTouch considers the entire contact area to allow for rich interactions on a rear illumination

tabletop surface [27]. The associated touch sensing system also computes optical flow fields be-

tween input frames, combining them with shape contact regions. Contact area is used to compute

the amount of “virtual force” users exert on the table. Based on the flow vectors, forces are clas-

sified as pressing, colliding, or friction. The amount and type of force affect the results of various

gesture interactions. For instance, users can drag and rotate an object freely, or they can exert a

pressing force on part of the object to anchor it in place, essentially choosing the origin of rotation.

To address some of the shortcomings of their FTIR Mouse, Villar et al. also proposed an RDI-based

multi-touch mouse, called Orb Mouse [143]. The mouse has a hemispherical, diffuse surface, and

touch sensing is achieved through a camera and four IR LEDs housed inside. Similar to touch de-

tection on Sphere, interpreting touch on the hemispherical shape of the mouse requires undistorting

the camera imagery. Though the RDI paradigm allows the mouse to take on a curved shaped and

supports touch input across the entire surface, the authors found that the camera imagery contained

more noise than their FTIR Mouse.
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Similarly, the Side Mouse by Villar et al. has a largely RI-based design, comprising a camera and

an IR-laser illuminator that projects a “sheet” of light outwards [143]. Unlike with the other multi-

touch mouses they proposed, interaction with this mouse is performed directly on the table surface:

fingers that touch the table break the IR beam and can be sensed by the internal camera. Given

careful positioning of the beam, the mouse is not susceptible to interference from fingers hovering

just over the table. Users rest their palm on the relatively small base of the mouse, which uses

an ordinary mouse sensor to detect mouse movement. To trigger mouse clicks, users press down

on the mouse itself with their palm, which activates buttons inside the mouse. The interaction

area is somewhat unconstrained and not limited to the device itself, potentially allowing for richer

bimanual interactions; as a consequence, the Side Mouse may detect unwanted objects located in

front of it.

Valkov et al. investigated the manner in which users touch 3D stereoscopic objects on a 2D RDI-

based multi-touch wall [142]. In such paradigms, each eye receives a specific customized image,

which can lead to challenges when users try to select a 3D object by touching a 2D surface. To

allow for view-dependent rendering of the 3D content, they used an optical tracking system to

track the heads of users. They found that users generally touched the surface between the two

eye projection images, closer to the dominant eye projection image. Bruder et al. considered a

similar question on an RDI-based multi-touch table, which they augmented with motion tracking

cameras to support free-space 3D “touch” in a human-subject study [23]. In a 3D touch condition,

participants placed their index fingertip at the center of 3D target spheres displayed stereoscopi-

cally; in a 2D touch condition, they were asked to move their finger “through” the 3D target sphere

until reaching the 2D touch surface. In the 2D touch condition, subjects either touched the cen-

ter of the two eye projections or touched one of the eye projections itself (either the dominant or

non-dominant eye). Their results further suggest that this 2D touch technique is an appropriate

substitute for 3D touch when users select objects within 10 cm from the display surface. In a sim-

32



ilar Fitts’ Law experiment, they found that the performance of this 2D touch technique decreases

faster than performance for the free-space 3D touch technique as the height of the virtual objects

increases [24].

As an additional application of RI-based touch sensing to non-planar surfaces, Stevenson et al.

created a deformable multi-touch surface that can be dynamically inflated or deflated using air

pumps [133]. The touch surface is made of rubber latex, suspended on a cylindrical frame that

houses the projector and an infrared camera. IR LEDs are placed along the top of the cylinder

to support touch sensing. Using both internal and external pumps, the rubber latex material can

be inflated or deflated, ranging in shape from a flat circle to a convex or concave hemispherical

surface. Because the material is compliant, finger touches can cause further deformations; the

authors suggest examining the size of the finger blobs in the camera imagery as an additional

dimension of touch input. Similarly, using a combination of latex and spandex, Bacim et al. created

two deformable surfaces: flat and hemispherical [6]. The surfaces support touch sensing in a

standard RDI setup. In addition to comparing the two surface shapes, they also examined how

visual and tactile feedback affect the accuracy of users in deforming the surfaces to a prescribed

distance. Visual feedback outperformed tactile feedback, allowing for sub-millimeter precision.

Additionally, both selecting targets and accurately creating deformations was more challenging on

the hemispherical surface.

Bolton et al. compared user performance on competitive and cooperative tasks on both spherical

and flat multi-touch RDI surfaces [17]. To ensure that participants were not influenced by eye con-

tact and facial expressions, they purposefully designed their spherical surface to be large enough to

prevent participants from seeing one another. They also experimented with two flat wall surfaces:

one with no obstruction and one with a physical divider between the two users’ workspaces. Partic-

ipants were provided several UI-based methods of “peeking” at their partner’s workspaces. While

task performance on the unobstructed flat display was significantly different than performance on
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the spherical surface, they found no significant differences in performance between the divided

flat and the spherical display, suggesting that performance differences are due to the separation of

users and their workspaces and not due to the display format.

PAPILLON is a technique based on 3D printed optics that supports both display and touch sensing

on small curved surfaces [21]. The source of the image, which could be a projector, LCD screen, or

similar, is decoupled from the display surface itself: the image passes through bundles of 3D light

pipes that can be arranged in the desired shape. As the light pipes are bidirectional, the surface

also supports RDI-based touch sensing; fingers within roughly 10 mm from the surface are visible.

They experimented with creating interactive eyes for small toy characters. While they suggest that

PAPILLON is suitable for arbitrary eye shapes, they do not discuss size limitations.

2.1.2.3 Other

To augment either FTIR or diffused-illumination touch sensing systems, Dang et al. devised a

heuristic-based approach that determines the position and orientation of a user’s fingers in order to

map these fingers to specific hands [38]. In a human-subject study featuring a Microsoft Surface,

they were able to successfully map fingers to hands in 97.5% of the recorded frames using RDI

techniques.

GelForce comprises a rectangular silicone rubber medium with two layers of suspended spherical

markers [81]. Below, a camera images the markers. As users touch the planar surface, the markers

are displaced; camera imagery of this displacement is used for touch sensing. The amount of

displacement can be used as a measure of pressure. The silicone medium need not be planar.

The Visual TouchPad uses downward-facing cameras oriented toward a planar surface, relying on

stereo hand-tracking to detect touches on the surface [99]. As there are no occlusions between
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the cameras and the user’s hands, unlike in RI-based approaches, detecting and interpreting hand

gestures over the surface is simpler in this paradigm. As the system relies on homography-based

matching between the touch surface and the display surface, it is only applicable to planar inter-

faces.
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CHAPTER 3: METHODOLOGY

In general, the overall goal of any system supporting touch as an input modality can be stated

as the conversion from user touch input to system rendering output. This process begins with

the acquisition and subsequent processing of input data that is used to determine the presence,

location, and nature of touch input—sensing touch—and ends with the initiation of semantically

relevant responses to these touches provided in an appropriate modality to the user—responding to

touch. Our proposed methodology addresses both of these challenges.

Following the traditional rear-diffused illumination (RDI) paradigm, our physical prototypes (de-

scribed in Chapter 4) comprise infrared cameras to detect touch input for interaction with dynamic

virtual content provided by projectors and speakers. When a touch surface can be mathematically

parameterized, the conversion of two-dimensional camera imagery to coordinates on the virtual

content is straightforward, as the mapping between them can be obtained via simple analytic equa-

tions. However, our proposed method is designed to be a generalizable approach for supporting

tightly integrated touch sensing on rear-projection surfaces that are non-parametric, where such

analytic equations are not available [69, 71, 72]. It is capable of detecting and localizing multi-

ple simultaneous finger touch events across such surfaces and establishes a tight loop between the

touch sensing and rendering systems, leading to highly responsive interactions.

There are several contributions we present over typical RDI implementations:

• Non-parametric surfaces: Our method supports camera-based touch sensing and response

on a large set of non-parametric surfaces. Touch input is permitted at any location on the

surface that at least two cameras are capable of reliably imaging—that is, without extreme

distortions due to oblique camera angles. This precludes, for instance, objects with compli-
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cated self-occlusions. However, this is not a major limitation, as such objects do not support

rear-projection imagery for the same reason. In addition, this method allows for touch input

on parametric surfaces.

• Registration of rendered content: The same mechanisms used to achieve touch sensing

support the registration of projected virtual imagery onto these surfaces.

• Touch/hover classification: Through the use of multiple cameras, our method can filter

near-contact events—called “hovers”—from touches. With simpler surfaces, such as planes,

intensity thresholding may suffice; however, on non-parametric surfaces, achieving uniform

rear-infrared lighting is generally a more challenging problem. We present and evaluate two

algorithms for performing touch/hover classification in Section 3.2.2. Both consider the fun-

damental difference between touches and hovers: by definition, touches occur on the surface,

and hovers occur off of it. The second algorithm, a plane sweep approach (Section 3.2.2.2),

is further capable of estimating hover-surface distances, supporting interactions above the

surface.

• Multiple projectors: Our method is capable of handling multiple projectors, allowing for

touch sensing with registered projected imagery across larger surfaces.

• Semantic response: Through a separate semantic content engine, our method has a ded-

icated mechanism for assigning semantic meaning to touches in the context of dynamic

interactions with virtual content. Semantic touch responses can be presented to the user in a

variety of modalities, including visual and audio.

• Evaluation: In Chapter 6, we provide internal consistency metrics that represent the ex-

pected accuracy of touch sensing across an entire touch-sensitive surface. Moreover, we

evaluate the localization accuracy of user touch input and the classification accuracy of touch

and hover input.
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In this chapter, we provide a detailed description of our proposed methodology for achieving touch

sensing and semantic response on non-parametric rear-projection surfaces. We begin with an

overview that highlights the fundamental components of this method. In particular, we present

the design and construction of a device-content relational lookup table that stores relationships

between the optical devices (the camera and projectors), the touch-sensitive surface, and the vir-

tual content. Next, we focus on two algorithms for distinguishing touch from near-contact hover

events by utilizing the lookup table relationships. We describe mechanisms for defining semantic

meanings within the virtual content to touch input and for augmenting this lookup table to support

the tight registration between touch detection and rendering output across several output modali-

ties. While the overall discussion is general and thus independent of a particular touch-sensitive

surface, we include figures of specific implementations where useful. Finally, we briefly discuss

an extension to the overall approach that supports registered virtual imagery provided by optical

see-through head-mounted displays as opposed to rear-mounted projectors.

3.1 Overview

Figure 3.1 shows a high-level overview of our method, demonstrating the overall flow between

user touch input and system rendering output on a touch-sensitive physical-virtual surface. This is

facilitated by three decoupled system components:

1. The touch sensing system comprises several infrared (IR) cameras and light sources. The

camera imagery is analyzed to detect touch input on the touch-sensitive surface. Addition-

ally, the touch sensing system processes detected touches to extract relevant information

used to generate and display output to the user, which is sent to the semantic content engine.
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2. The semantic content engine is a standalone component of the system that receives touch

input from users and determines appropriate stimulus output in the context of a particular

interaction scenario. Specifically, the semantic content engine is responsible for assigning

semantic meaning to touches, through the specification of the locations on the virtual model

that can be affected by touch and the exact responses that touches trigger in these regions.

Depending on the needs of the scenario, a semantic content engine can range from simple

projector-space-based interactions—such as the direct manipulation of projected imagery

colors through touch—to sophisticated three-dimensional graphical models augmented with

animations, audio effects, and other capabilities. The mapping between detected touches and

semantic output is created directly in the two-dimensional coordinate space of the projectors

in the former case and directly in the three-dimensional coordinate space of the virtual con-

tent in the latter case. In addition to touch-triggered responses, the virtual content can also

be controlled by a human-in-the loop operator or artificial intelligence.

Furthermore, the semantic content engine maintains the current mode or state of the inter-

action, which may affect how touch input is processed. For instance, a touch at a particular

location may prompt an animation in one semantic state or an audio response in another, and

touch interactivity may depend on the current user interface object selected by the user. As

with the other interactive capabilities, semantic state can be updated through touch, human

control, or other such processes.

3. Finally, the rendering system is responsible for displaying the virtual content to the user by

realizing semantic touch output as determined by the semantic content engine. It is com-

posed of projectors to display registered imagery on the physical-virtual surface, speakers to

play audio output, and similar equipment for other output modalities.

39



Touch sensing RenderingSemantic
content engine

Physical-virtual
surface

Other multi-modal
output

Cameras Projectors
Graphics

model

Detections Responses

Displays onUser touches

Figure 3.1: High-level overview of the proposed method. The touch sensing system continuously
processes camera imagery to detect user touch input on a physical-virtual surface. Detected touches
are sent to the semantic content engine, which determines appropriate responses in the context of
a stateful 3D virtual model. Multi-modal output to the user is provided by the rendering system,
including virtual imagery projected onto the surface, audio from speakers, and potentially other
output devices.

Decoupling functionality into separate dedicated system components provides several advantages.

First, it allows for the independent, parallel processing of touch input and selection of rendering

output, reducing system latency. While the touch sensing and corresponding system output rou-

tines are designed to be general, a particular interaction scenario comprises specific virtual content

and touch capabilities, so this design provides increased modularity and flexibility in terms of

supporting a desired scenario without imposing restrictions on touch input detection. In certain

situations, no graphical model is required. For example, a touch-controlled painting application

allowing users to select a desired color via a palette and draw directly on a non-parametric surface

can function without an associated graphical model of the surface. In this case, the semantic con-

tent engine must only consider which touch inputs change color and which produce 3D painted
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contours on the touch surface; such interactions only depend on the two-dimensional coordinate

spaces of the projectors. In contrast, displaying an anatomical model of a human body on a cor-

respondingly shaped surface with supported touch interactions must operate on an associated 3D

virtual model. However, the touch sensing system remains agnostic to the scenario—instead, it

is solely responsible for detecting touches on the surface and transmitting them to the semantic

content engine, which subsequently maps touches to appropriate output.

The touch sensing system, semantic content engine, and rendering system are linked together via

a relational lookup table architecture, described below.

3.1.1 Lookup Table

The proposed method is designed to support touch sensing on surfaces for which the relationship

between camera images of user touches and the virtual content cannot be directly described by

parametric functions. In order to map touches detected in two-dimensional camera imagery to their

corresponding positions on the three-dimensional virtual content, we construct a device-content

relational lookup table that links these coordinate spaces. This reduces coordinate mapping to

efficient O(1) indexing operations—for instance, a particular camera pixel (x, y) can be used as

an index to retrieve the corresponding 3D point (X, Y, Z) on the virtual model via a direct lookup.

Essentially, the lookup table performs the role of the parametric functions that are not available for

general non-parametric surfaces. However, lookup tables are still suitable for parametric surfaces;

in fact, the equations describing a parametric surface could be used to populate the lookup table,

which is advantageous when computing these equations is more costly than lookup table retrievals.

Instead, to maintain the generalizability of the method, we populate our lookup table through

the observation and processing of camera-projector correspondences in a preprocessing phase,

described in Section 3.2.
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Moreover, the lookup table can be augmented with additional information that facilitates rapid

dynamic responses to touch input by directly encoding associations between camera coordinates

and touch-triggered animations, audio effects, or other semantic responses. In this way, mapping

touch input to semantic output can also be achieved through O(1) indexing operations.

This paradigm frontloads execution time through an initial preprocessing and associated data stor-

age phase in order to facilitate highly responsive touch sensing and response at runtime. Once the

lookup table is constructed, conversions of a coordinate from one space to another and mappings

from touch input to semantic responses are achieved through trivial lookup operations, limiting the

amount of required runtime processing. This is analogous to image and video compression as a

means of reducing file size: while encoding (i.e. preprocessing) can be a time-expensive operation,

decoding (i.e. runtime processing) is comparably efficient.

In summary, encoding coordinate space relationships and other information in a lookup table pro-

vides three principal advantages in the context of tightly integrated touch sensing and response:

1. Lookup table accesses are efficient, requiring only O(1) indexing operations.

2. Lookup table entries provide coordinate space correspondences for non-parametric surfaces,

which may not be available otherwise.

3. Lookup table entries can be further augmented to directly encode semantic responses as

efficient O(1) indexing operations, further reducing computation at runtime.

As a means of linking the touch sensing system, semantic content engine, and rendering system

together, the lookup table relates coordinates and semantic information among four fundamental

types of coordinate spaces: the coordinate spaces of the cameras, those of the projectors, that of

the physical surface, and that of the virtual content displayed on the surface. Conceptually, it is a
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collective function of the cameras, projectors, and the touch-sensitive surface. More specifically,

the lookup table is influenced by the number and resolutions of the cameras and projectors and

by the relationship between the positions of the cameras, projectors, and surface. To facilitate the

discussion of these coordinate spaces, we adopt a consistent naming convention: each coordinate

space is assigned a three-letter abbreviation followed by a number indicating its dimensionality—2

for two-dimensional spaces and 3 for three-dimensional ones.

The two-dimensional coordinate spaces of the camera imagery are collectively denoted CAM2.

Detected touches are localized as 2D (x, y) coordinates (denoted x) within each camera’s co-

ordinate frame. Given C infrared cameras, there are C such 2D coordinate spaces. Similarly, the

two-dimensional coordinate spaces of the projected imagery are denoted PRO2. Ultimately, the vi-

sual stimulus presented to the user is a set of 2D images projected onto the touch-sensitive surface.

Through the lookup table, 2D (x, y) camera coordinates can be converted to 2D (u, v) projector

coordinates (denoted u), allowing graphical updates directly within the projected imagery. Given

P projectors, there are P such 2D coordinate spaces.

The three-dimensional coordinate space of the graphical content displayed to users is denoted

GFX3. The graphics mesh G is composed of vertices VG of the form (X, Y, Z)G. Other points

in GFX3 that exist on the faces connecting these vertices are denoted XGFX3 . (The distinction

between mesh vertices and mesh face points will later be important for facilitating certain graphical

touch responses, as discussed in Section 3.3.) Touches detected within the camera imagery can be

converted via the lookup table to 3D graphical model points to trigger appropriate responses, such

as activating animations and sound effects.

Additionally, there is an internal three-dimensional coordinate space containing a model of the

touch surface as scanned by the cameras during a calibration procedure, representing its relation-

ship to the joint extrinsic calibration of the cameras and projectors. This space is denoted TCH3,
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with the 3D scan of the surface S composed of points VS of the form (X, Y, Z)S . Depending on

the interaction scenario, it may be useful to expose this coordinate space to the rendering system.

Our system does not assume that the graphical model G and the touch surface S are identical or

even similar. One benefit of maintaining this distinction is that all graphical modeling and region-

based semantic mappings between touches and responses can be done on a 3D graphical model

that is designed to be easily topologized and animated, and the resulting model can be used on any

number of non-matching touch surfaces.

CAM2

TCH3 GFX3

PRO2

Non-parametric surface

Infrared
cameras

···

Projectors

···

Figure 3.2: Relationships among the coordinate spaces used to achieve touch sensing and response,
using imagery of a physical-virtual head surface to aid in the discussion. Imagery from the IR
cameras (in CAM2) is used for touch detection. Detected touches can be converted to 3D points
on the scanned touch surface S (in TCH3), 3D points on the 3D graphical model G (in GFX3),
and 2D projector pixels (in PRO2) via the lookup table in order to trigger appropriate output.
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Figure 3.2 shows the relationships among these various coordinate spaces, shown in the context

of a physical-virtual head surface. Here, we show the internal touch surface coordinate space

(TCH3). The lookup table, created during the preprocessing phase, stores correspondences among

these spaces. Hence, when a touch is detected in the 2D camera imagery at runtime, it can be

instantly converted to its equivalent location in the space of one of the projectors or on the 3D

model, as necessary, in order to trigger appropriate responses.

Table 3.1 shows an example correspondence lookup table. Each row contains a single correspon-

dence among all of the camera coordinate spaces, all of the projector coordinate spaces, the graphi-

cal modelG in GFX3, and the touch surface scan S in TCH3. For example, the ith correspondence

relates the camera coordinate (xi, yi)
C1 in camera C1 to (xi, yi)

C2 in C2, to projector coordinate

(ui, vi)
P1 in projector P1, to (Xi, Yi, Zi)

GFX3 on the graphical model G, to (Xi, Yi, Zi)
TCH3 on the

scan S, and so on. Certain entries may be blank, representing that a given coordinate in one space

does not have a correspondence in other; for instance, due to the physical placement of cameras,

camera C1 may image a different portion of the physical-virtual surface than camera C2, so coordi-

nates in the former might not have a correspondence in the latter. These blank entries still provide

useful information and so are retained in the table. The construction of the lookup table, described

next, begins with a collection of sparse correspondence observations, but the final table contains

correspondences among all camera and projector coordinates.

Table 3.1: Example lookup table with correspondences relating coordinates in the cameras, pro-
jectors, graphics model, and touch surface. Each row contains a single correspondence among the
spaces.

Touch Sensing: Cameras Rendering: Projectors Semantic Content Engine

Row C1 · · · CC P1 · · · PP Graphics model Touch surface

1 (x1, y1)C1 · · · (x1, y1)CC (u1, v1)P1 · · · (u1, v1)PP (X1, Y1, Z1)GFX3 (X1, Y1, Z1)TCH3

2 (x2, y2)C1 · · · (x2, y2)CC (u2, v2)P1 · · · (u2, v2)PP (X2, Y2, Z2)GFX3 (X2, Y2, Z2)TCH3

...
...

. . .
...

...
. . .

...
...

...

n (xn, yn)C1 · · · (xn, yn)CC (un, vn)P1 · · · (un, vn)PP (Xn, Yn, Zn)GFX3 (Xn, Yn, Zn)TCH3
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Note that the correspondences in the table are induced by and bound to the touch-sensitive sur-

face. In other words, the existence of a correspondence between coordinate (xi, yi)
C1 in camera

C1 and coordinate (xi, yi)
C2 in camera C2 indicates that these two cameras image the same touch

surface point (Xi, Yi, Zi)
TCH3 at these respective pixels. Conceptually, each camera and projec-

tor coordinate describes a three-dimensional ray through the respective image plane that passes

through the surface; the correspondences in the lookup table reflect these ray-surface intersections.

This representation has important consequences for distinguishing touches—which occur on the

surface—from hovers—which occur off of it. In particular, correspondences among camera im-

agery of a potential touch or hover event that exhibit a high degree of consistency or similarity

indicate a common set of ray-surface intersections, which provides evidence of a touch; however,

inconsistent correspondences indicate disjoint sets of ray-surface intersections, which provides ev-

idence of a hover.

3.2 Sensing Touch

As described previously, the touch sensing system operates independently from the semantic con-

tent engine and the rendering system. All three components are together linked by the lookup table.

Here, we describe the initial construction of this lookup table, restricting our focus to the subset

of the correspondences that facilitates core touch sensing functionality. This includes relationships

between coordinates in the cameras, projectors, graphics model, and touch surface scan (as in Ta-

ble 3.1); for limited applications, this data might be all that is necessary. Additional augmentations

to the lookup table that support certain kinds of semantic touch interactivity—such as audio and

animations within the 3D virtual model—are separately presented in Section 3.3 as incremental

updates to the lookup table.
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The lookup table is created as part of the preprocessing phase. Later, at runtime, it is used both to

detect user touch input and to process that input for transmission to the semantic content engine

and ultimately the rendering system to display output to the user.

3.2.1 Preprocessing Phase

At a high level, the preprocessing phase is primarily concerned with learning the geometric rela-

tionships between the cameras, projectors, touch-sensitive surface, and graphical model to facilitate

construction of the device-content relational lookup table. It begins with a calibration routine to

determine the positions, orientations, and intrinsic parameters of the optical devices. Initial camera

calibration matrices are estimated through image captures of calibration pattern objects. Following

this, a projector-based feature scanning procedure is performed that provides information linking

some subset of camera pixels to their corresponding pixels in the projectors. An initial 3D point

cloud representing the touch surface is then estimated. These 3D points and their associated pro-

jected pixels are used for an initial calibration of the projectors. The calibration routine ends with

a global optimization of the touch surface point cloud and the camera and projector calibration

matrices. Dense correspondences relating all camera and projector pixels to the touch surface and

to the graphics mesh are computed from these calibration matrices and stored in the lookup table

for use in touch detection at runtime.

Before describing this process in more detail, we first review the nomenclature used throughout

the following discussion:

• Cameras and projectors. There are C cameras used for touch detection and P projectors

that display virtual content on the touch-sensitive surface. A general camera is denoted C,
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and the entire collection of C cameras is represented by the set {C1, C2, . . . , CC}. Similarly,

the P projectors are labeled {P1, P2, . . . , PP}.

• Camera pixels. A cameraC has an image plane composed of pixels xC with two-dimension-

al coordinates (x, y)C in CAM2. The width and height of the camera image are given by wC

and hC , respectively. The entire collection of k = wChC pixels in the image plane of C is

represented by the set {xC
1 ,x

C
2 , . . . ,x

C
k }, denoted more compactly as {xC

i }ki=1. When clear,

we will further use the shorthand {xC
i } to refer to this collection of k camera pixels across

the image plane of C.

• Projector pixels. Likewise, a projector P has an image plane comprising a set of pixels uP

with the 2D coordinates (u, v)P in PRO2. The shorthand notation {uP
i } represents the entire

set of pixels in the projector’s image plane with resolution wP × hP .

• Touch surface mesh. The three-dimensional touch surface mesh is denoted S, which con-

tains 3D vertices VS = (X, Y, Z)S in the calibration space TCH3. The mesh has associated

edge connectivity among its vertices that defines faces. Points on this mesh that are not

actual vertices are denoted XTCH3 = (X, Y, Z)TCH3 .

• Graphics mesh. Similarly, the three-dimensional graphics model is denoted G, which is

a set of 3D vertices VG = (X, Y, Z)G in the graphics space GFX3 and associated edge

connectivity. Points on the faces of this mesh are labeled XGFX3 = (X, Y, Z)GFX3 . The

calibration space TCH3 and the graphics space GFX3 are not the same.

• Correspondences. The subscripts of each pixel or three-dimensional coordinate are identi-

cal for corresponding coordinates: that is, camera pixel xC
i in camera C corresponds to pro-

jector pixel uP
i in projector P, to touch mesh point (Xi, Yi, Zi)

TCH3 , to graphics mesh point

(Xi, Yi, Zi)
GFX3 , and so on. A different camera pixel xC

j has a different set of associated

corresponding points in the other coordinate spaces, each written with the same subscript j.
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We refer to the set of correspondences with the subscript j as the jth correspondence, which

is located in the jth row of the lookup table. The ith and jth correspondences represent two

distinct touch input locations on the touch surface S.

Next, we describe the incremental construction of the lookup table during the preprocessing phase

in more detail, with the steps numbered from PP1 to PP8. For each appropriate step, we include

a general example of the lookup table available. While the discussion below is largely general

by design, we include specific implementation notes along with figures and descriptions of the

application of this process to our physical-virtual patient head surface when useful. To simplify

the discussion, we present the lookup table in a theoretical singular form, where each table row

contains correspondences among all dimensions. However, in practice, our implementation opts

instead to construct a series of specialized tables, each with one specific lookup coordinate (e.g.

camera pixels) and one specific subset of the possible output (e.g. corresponding projector pix-

els). Later, in Chapter 4, we provide motivation for these implementation decisions and describe

our software implementation for realizing touch sensing and response on several specific physical

surfaces.

PP1) Obtain initial estimates of the camera calibration matrices.

First, we calibrate the IR cameras. Standard calibration approaches based on image captures

of checkerboard or other patterns are suitable [158]. In accordance with these approaches,

the patterns are sequentially placed throughout the volume containing the physical-virtual

surface at various positions and orientations. After individually calibrating each camera to

obtain an initial estimate of its intrinsic matrix, we then calibrate each stereo pair of cameras

to obtain estimates of their extrinsic matrices. We choose one camera to serve as the origin

of the calibration coordinate space TCH3, aggregating the extrinsic estimates from all stereo
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pairs containing this particular camera; the 3D coordinates of the touch surface S in TCH3,

created in step PP6, are represented with respect to this origin.

Once these intrinsic and extrinsic matrix estimates are obtained, we globally optimize them

by performing bundle adjustment across all cameras and observed calibration points. Bundle

adjustment refers to the process of jointly refining camera pose, intrinsic calibration, and the

3D reconstruction of observed camera points [139]. The results of this optimization are used

as the initial estimates of the intrinsic and extrinsic camera calibration matrices.

PP2) Observe sets of bidirectional projector-camera and camera-camera correspondences.

To reliably distinguish between touches and hovers, we wish to leverage information from

multiple camera viewpoints of a potential contact event. To facilitate this, we desire a means

of determining how pixels in a given camera’s image of the touch-sensitive surface corre-

spond to pixels in the other cameras. Additionally, in order to respond to detected touch

events, the system requires information regarding how camera pixels relate to both projector

pixels and to 3D coordinates on the graphical model. In normal computer vision applications

involving multiple camera viewpoints of the same object, correspondences among the many

views are obtained via a feature matching routine. However, rear-projection surfaces tend to

be both smooth and uniform in color, lacking in obvious features that can be easily detected.

Instead, we project a set of “manual” features onto the surface at known projector coordi-

nates, which we refer to as the feature scan. These features could be black and white stripes,

circles, or other shapes—the only requirement is that they are visible and can be reliably seg-

mented in the camera imagery. Each projected feature is detected and localized in camera

space by all cameras that can image it; the fact that a particular camera is unable to image

a given projector feature is also useful information. The localized positions of detected fea-

tures in each camera’s imagery represent corresponding surface points among the cameras.

Thus, at this stage, the collection of camera images of projector features provides:
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• projector-camera correspondences: bidirectional mappings between projector pixels

and camera pixels (i.e. between the locations of projected features and a camera’s

observations of them)

• camera-camera correspondences: bidirectional mappings between pixels in one cam-

era and corresponding pixels in another camera (i.e. between the two cameras’ obser-

vations of the same projected feature)

While this set could be exhaustive—i.e. mapping all possible projector pixels to their camera

pixel correspondences—this is temporally expensive. For example, a projector with a reso-

lution of 1920 × 1080 pixels contains over two million pixels. Instead, we collect a sparse

set of projector-camera correspondences, which we will later supplement by estimating un-

observed correspondences in step PP8. Through the use of coded pattern images [126], it

is possible to detect and localize many features with a comparatively smaller number of

projections.

At this point, the lookup table contains a sparse set of bidirectional projector-camera and

camera-camera correspondences, as in Table 3.2. The lookup table contains only k rows,

based on the number of projected features, where k is insufficient to ensure that every camera

and projector pixel is present.

Table 3.2: Lookup table after observing a sparse set of projector-camera and camera-camera cor-
respondences (step PP2). Many projector and camera pixels are not present.

Touch sensing: Cameras Rendering: Projectors

Row C1 · · · CC P1 · · · PP

1 (x1, y1)
C1 · · · (x1, y1)

CC (u1, v1)
P1 · · · (u1, v1)

PP

2 (x2, y2)
C1 · · · (x2, y2)

CC (u2, v2)
P1 · · · (u2, v2)

PP

...
...

. . .
...

...
. . .

...

k (xk, yk)
C1 · · · (xk, yk)

CC (uk, vk)
P1 · · · (uk, vk)

PP
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Implementation note—multiple projectors: In setups with multiple projectors, construct-

ing this initial form of the lookup table (Table 3.2) is less straightforward, namely with re-

gard to finding pixel correspondences among multiple projectors for a given feature. When

a feature is projected by a particular projector, it can be imaged by the entire collection of

cameras to find correspondences. However, the remaining projectors are not imaging devices

and thus cannot directly determine their own respective corresponding pixels. As described

in more detail in Chapter 4, our practical implementation of the lookup table is actually

partitioned into several sub-tables that each focus on conversions between specific subsets

of the coordinate spaces. For example, instead of a single table relating all camera pixels

to their correspondences in all projectors, there exist sub-tables responsible for storing cor-

respondences between pixels of one camera and pixels of one projector. We will continue

to represent the lookup table in its theoretical singular form for the purposes of the present

discussion.

PP3) Estimate an initial 3D touch surface point cloud in TCH3 using the sparse set of corre-

spondences, and augment the lookup table to store correspondences from camera and

projector pixels to this point cloud.

With the initial camera extrinsic matrix estimates from step PP1, the sparse set of camera-

camera correspondences from step PP2 can be triangulated within the calibration coordinate

space TCH3, forming a sparse 3D point cloud that represents the touch surface. This allows

us to begin augmenting the current lookup table with 3D information, as we now know how

projector pixels and camera pixels map to 3D coordinates on the touch surface, denoted

XTCH3 . To triangulate points, we use the optimal formulation presented by Hartley and

Zisserman that minimizes geometric error through epipolar constraints [64].

An example of the current lookup table at this stage is shown in Table 3.3. As shorthand, we

let the set {x{Ci}
j } refer to the jth correspondence across all cameras from i = 1 to C, the
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number of cameras: that is,

{x{Ci}
j } = {xCi

j }Ci=1 = {xC1
j ,xC2

j , . . . ,xCC
j }

As in the previous step, there are only k rows in the current table.

Table 3.3: Lookup table after triangulating sparse camera-camera correspondences (step PP3).
Many projector and camera pixels are not present.

Row Cameras {Ci} Projectors {Pi} Scan

1 {x{Ci}
1 } {u{Pi}

1 } XTCH3
1

2 {x{Ci}
2 } {u{Pi}

2 } XTCH3
2

...
...

...
...

k {x{Ci}
k } {u{Pi}

k } XTCH3
k

PP4) Obtain an initial estimate for the projector calibration matrices.

The correspondences between projector pixels and 3D coordinates on the estimated touch

surface point cloud provide information that can be used to calibrate the projectors. For

a particular projector, given a set of projector pixels ui = (ui, vi) that correspond to 3D

points XTCH3
i = (Xi, Yi, Zi)

TCH3 , we can use the Direct Linear Transformation algorithm

to compute the maximum-likelihood estimate (MLE) of the projection matrix P satisfying

ui = PXTCH3
i for all i [64]. To do this, we create two linearly independent equations from

each correspondence of the form

 0T −(XTCH3
i )

T
vi(X

TCH3
i )

T

(XTCH3
i )

T
0T −ui(XTCH3

i )
T




P1

P2

P3

 = Ap = 0
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where PiT is the ith row of P (represented as a column vector by Pi). Given k correspon-

dences, the matrix A has 2k rows and 12 columns. The set of equations can be represented

by the matrix formula Ap = 0, where p is a 12 × 1 column vector that can be reshaped to

form the 3 × 4 projection matrix P. The solution to this equation is over-determined, so

we estimate it by minimization; this can be achieved by computing the singular vector of

A corresponding to the smallest singular value [64]. From the projection matrix P, the in-

trinsic and extrinsic matrices for the projector can be obtained via RQ-decomposition [64].

This process is repeated to compute initial estimates of the intrinsic and extrinsic calibration

matrices for each of the P projectors.

PP5) Perform bundle adjustment to jointly optimize the camera calibration matrices, the

projector calibration matrices, and the 3D point cloud of the touch surface.

At this stage, we have computed initial estimates for the camera and projector calibration

matrices along with an initial point cloud of the touch surface. These can together be glob-

ally refined through a final application of bundle adjustment. The refined 3D point cloud

will be used in step PP6 to construct the touch surface S. In step PP8, the refined camera

and projector calibration matrices will be used to supplement the lookup table with esti-

mates of unobserved correspondences—projector pixels with no associated features in the

feature scan. Additionally, the final projector calibration matrices will be modeled as virtual

cameras in 3D rendering engines, such as Unity [141] or OpenGL [131]; a specific Unity

implementation is described in the Appendix. This provides the registration of the virtual

content to the touch-sensitive surface such that imagery of the content appears in the correct

positions when projected onto the surface.

Implementation note—distortion correction: Bundle adjustment routines that optimize

the calibration matrices of cameras and projectors are generally capable of correcting optical

distortion. This is typically desired, as it produces calibration matrices with lower repro-
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jection errors that better model the projection of 3D points in the environment to 2D pixels

on camera and projector image planes, and it can yield more accurate 3D reconstructions.

Accounting for distortion correction within the lookup table architecture requires a few mod-

ifications. Specifically, to prevent the need to undistort incoming camera imagery for every

frame—which would increase latency linearly in terms of the number of cameras—we en-

code observed (i.e. distorted) pixels as lookup indices. However, in certain cases, we might

want to retrieve ideal (i.e. distortion-corrected) pixels. In practice, this can be achieved by

storing both observed and ideal pixels in the lookup table. We will return to this discussion

in Chapter 4.

PP6) Create the 3D touch surface mesh S in TCH3, and augment the lookup table to store

correspondences from camera and projector pixels to vertices on this mesh.

The bundle adjustment of step PP5 produces a refined 3D point cloud representing the touch

surface S in the calibration coordinate space TCH3. However, this consists only of a col-

lection of vertices VS = (X, Y, Z)S with no edge connectivity information. In order to

consider correspondences from camera and projector pixels to arbitrary points on this mesh

rather than only vertices, we must determine how the vertices are connected to form mesh

faces.

In setups with only a single projector, connecting vertices to faces is straightforward. The

triangulated features (step PP2) used to construct the initial estimate of the point cloud

(step PP3) arose from specific projector pixels. If these pixels were chosen with a reg-

ular structure—such as a grid in projector space—the edge connectivity of this structure

can be directly applied to the 3D point cloud. For example, suppose the feature scan in-

cludes projector feature (ui, vi), its horizontally neighboring feature (uj, vj), and its verti-

cally neighboring feature (uk, vk)—i.e. these three pixels constitute a 2D triangular face in

projector space. These three pixels correspond to the touch mesh vertices VS
i , VS

j , and VS
k ,
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respectively, which can be connected with edges to form a 3D triangular face on the mesh.

Otherwise, for arbitrary sets of discrete pixels, techniques such as Delaunay triangulation

can be used to connect projector features and thus vertices of S with edges.

However, determining edge connectivity for a feature scan across multiple projectors is more

complicated, as a feature arising from one projector may fall inside the structured-imposed

faces from the features of another projector. Instead, a surface fitting method can be used to

either approximate or interpolate the touch mesh S into a structure with known connectivity,

such as a grid; this structure can then be used to create the set of edges connecting vertices

of S.

At this stage, we can augment the lookup table with correspondence information relating

camera and projector pixels to the vertices of the touch surface mesh S. An example is

shown in Table 3.4. Again, only k rows are present. Here, the camera and projector pixel

correspondences specifically refer to actual vertices of the mesh S—each projector pixel

represents a feature in the feature scan with corresponding observations by each camera and

a corresponding mesh vertex. In step PP8, the remaining camera and projector pixels will be

linked to points on the faces of S—i.e. not vertices—which are now available through the

mesh faces resulting from the computed edge connectivity.

Table 3.4: Lookup table after creating the touch surface mesh S (step PP6). Many projector and
camera pixels are not present.

Row Cameras {Ci} Projectors {Pi} Scan

1 {x{Ci}
1 } {u{Pi}

1 } VS
1

2 {x{Ci}
2 } {u{Pi}

2 } VS
2

...
...

...
...

k {x{Ci}
k } {u{Pi}

k } VS
k
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PP7) Align the 3D touch surface scan mesh S with the 3D graphical model G.

While the lookup table now supports conversions from a subset of camera and projector

pixels to 3D coordinates on the scanned touch surface S, it lacks information about how

these 3D coordinates relate to the 3D graphical model G that will ultimately be projected

on the surface. For various reasons, it is useful to maintain a distinction between these

two 3D objects, especially in cases where they do not exactly match. The touch surface

S has a topology induced by the specific projector pixels used in the feature scan and the

computed edge connectivity from step PP7; a simplified and retopologized version of S that

more closely represents the structure of the desired virtual content may be more amenable to

modeling, texturing, and animating. The origin of the calibration space TCH3 is the position

of one of the cameras, which by design is located below and away from the actual physical

surface. Instead, separating the two meshes allows G to exist in a dedicated coordinate

space with an origin that can simplify the modeling process: for instance, one located close

to the mesh with x-, y-, and z-axes that are aligned with the general volume of the 3D

model. Additionally, enforcing independence of the model and the touch surface permits the

modifications of one without affecting another; if cameras are moved, the feature scan must

be repeated and so S must be recomputed, but no adjustments to G are necessary.

This separation incurs one cost: correspondences to points on the graphics mesh G must

be separately computed. However, we can facilitate this by aligning it to the touch surface

S; in step PP8, we will use this alignment to compute the correspondences. In general, we

assume that the two meshes are sufficiently similar that computational registration methods,

such as the iterative closest point algorithm (e.g. [11]), are capable of aligning them. If the

surfaces are substantially different and thus not suitable for such methods, manual alignment

may be required. In some scenarios, the surfaces may be completely different—for instance,

when a flat planar touch surface is used as an input interface for a 3D model. To handle
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these, it is often easier to compute the relationship between the touch and graphical surfaces

by modeling them together: that is, by importing the scanned mesh directly into the 3D

modeling environment and positioning it with respect to the existing 3D graphical content to

achieve the desired display on the surface.

The output from the automated or manual alignment is a transformation, comprising a rota-

tion matrix R and translation matrix T, such that transforming the touch mesh S results in a

mesh whose points are close to the points of the graphics mesh G. For automated alignment,

the computational registration method minimizes the distances between the meshes.

PP8) Densely supplement the correspondences from camera and projector pixels to the 3D

touch surface S and the 3D graphical model G.

With only the sparse set of observed projector features, there is an equivalently sparse set of

mappings from camera and projector pixels to 3D coordinates on the touch surface S. As the

goal of the lookup table is the encoding of the relationships of all camera and projector pixels

to their equivalent positions on S and on the graphics meshG, we desire a means of including

non-observed correspondences and of obtaining correspondences to G. To accomplish both

of these goals, we will use the camera and projection calibration matrices from step PP5 and

the transformation that aligns S and G from step PP7 to estimate correspondences.

First, let us consider the touch mesh S. It exists in the calibration coordinate space TCH3

along with the calibrated cameras and projectors, and the current form of the lookup ta-

ble contains correspondences from a subset of camera and projector pixels to vertices on

S. Mathematically, a camera’s projection matrix represents the manner in which a three-

dimensional world point is projected onto the camera’s two-dimensional image plane. For

example, given a camera matrix P, the projection of a touch mesh vertex VS to a pixel x of

the camera [64] is given by

PVS = x (3.1)
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(x1, y1)

(X1, Y1, Z1)

Device

(x2, y2)

(X2, Y2, Z2)

Figure 3.3: Supplementing unobserved correspondences with back-projected rays. All device
(camera and projector) pixels are back-projected to three-dimensional rays; the points where these
rays intersect the touch surface are stored as lookup table correspondences for the respective pixels.

Currently, the lookup table contains correspondences arising from actual observations: it

stores x as the camera pixel corresponding to VS because the projection of a feature at that

3D location was observed at that camera pixel. To estimate correspondences at a pixel with

no such observations, we can back-project the pixel to a three-dimensional ray and compute

its point of intersection on the touch mesh S. These intersections generally occur on the

faces of the mesh, which are available via the edge connectivity computed in step PP6. Let

M be the left 3 × 3 sub-matrix of the camera projection matrix P—i.e. P = [M | p4], where

p4 is the fourth column of P. The back-projection of a pixel x to a ray [64] is given by

X(µ) =

 M−1(µx− p4)

1

 (3.2)

Thus, for a camera pixel with no observations, we need only choose a positive value of

µ so that the ray starting at the camera’s position and passing through X(µ) intersects the
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touch mesh S. If XTCH3 represents this intersection point, then the correspondence between

the camera pixel x and XTCH3 can be added to the lookup table. This step is repeated for

all camera and projector pixels so that a dense set of correspondences can be encoded in

the lookup table. In particular, the original observations are replaced by these estimates.

Figure 3.3 shows an example of this process.

Next, we wish to repeat this process for the graphics mesh G. While the touch mesh S,

the cameras, and the projectors exist in the calibration coordinate space TCH3, G is located

in GFX3, a separate coordinate space specifically for graphical modeling. Using the align-

ment transformation (rotation matrix R and translation matrix T from PP7), we transform the

graphics mesh from GFX3 to TCH3, back-project rays from the calibrated camera and pro-

jector pixels, and compute the intersection points on the transformed graphics mesh. Before

storing the intersection points in the lookup table at the corresponding pixels, we transform

them back to GFX3.

Table 3.5: Dense lookup table after back-projecting all camera and projector pixels to 3D rays and
computing their intersections on S and G (step PP8). All projector and camera pixels are present.

Row Cameras {Ci} Projectors {Pi} Scan Graphics

1 {x{Ci}
1 } {u{Pi}

1 } XTCH3
1 XGFX3

1

2 {x{Ci}
2 } {u{Pi}

2 } XTCH3
2 XGFX3

2
...

...
...

...

n {x{Ci}
n } {u{Pi}

n } XTCH3
n XGFX3

n

At this stage, the lookup table contains dense correspondences relating all camera and pro-

jector pixels to their intersection points on the touch mesh S and the graphics mesh G. An

example is shown in Table 3.5; unlike previous example lookup tables with k rows, this iter-

ation has n rows, where n is sufficiently high to ensure that all camera and projector pixels

are present. In Section 3.3, we introduce mechanisms for linking the camera and projector
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pixels to semantic behaviors on the touch surface during this same step of the preprocessing

phase, which will further expand the lookup table.

Implementation note: If each camera and projector pixel is separately back-projected to a

ray so that 3D intersection points on the touch mesh S and graphics meshG can be computed,

we must consider how to aggregate correspondences. That is, if camera pixel x and projector

pixel u each have the correspondence XTCH3 , they should all exist in the same lookup table

row. However, in practice, it is unlikely that integer-valued pixels from a camera and a

projector, which are used as lookup table indices, correspond to identical three-dimensional

points on S. Instead, we forward-project each mesh intersection point arising from some

back-projected camera or projector pixel onto the image planes of the remaining cameras

and projectors, and we separately maintain these forward-projections in sub-tables that store

correspondences among a specific pair of optical devices. Figure 3.4 shows an example of

this process. We return to this discussion in Chapter 4.

Device

(x1, y1)

Device

(u1, v1)

(X1, Y1, Z1)

Device

(x2, y2)

Device

(u2, v2)

(X2, Y2, Z2)

Figure 3.4: Supplementing unobserved correspondences with forward-projected intersections. All
pixels on the image plane of one device (camera or projector) are back-projected to rays that
intersect the touch surface, and these intersection points are forward-projected onto pixels on the
image plane of another device. This provides correspondences between the pixels of the two
devices.
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3.2.1.1 Summary

The final result of this preprocessing phase is a lookup table suitable for sensing touch input, as

shown in Table 3.5. Each row contains a set of corresponding points in all coordinate spaces. For

instance, in row i, pixel xC1
i in camera C1 corresponds to pixel xC2

i in camera C2, to pixel uP1
i in

projector P1, to the point XTCH3
i on the touch mesh S, to the point XGFX3

i on the graphics mesh

G, and so on. The correspondences are fully dense: all camera and projector pixels are present.

Note that some pixels may not have correspondences in other coordinate spaces; for example, a

particular projector pixel may not be visible to a particular camera. The lookup table captures this,

storing a null value in the appropriate position.

The lookup table allows for constant-time conversions between coordinate spaces. A given co-

ordinate can be queried in the table, and its equivalent coordinates in the other spaces can be

determined as an O(1) lookup. Thus, when touches are detected, appropriate responses can be

triggered rapidly.

In its theoretical form, the table has n rows, where n represents the number of rows required so

that all pixels across all cameras and all projectors are present; the value of n depends entirely

on the exact configuration of cameras, projectors, and the touch surface. In practice, it is simpler

to split this table into a collection of tables, each focused on a particular camera or projector. As

an example, one sub-table can represent only the correspondences from camera C to projector

P. The number of rows in each such table corresponds directly to the number of pixels in the

optical device—i.e. the product of the width and height of the camera or projector image. This

allows the sub-table to be stored directly as a matrix, allowing for efficient indexing operations

and coordinate conversion retrievals in practice. We discuss these implementation aspects in more

detail in Chapter 4.
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Next, we present two algorithms for detecting user touch input at runtime via this lookup ta-

ble. The lookup table can be further augmented with additional semantic information about the

three-dimensional content displayed on the touch-sensitive surface to produce appropriate touch-

triggered responses, such as animations and sound effects. By precomputing and encoding this

information directly into the table, the amount of computation required at runtime to initiate these

responses is reduced. We will return to this discussion in Section 3.3.

3.2.2 Runtime Touch Detection

Given the fully populated device-content relational lookup table from the preprocessing phase

described in Section 3.2, the touch sensing system is next responsible for continuously analyzing

camera imagery at runtime to detect and process user touch input so that an appropriate response

can be selected. To this end, the touch sensing system seeks to address two primary problems at

runtime:

• Determining if a touch has occurred. The principal challenge is reliably distinguishing

between actual touches and near-contact proximity events (called “hovers”), which can have

similar characteristics within the camera imagery. We refer to this process more generally as

touch/hover classification.

• Determining where a touch has occurred. Following the successful detection of a touch

event, the touch sensing system uses correspondences in the lookup table to link this touch

to its 3D locations on the touch surface mesh S and on the graphics mesh G so that a proper

semantic response can be triggered. We refer to this process more generally as touch local-

ization.
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Both of these problems can be solved by utilizing the correspondence information encoded within

the lookup table. The dependent problem of determining how to respond to a detected and localized

touch is handled separately by the semantic content engine, discussed in Section 3.3.

There are three possible classifications for potential events observed in the camera imagery at a

particular time step:

1. A touch event represents contact between the user’s hand or fingers and the touch-sensitive

surface.

2. A hover event represents proximity—but not contact—between the user’s hand or fingers

and the touch-sensitive surface.

3. Otherwise, no event has occurred. This classification can arise due to noise in the camera

imagery.

Each camera image can feature multiple events of each type.

Prior to runtime, initial background image models of the surface—imagery with no touches or

hovers—are collected and stored for each camera. Additionally, binary region of interest (ROI)

image masks are created for each projector-camera pair that represent the locations of valid camera

image pixels—that is, pixels which can actually indicate touch input. First, each projector projects

solid white images onto the surface, and each camera captures imagery. A pixel in one of these

camera images that exceeds a threshold is set to 1 in the ROI masks, indicating both that the given

camera pixel represents a specific location on the surface and that some corresponding projector

pixel represents this surface location. Material that attenuates projected imagery—such as black

felt—can be applied to the physical setup to prevent undesired projections on other objects or

surfaces in the working volume. The remaining mask values are set to 0: either these pixels do not
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represent a location on the surface, or they represent locations on the surface onto which the given

projector cannot project. For a given camera, all projector-camera pair ROI masks are combined

into a single camera ROI mask, representing all pixels within that camera that could correspond to

a detectable touch that have a corresponding pixel in at least one projector.

Camera 1

Camera 2

Camera 3

Background model Raw input image Camera contours

Figure 3.5: IR image processing. Initial background image models (first column) are subtracted
from incoming camera images (second column). The result is thresholded and segmented into
camera contours (third column) to be processed to determine the presence of touch input.

At runtime, incoming camera imagery is preprocessed to retain only those pixels that might cor-

respond to a touch or hover event. First, the respective background model is removed from each

camera image, a process called background subtraction [117]. In general, the camera images are

expected to feature salt-and-pepper noise, which can be reduced from the background-subtracted
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images using a morphological opening filter. Hysteresis thresholding is then applied to segment

the image into candidate touch pixels. Finally, the resulting segmented image for each camera

is filtered down via element-wise multiplication with the respective combined camera ROI mask.

The pixels that survive this preprocessing are segmented into camera contours, distinct collections

of pixels that represent potential touches or hovers. Figure 3.5 shows an example of this process.

Directly classifying these camera contours as touches or hovers poses several challenges. The

entire collection of contours across all cameras together represents zero or more touches, zero

or more hovers, and zero or more regions corresponding to no event (e.g. from remaining image

noise); each such event may be observed as a separate contour in one or more cameras. Thus, the

first goal is to group camera contours into subsets that each represent a single candidate event,

with each camera contributing at most one contour to a particular candidate event. The group of

contours belonging to each candidate event can then be collectively classified as a touch, a hover,

or no event.

These camera contours arise from IR light that is reflected off of a user’s hand or fingers and trans-

mitted through the touch-sensitive surface. Compared to traditional multi-view computer vision

tasks, these contours provide relative few features—largely related to contour shape, contour ge-

ometry, and monochrome intensity. Due to the relationship between camera positions, IR light

positions, and the touch-sensitive surface, contours corresponding to a particular touch event can

have drastically different geometry and appearance across cameras, which can prevent successful

feature matching. Moreover, camera imagery of actual touches is often highly similar to imagery

of hovers.

Instead, we utilize the correspondence information in the lookup table to convert camera contours

into alternative representations that allow for more direct processing. These representations appeal

to the fundamental difference between touches and hovers: touches exist on the surface while

66



hovers exist off of it. The information obtained throughout the system preprocessing phase—and

encoded in the lookup table—that relates the cameras, projectors, and the surface can be used to

differentiate between touch and hover events. Furthermore, the lookup table also stores information

that can be used to localize detected touches: Figure 3.6 shows the conversion of camera contours

to corresponding 3D contours on the graphics mesh G.

Figure 3.6: The conversion of camera contours (first row) to their corresponding positions on the
graphical mesh G (second row), performed via the lookup table. In this visualization, the red,
green, and blue contours from the three cameras are combined in RGB space on top of G—that is,
white pixels indicate the overlap of the red, green, and blue contours.

We present two specific algorithms for touch detection, chronologically following our own histori-

cal development. The first, called projection space touch sensing, operates within the coordinate
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spaces of the projectors that ultimately display virtual imagery on the touch-sensitive surface. The

second, called plane sweep touch sensing, instead more directly considers the three-dimensional

relationships between the cameras and the surface through the construction of several parallel

planes at the location of a potential touch. Where clear, we abbreviate these two algorithms as

simply “projection space” and “plane sweep,” respectively. In general, the two methods involve

merging the camera imagery into one or more unified coordinate spaces using the correspondence

information from the lookup table and determining how much overlap exists among the contours

from each camera in these spaces; high amounts of overlap indicate touches, while low amounts

indicate hovers. In the respective sections, we provide motivations for and detailed descriptions of

these two touch sensing algorithms, explaining the methods by which they group camera contours

into candidate events; classify candidate events as touches, hovers, or no event; and localize de-

tected touches in the three-dimensional coordinates spaces of the touch mesh S and the graphics

mesh G. Finally, we present a brief summary comparing the two approaches.

Suppose that C cameras capture images of an actual touch or hover event (i.e. not noise or erroneous

contours), but it is unknown whether they correspond specifically to a touch or to a hover. Let E

denote this event, and let the contour of camera Ci corresponding to this event be denoted ECi .

Each such contour comprises the pixels {xCi
1 ,x

Ci
2 , . . . ,x

Ci
n }. A summary is shown in Figure 3.7.

Throughout the descriptions of the touch sensing algorithms, we will refer to the classification of

this hypothetical event E. Initially, the discussions will be restricted to a single touch or hover

event such that exactly one contour observed by each camera is already known to correspond to E.

Once this baseline detection strategy is established for each algorithm, we will then describe how

multiple touches and hovers can be detected—i.e. how to group the camera contours into distinct

events for individual classification.
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Camera C1 {xC1
1 ,xC1

2 , . . .}

Camera C2 {xC2
1 ,xC2

2 , . . .}

...

Camera CC {xCC
1 ,xCC

2 , . . .}

Event E input Camera contours ECi Camera pixels

Figure 3.7: A potential touch or hover event E, comprising C camera images that each contain an
associated contour ECi with pixels {xCi

1 ,x
Ci
2 , . . . , }.

3.2.2.1 Projection Space Touch Detection

In the projection space touch/hover classification algorithm, the determination of whether cam-

era imagery contains a touch or hover is performed by processing contours in PRO2, the coordinate

space of the projectors. There are a number of reasons for operating within projection space. The

projectors are responsible for displaying virtual content on the touch-sensitive surface, and certain

types of graphical responses—such as providing visual feedback of a touch to the user—occur
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entirely within projection space. Similarly, the projectors serve as an intermediary between the

cameras and the surface, as it is through triangulated projected features that the preprocessing

phase establishes links between camera pixels and three-dimensional coordinates on the surface;

as a result, information relating camera pixels to their corresponding projector pixels is readily

available via the lookup table. In addition, contour computations in two-dimensional space can be

performed efficiently, satisfying the design goal of rapid touch detection and response.

Via the lookup table, camera contours can be converted into corresponding camera-to-projector

contours (or simply projector contours). Conceptually, a camera-to-projector contour represents

the same “information” regarding a touch or hover in projector space that the camera contour

represents in camera space: if the projector were an imaging sensor instead of a display device,

it would have imaged the event at the location of this projector contour. Furthermore, we can

develop intuition that suggests that these camera-to-projector contours should demonstrate a high

degree of consistency for touches and a low degree of consistency for hovers. Consider a simple

two-dimensional world consisting of a planar touch-sensitive surface, a camera, and a projector

(Figure 3.8). A point that contacts the surface is imaged by the camera as a single pixel. Using

a lookup table created in this simplified environment, this camera pixel can be converted to a

corresponding projector pixel, shown exaggerated in Figure 3.8. Note that the camera pixel can

be back-projected to a ray: any point on that ray is imaged at the same camera pixel whether it

contacts the surface or not. Regardless of the point’s position on that ray—and whether it represents

a touch or a hover—because it is imaged at the same camera pixel, it will be converted to the same

projector pixel by the lookup table.

Rather than interpreting this result in terms of the camera pixel, we can instead consider the inter-

section of the back-projected ray and the surface, as it is this intersection point that is converted

to projector space. Now, let us add a second camera to this simplified world. As the event object

moves closer to the surface, eventually contacting it, the back-projected ray intersections converge.
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Consequently, the camera-to-projector conversions will converge (Figure 3.9). These same con-

cepts apply in 3D space.

surface

camera projector

touch

2D World Camera-to-Projector Image

surface

camera projector

hover

2D World Camera-to-Projector Image

Figure 3.8: The camera-to-projector conversions of a touch and a hover in a simplified 2D world.
A hover existing along the same back-projected ray as the touch is imaged by the camera at the
same pixel, and so the camera-to-projector image is equivalent.

Figure 3.10 illustrates the process of converting camera imagery of a touch to projector space con-

tours and combining the contours so that convergence can be analyzed. The contours from the

three cameras are visualized as red, green, and blue, respectively; in the fourth row of Figure 3.10,

these colored camera contours are shown combined in projector space, where white pixels indicate

71



overlap among all three contours. Likewise, the convergence of camera-to-projector contours for

a touch and for a hover are compared in Figure 3.11. In projector space, the difference in conver-

gence is prominent: touches exhibit much greater overlap than hovers. However, this distinction is

not readily apparent in the raw camera imagery.

surface

camera 1 camera 2 projector

hover

2D World Camera-to-Projector Image

surface

camera 1 camera 2 projector

touch

2D World Camera-to-Projector Image

Figure 3.9: Multiple camera-to-projector conversions in a simplified 2D world. As the hover
comes closer to the surface, the intersection points of the back-projected camera pixels to rays and
the surface converge, so the camera-to-projector conversions converge.
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Camera 1 Camera 2 Camera 3

Input images

Camera contours

Projector contours

Convergence

Figure 3.10: Touch convergence in PRO2. First, camera input images of a touch (first row) are
processed to find camera contours (second row). Via the lookup table, the camera contours are
converted to projector contours (third row). For touches, projector contours show a high degree of
overlap (fourth row).
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Touch

Hover

Camera images
Projector

convergence

Figure 3.11: Convergence of camera-to-projector contours of a touch (first row) and a hover (sec-
ond row). Touches exhibit much greater overlap than hovers in projector space.

3.2.2.1.1 Algorithm

Suppose that C cameras capture images of an actual touch or hover event (i.e. not noise or erroneous

contours), but it is unknown whether they correspond to a touch or to a hover. Let E denote this

event, and let ECi = {xCi
1 ,x

Ci
2 , . . . ,x

Ci
n } denote the pixels in the camera contour of camera Ci,

where 1 ≤ i ≤ C (Figure 3.7). Via the lookup table, each camera pixel xCi
j can be converted to

a 3D point XTCH3
Ci,j

on the touch surface S; let XCi = {XTCH3
Ci,1

,XTCH3
Ci,2

, . . . ,XTCH3
Ci,n
} be the set of

3D points on S from camera Ci’s contour. Furthermore, for the present discussion, we assume

that the lookup table contains perfect correspondence information. If E represents a touch, then

the actual 3D points corresponding to the user’s finger are located on the touch surface S, which

implies that the sets {XC1 , XC2 , . . . , XCC} of the 3D correspondences of observed camera pixels

comprise 3D points on the same 3D region of S. If E instead represents a hover, then these 3D

user input points are located off the surface. However, by definition, all of the camera-to-3D points

XTCH3
Ci,j

are constrained to the surface, and so the setsXCi for 1 ≤ i ≤ C will comprise 3D points on
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different (but potentially overlapping) 3D regions of S. This is exactly equivalent to the behavior

shown in Figures 3.8 and 3.9.

To simplify determining whether and to what extent the sets XCi overlap, let us instead consider

the conversions of ECi from camera space to projector space: that is, let UP
Ci

= {uP
1 ,u

P
2 , . . . ,u

P
n}

be the projector contour pixels in projector P corresponding to the camera contour pixels of cam-

era Ci. Since the camera pixel xCi
j corresponds to the 3D touch surface point XTCH3

Ci,j
, and xCi

j

corresponds to projector pixel uP
j , it follows that uP

j corresponds to XTCH3
Ci,j

. The same conclusion

about the contour overlap for touch events versus hovers applies here, but the advantage is that this

holds in a two-dimensional coordinate space (PRO2), where such computations are more direct.

In other words, if E represents a touch, the sets {UP
C1
, UP

C2
, . . . , UP

CC
} will comprise the same 2D

regions in the coordinate space of projector P, whereas ifE represents a hover, these sets will com-

prise different (but potentially overlapping) 2D regions. This holds for the entire set of projectors

{P1, P2, . . . , PP}.

Compared to the analysis of the 3D regions XCi , this is a much simpler operation that can be

performed directly on the pixels of images. To compute the amount of overlap, we create the

projector response mask RP with the same dimensions as the projector P, where RP
u,v is set to be

the number of camera-to-projector contours containing pixel (u, v)P . More formally,

RP
u,v =

C∑
i=1

 1 if (u, v)P ∈ UP
Ci

0 if (u, v)P 6∈ UP
Ci

(3.3)

If camera Ci contains some pixel (x, y)Ci that corresponds to projector P pixel (u, v)P , so that

(u, v)P ∈ UP
Ci

, we say that camera Ci contributes (u, v)P . Thus, informally, the projector response

mask RP encodes the number of cameras that contributed each projector pixel through its camera-

to-projector contour. An example is shown in Figure 3.12.
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Based on this formulation, RP
u,v ≥ 1 for every projector pixel for which at least one camera-

to-projector contour contains the pixel (u, v)P , and RP
u,v = 0 if no camera-to-projector contour

contains this pixel. Thus, we can represent the aforementioned conclusion regarding touch versus

hover imagery as the following: E contains a touch if RP
u,v 6= 0 =⇒ RP

u,v = C for all pixels

(u, v)P . This means that all camera-to-projector contours are identical, which implies that the

corresponding 3D points on the touch surface S exist on the same 3D region of S. If this statement

does not hold—that is, ∃(u, v)P | (RP
u,v ≥ 1 ∧ RP

u,v < C)—then these 3D points occupy distinct

(but potentially overlapping) regions of S and thus represent a hover.

1

1

1

(a)

1 1

1

2

2 2

3

(b)

1 1

1

2

2 2

3

(c)

Figure 3.12: Example projector response masks, consisting of potentially overlapping camera-to-
projector contours. In each example, the number of cameras contributing to each contour is shown.
(a) The three camera-to-projector contours show no overlap, suggesting a hover. (b) The contours
show some degree of overlap. (c) The contours show a high degree of overlap, suggesting a touch.

In practice, we must loosen this requirement. First, due to the relationships between the cameras,

a projector P, and the touch-sensitive surface, it may be the case that not all C cameras have a

correspondence at pixel (u, v)P . Instead, we consider the number of cameras that are known to

have correspondences at (u, v)P , denoted N
(
(u, v)P

)
, where N

(
(u, v)P

)
≤ C. This value can be

computed directly from the lookup table, which encodes missing correspondences as null entries.

Now, we state that E contains a touch if RP
u,v 6= 0 =⇒ RP

u,v = N
(
(u, v)P

)
. Informally, this

indicates that all possible cameras contributed pixel (u, v)P .
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Furthermore, we cannot assume that the lookup tables contain perfect correspondences: in practice,

the camera-to-projector contours of an actual touch may exhibit a small amount of inconsistency,

being composed of several close overlapping regions instead of a single consistent one, due to inac-

curacies in calibration, lookup table construction, or infrared imagery segmentation. However, we

can still expect camera-to-projector contours from hovers to show a higher degree of dissimilarity.

Instead of asserting strict equality among the contours, we employ a weighted scoring scheme that

considers how they overlap. If a large number of cameras—but not all—contributed a large number

of projector response mask pixels—but not all—this is still evidence of a touch event. However,

if only one or two cameras out of a possible four contributed each projector pixel, this suggests

a hover. Thus, we consider the ratio of projector response mask pixels contributed by i cameras

to the number of pixels contributed by at least one camera (i.e. the area of the projector response

mask contour in pixels).

More formally, we create a weight vector w = {w1, w2, . . . , wC}, where weight wi applies to

regions of the projector response mask RP for which i cameras contained a contour pixel with a

correspondence in projector P. Let A(RP) refer to the number of nonzero pixels in RP , and let

A(RP , i) be the number of pixels in the response mask equal to i, meaning i cameras contributed.

Finally, let N(RP) ⊆ {1, 2, . . . , C} be the set of nonzero values in the response mask—that is,

i ∈ N(RP) =⇒ ∃(u, v)P | RP
u,v = i. Thus, the maximum number of cameras that could

contribute to the projector response mask is given by maxN(RP). The multi-camera agreement

score S(RP) is defined as

S(RP) =



0 N(RP) = ∅

N(RP )∑
i

wi
A(RP , i)

A(RP)

N(RP )∑
i

wi

N(RP) 6= ∅
(3.4)
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Informally, this represents:

• the weighted sum of the ratio between the number of pixels contributed by i cameras (repre-

sented by A(RP , i)) to the number of pixels contributed by at least one camera (A(RP)),

• divided by the sum of the weights.

This provides a confidence score in the range [0, 1] for a projector response mask. In the event

that all C camera-to-projector contours are identical, then N(RP) = {C}, A(RP , C) = A(RP), and

the multi-camera agreement is equal to 1. If no cameras contributed any pixels to the projector

response mask, the score is set to 0. As the size of regions for which the projector response mask

is less than maxN(RP) increases, the multi-camera agreement decreases as dictated by the weight

values. For example, if w1 < w2 < · · · < wC , then pixels for which the projector response mask is

equal to 2 contribute less to the score than those for which the projector response mask is equal to 3.

This places a penalty on regions for which only a small number of cameras contributed projector

response mask pixels and gives higher weight to regions with a larger number of contributing

cameras. Thus, higher scores provide higher confidence of an observation of a touch, while lower

scores suggest a hover.

3.2.2.1.2 Touch Localization

To localize a detected touch, we utilize lookup table correspondences relating projector pixels to

3D points on the touch surface S and the graphics mesh G. If desired, all projector response mask

pixels—each of which arose from an observed camera pixel, thus providing information about the

touch event—can be converted to their corresponding points on S and G. In many cases, it suffices

to assign a single 3D point to the touch. To do so, we can compute the centroid of the region in P to

which the maximum number of cameras contributed (maxN(RP)) and find its corresponding 3D
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points via the lookup table. This region is chosen since it exhibits the highest degree of consistency

among the camera observations: more cameras observed evidence of a touch in this region than in

the others.

3.2.2.1.3 Multi-Touch Detection

The above discussion assumes that each camera contains up to exactly one contour already known

to belong to the candidate event E. A useful property of this formulation is that it directly lends

itself to the grouping of camera contours into distinct sets that each represent a separate input

event—and therefore to the scoring and detection of multiple touches. Rather than scoring the

entire projector response mask RP , we begin by segmenting it into distinct contours. Suppose

RP can be segmented into the contours {RP
1 ,R

P
2 , . . . ,R

P
r } such that each contour has only nonzero

values (i.e. at least one camera contributed each projector pixel) and moreover has at least one value

greater than 1 (i.e. at least one pixel was contributed by two or more cameras). Each such projector

response mask contour arises from camera contours that exhibit some degree of convergence within

projector space, thus constituting a grouping of camera contours into a candidate event.

To detect multiple touches, we simply replace the multi-camera agreement scoring function and

other related functions to operate on a single projector response mask contour RP
j . Let A(RP

j )

be the number of nonzero pixels in RP
j , A(RP

j , i) be the number of pixels i cameras contributed,

and N(RP
j ) ⊆ {1, . . . , C} be the set of nonzero values in RP

j . We can compute the score of each

segmented contour exactly as before:

S(RP
j ) =

N(RPj )∑
i

wi

A(RP
j , i)

A(RP
j )

N(RPj )∑
i

wi

∀j (3.5)
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Since each projector response mask contour RP
j has only nonzero values, we need not handle the

case when N(RP
j ) = ∅.

Similarly, each contour in the projector response mask can be individually localized with corre-

sponding 3D points on the touch surface S and graphics mesh G.

3.2.2.1.4 Multiple Projectors

There is one final consideration: handling the response masks of multiple projectors. Specifically,

we wish to combine the confidence scores and localized detections from the response masks of

multiple projectors that correspond to the same input event and to separate detections computed

from the response masks of multiple projectors that represent distinct input events. To achieve this,

we create a disjoint set data structure containing an initial set for each detection arising from the re-

sponse masks of all projectors. Next, we compute pairwise 3D distances between each detection’s

corresponding position on the touch surface S. All pairs of detections whose distance is below

a threshold are retained, as they are assumed to belong to the same input event. Subsequently,

we take the unions of the sets corresponding to these retained pairs, producing disjoint groups of

detections with similar 3D positions across all projectors. For groups that aggregate detections

of the same input event across multiple projectors, the final assigned confidence score and 3D lo-

calizations on S and the graphics mesh G are averages across the scores and localizations of the

constituent projectors, respectively.

3.2.2.2 Plane Sweep Touch Detection

In spite of the motivations for performing touch/hover classification directly in projection space,

the aforementioned algorithm does have a few shortcomings. Its effectiveness is impacted by the
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configuration of projectors used in the system—in particular, the number of projectors and their

positions relative to the surface and to the cameras. In terms of performance considerations, as

the number of projectors P in the system increases, the complexity of the algorithm increases.

Contours within each camera are converted to their corresponding projector contours for each pro-

jector; following contour scoring, the multi-camera agreement scores across all projectors must be

aggregated to produce the final set of detections. Performing the camera-to-projector conversions

requires the computation, storage, and indexing of camera-to-projector lookup table correspon-

dences, each of which incurs additional costs for additional projectors.

Furthermore, though the projection space algorithm supports rapid processing by limiting analy-

sis and computation to two-dimensional coordinate spaces, it loses some three-dimensional context

that may improve classification results. For example, it does not directly utilize the known geomet-

ric relationships among the cameras and projectors, instead collapsing observed touch information

into the two-dimensional coordinate spaces of the projectors. As a result, while the projection

space algorithm can classify touches and hovers through the multi-camera agreement confidence

score, it is unable to estimate the distance of a hover relative to the surface. Moreover, the interpre-

tation of a given confidence score—whether it represents a touch or a hover—inherently depends

on its location in projector coordinate space.

First, let us closely consider the manner in which the physical configuration of the projectors

can impact the projection space touch sensing method. The position and orientation of a given

projector relative to the surface greatly affects the shape, size, and position of camera-to-projector

contours. In fact, even given a constant projector position, different configurations of cameras

can produce the same camera-to-projector contours for different hover events. Figure 3.13 shows

two configurations of cameras and hovers that yield the same camera-to-projector imagery in a

simplified two-dimensional environment on a touch surface (the black line). Cameras a1 and a2

image hover a at the black dots in the graph, which can be forward-projected onto the projector’s
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image plane to produce the camera-to-projector images. However, cameras b1 and b2 image a

different hover b—farther from the surface—at the same locations. As such, between the two

configurations, there is ambiguity in the camera-to-projector imagery, which alone is insufficient

to distinguish between these two hovers. As the projection space method does not consider the

positions of the cameras, it would therefore produce the same confidence scores for these two

scenarios, despite the fact that hover b is located much farther from the surface than hover a.

While the example in Figure 3.13 considers a two-dimensional environment, this same ambiguity

is present in three-dimensional ones: for instance, if a sufficiently large object hovers at position

b and a smaller object hovers at position a, they can produce the same imagery in camera pairs

(a1, a2) and (b1, b2), thus producing the same camera-to-projector imagery.

projector

surface

cameras

hovers

a

a1 a2

b

b1 b2

Figure 3.13: Ambiguity in projector space touch/hover classification. Two distinct hover events
(a and b) produce the same camera-to-projector imagery for two configurations of cameras (pairs
(a1, a2) and (b1, b2), respectively).
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Simulated Touch Plane Sweep

Translation 0.1 cm, area 4.00

Translation 1.1 cm, area 5.94

Translation 3.1 cm, area 10.32

Figure 3.14: Plane sweep for a simulated touch. Each row shows a plane located at a progressively
larger offset from the surface (left) and the plane projections of the camera contours (right). The
plane projections of the camera contours have the smallest union area at a plane located close to
the surface (first row), suggesting a touch.
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Simulated Hover Plane Sweep

Translation 0.1 cm, area 3.45

Translation 1.1 cm, area 2.84

Translation 3.1 cm, area 5.96

Figure 3.15: Plane sweep for a simulated hover. Each row shows a plane located at a progressively
larger offset from the surface (left) and the plane projections of the camera contours (right). The
plane projections of the camera contours have the smallest union area at a plane located away from
the surface (second row), suggesting a hover.
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3.2.2.2.1 Algorithm

To address these limitations, we propose a plane sweep touch/hover classification algorithm

based on the construction of a series of parallel planes oriented within the calibration coordinate

space TCH3. Like the projection space classification algorithm, it involves overlap computations

in two-dimensional coordinate spaces, which can be performed efficiently. However, the plane

sweep algorithm is advantageous in that it more directly utilizes 3D information about relative

camera and surface placement, which can improve the classification of touches and hovers. More-

over, it is completely independent of both the number and placement of projectors, instead relying

exclusively on the correspondences between camera pixels and 3D touch mesh coordinates en-

coded in the lookup table. As a result, increasing the number of projectors does not impact the

performance of this algorithm. Data collected across this series of planes is used to distinguish

touches from hovers, and as an added benefit, the algorithm can estimate the position of a hover

relative to the touch-sensitive surface.

At a high level, the algorithm computes 3D rays corresponding to the camera pixels of a potential

touch or hover event and determines where the rays converge in space; if convergence is sufficiently

close to the surface, the event is classified as a touch, while convergence sufficiently far from the

surface results in a hover classification. Convergence computations are performed directly in the

set of planes in TCH3. An initial plane is oriented and positioned starting near the touch surface

S, located based on the region of the surface corresponding to the camera pixels of the observed

touch or hover event. Several parallel planes are subsequently constructed, each progressively

farther from the surface. The 3D camera pixel rays intersect each of these planes, producing a

series of 2D contours. For each given plane, the area of the union of the ray intersections across

all cameras reflects a degree of similarity. As the planes approach the actual 3D intersections of

the camera rays—that is, the actual location of the touch or hover event in 3D space—these planar
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projections will converge, and the union area decreases. Therefore, if the plane corresponding to

the minimum union area is sufficiently close to the touch surface, it signifies a touch event; if it is

instead located sufficiently far from the surface, it signifies a hover. Figures 3.14 and 3.15 show

simulated plane sweep results for a touch and hover, respectively.

The distance between the initial plane, located corresponding to the observed camera pixels on the

touch surface, and the plane with the minimum projection union area is taken as the confidence

score for the plane sweep algorithm. We refer to this plane as the minimum union area plane, and

in general we state that the plane sweep algorithm assigns this plane (along with its distance) to a

potential touch or hover event.

As before, let E denote a potential touch or hover event to be classified, and let the pixels in the

camera contour of camera Ci be denoted ECi = {xCi
1 ,x

Ci
2 , . . . ,x

Ci
n } (Figure 3.7). First, we back-

project each camera contour pixel to a 3D ray. For a given camera pixel, the CAM2-to-TCH3

correspondences in the lookup table contain the intersection point of the back-projection of that

pixel to a ray and the touch surface S: that is, each pixel xCi in camera Ci intersects the touch

surface S at some point (X, Y, Z)S . Let ICi = {(X1, Y1, Z1)
S, (X2, Y2, Z2)

S, . . . , (Xn, Yn, Zn)S}

be the intersection points of these rays and S. Thus, the back-projection of camera pixel xCi
j to

a 3D ray can be recovered via the lookup table by constructing a ray whose initial point is the

position of Ci and that passes through (Xj, Yj, Zj)
S . Let RCi refer to these 3D rays for the contour

pixels of camera Ci. Moreover, let I = {IC1 , IC2 , . . . , ICC} be the collective set of intersection

points of the rays for all cameras and the touch surface S, and let R = {RC1 , RC2 , . . . , RCC} be

the corresponding 3D rays. Conceptually, the true location of the event E is the location where the

rays R converge in 3D space.

Next, we construct the initial plane P0 in the series of planes {P0, P1, . . . , Pk}. The set I of

the CAM2-to-TCH3 correspondences constitutes a reasonable starting point to perform the plane
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sweep: if E is a touch event, it occurs on the touch surface S—exactly on the points in I . If E is

instead a hover, it occurs at some location off the touch surface S, translated farther along the set

of rays R. Thus, we begin with a best-fit plane to the points in I:

• The origin P̄0 of this initial plane P0 is given by the centroid of the points in I .

• Let the matrix Is be the intersection points with the mean P̄0 subtracted such that they are

centered at the origin. Let UΣV T be the singular value decomposition of Is. The eigenvec-

tor associated with the minimum singular value—i.e. the third column of U—provides the

normal for plane P0, which we denote N .

• As we wish to construct parallel planes moving away from the surface, the normal should be

oriented along the same general direction as the back-projected rays; if the chosen eigenvec-

tor points in the opposite direction—i.e. toward the cameras—we reverse it.

• The initial plane P0 is translated along its normal N until all intersection points in I are

located “below” it with respect to the camera.

• Finally, we compute an orthogonal basis for the plane. First, we compute the cross product

of the normal vector and any other vector not collinear to it, forming one axis d1. The second

axis d2 is formed by computing the cross product of the normal vector and the first axis d1.

The subsequent planes {P1, . . . , Pk} are then formed by translating the initial plane P0 along its

normal N by prescribed amounts. Each plane Pj has an associated origin P̄j , also computed by

translating the initial plane origin P̄0 along the normal N by these amounts.

The mathematical plane sweep consists of the computation of the intersections of the camera rays

R and each of the planes in {P0, P1, . . . , Pk}. The plane Pj—translated some distance tj from the

initial plane P0 along the normal vectorN—for which the planar projection points have the greatest
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convergence provides an estimate for the location of the event E. For a measure of convergence,

we consider the area of the union of the planar projection points: the union area will be minimized

where they show the greatest convergence.

To compute the planar intersections, we rely on the standard vector notations of planes and lines.

A plane containing some point P and having normal vector N consists of all points x such that

(x− P ) ·N = 0

where · indicates the dot product. Likewise, a line with direction R containing some point l can be

parameterized as

x = sR + l

with the real parameter s. The intersection of this line and plane is thus given by

(sR + l − P ) ·N = 0

which can be solved for the parameter s as follows:

(sR ·N) + ((l − P ) ·N) = 0

(sR ·N) = (P − l) ·N

s =
(P − l) ·N
R ·N

For plane Pj and a ray from camera C, we take the plane origin P̄j as the point on the plane and

the position of camera C as the point on the line (with direction R). Thus, the intersection of this
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line with the plane Pj is given by the set of points

x = sR + C (3.6)

where the parameter s is given by

s =
(P̄j −C) ·N

R ·N
(3.7)

and C refers to the position of camera C.

Currently, these points x exist in three-dimensional space. To facilitate area computations, we

project them down to two-dimensional coordinates (px, py), given by the scalar projections along

the two orthonormal plane axes d1 and d2: px

py

 =

 d1 · (x− P̄j)

d2 · (x− P̄j)

 (3.8)

where the plane origin P̄j is subtracted so that it projects down to the origin (0, 0) of the two-

dimensional plane.

Using these two-dimensional planar projections, we can now investigate union areas. Note that a

particular camera’s planar projection area monotonically increases across each subsequent plane as

we traverse along the normal vector. Conceptually, this is because the three-dimensional volume

of the rays corresponding to a set of camera pixels contains more uncertainty as the distance from

the camera increases, as shown in Figure 3.16. For a set of cameras with rays exhibiting no

overlap in the planar projections—which in practice can result from hovers far from the surface—

this means that the the overall disjoint union area among the planar projections monotonically

increases. In other words, the plane with the minimum disjoint union area will be the one closest

to the surface, incorrectly indicating a touch event. Instead, we consider the area of the convex
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hulls of the planar projections, which exhibit the desired behavior: regardless of the degree to

which the planar projections across a set of cameras overlap, the convex hull union area decreases

as we approach the true location of the event E and increases as we translate away from it in either

direction. This concept is illustrated in Figure 3.17.

Camera

Figure 3.16: The uncertainty about the size of an object imaged by a camera increases with distance
from the camera. As a result, the planar projection areas corresponding to this object increase as
the distance from the plane to the camera increases.

3.2.2.2.2 Touch Localization

In the projection space algorithm, localizing a touch simply involves lookup table retrievals—

namely the correspondence between a projector pixel and a 3D point on the touch surface S. How-

ever, for the plane sweep algorithm, the information used to classify touches and hovers instead
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exists on a separately constructed plane in the calibration space TCH3, which is not encoded in

the lookup table. We compute a ray located at the initial plane origin and oriented in the opposite

direction as the plane sweep normal (i.e. towards S), and the location where this ray intersects S

is chosen as the localization point.

Moreover, the graphics mesh G exists in the graphics space GFX3, which is separate from TCH3.

Using the alignment between TCH3 and GFX3 computed during step PP7 of the lookup table

preprocessing phase, the initial plane can be transformed to an equivalent position relative to G.

We repeat the above process, computing the intersection point of a ray from the transformed plane’s

origin oriented in the reverse normal direction and G to obtain the localization.

Camera 1 Camera 2

13

28

25

66

(a) Disjoint union areas.

Camera 1 Camera 2

28

30

25

66

(b) Convex hull areas.

Figure 3.17: Planar projection area computations for a simulated event (located on the starred
plane). (a) The disjoint union area is the smallest for the closest plane, which would erroneously
suggest the event occurred close to the surface. (b) The convex hull area, which includes the green
regions, is minimized at the plane corresponding to the event, which is the desired behavior.
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3.2.2.2.3 Multi-Touch Detection

Next, we address the challenge of extending this approach to multiple touch detection. As before,

the first step requires the grouping of contours across each camera into candidate events so that

each candidate can be separately processed. We begin by creating a disjoint set data structure

containing all contours observed by all cameras. For each contour, we compute the centroid and

store its corresponding 3D position on the touch mesh S—obtained from the lookup table—into

a disjoint set. Next, we compute pairwise distances between these positions, taking the unions of

sets whose distances are below a threshold. Each disjoint set, comprising up to one contour from

each camera, thus establishes a candidate event that can be processed using the aforementioned

plane sweep formulation.

3.2.2.3 Comparison of Approaches

Here, we present a summary of the differences between the two touch/hover classification meth-

ods. Both the projection space and plane sweep algorithms involve area computations in two-

dimensional space: in the space of the projectors and in the space of computed 2D planes, re-

spectively. The source of 3D context used for touch detection is indirect for the projection space

algorithm, being a function of how a touch or hover event in 3D space is observed as camera pixels

and subsequently converted to projection space. Instead, the plane sweep algorithm more directly

utilizes these 3D relationships, operating over 3D rays corresponding to these camera pixels. As a

result, the plane sweep algorithm is able to estimate the distance between hovers and the surface.

In some ways, the projection space algorithm can be interpreted as a limited and specialized case of

the plane sweep algorithm, for which only a small number of predefined planes is considered—one

per projector. Additionally, rather than comparing contour areas across planes to better estimate
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the actual position of the observed event, the projection space algorithm classifies the event as a

touch or hover based on these areas within only a single plane for each projector.

Another notable advantage of the plane sweep algorithm over the projection space algorithm is that

it is not dependent on the number or positions of projectors. In addition to facilitating improved

detection and localization results, as will be discussed in Chapter 6, this also minimizes the number

of lookup table correspondences that is required to relate touches to their 3D positions on the touch

mesh in the calibration space TCH3 and on the graphics mesh in the graphics space GFX3; as

a result, the plane sweep algorithm localizes and classifies touches significantly faster than the

projection space algorithm. Specifically, the projection space algorithm uses sets of camera-to-

projector, projector-to-TCH3, and projector-to-GFX3 correspondences, which increase in number

as the number of projectors increases. Given C cameras with resolution wC × hC and P projectors

with resolution wP × hP , this amounts to

CwChC + 2PwPhP

lookup table entries.1 In practice, the resolution of the projectors tends to be significantly higher

than the resolution of the cameras, so the dependency on projector-to-TCH3 and projector-to-

GFX3 correspondences is expensive. In contrast, the plane sweep algorithm requires only the

camera-to-TCH3 and camera-to-GFX3 relationships, totaling only

2CwChC

correspondences.

1This discussion follows the use of sub-tables, described in more detail in Chapter 4: instead of a single lookup
table encoding all correspondences, each sub-table stores correspondences between a specific subset, such as between
pixels in a particular camera and pixels in a particular projector. The number of indices in each sub-table is therefore
equal to the dimensions of the camera or projector images. This representation provides a more straightforward
implementation compared to the theoretical singular form.
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Additionally, there are correspondences related to semantic content responses, which will be de-

scribed in Section 3.3. For now, we simply represent these as some set of R correspondences

from pixels to semantic regions, where the projection space algorithm requires such correspon-

dences from projector space and the plane sweep requires them only from camera space. Thus, the

projection space algorithm requires

CwChC + (2 +R)PwPhP

correspondences, while the plane sweep requires only

(2 +R)CwChC

correspondences.

These comparisons are summarized in Table 3.6.

Table 3.6: Comparison between projection space and plane sweep touch detection algorithms.

Projection Space Plane Sweep

Computation coordinate space 2D (projection space) 2D (computed planes)

Source of 3D context Indirect Direct

Dependency on projectors Yes No

Hover distance estimation No Yes

Lookup tables

Camera-to-projector
Projector-to-TCH3

Projector-to-GFX3

Projector-to-semantic-behavior

Camera-to-TCH3

Camera-to-GFX3

Camera-to-semantic-behavior

Lookup table correspondences CwChC + (2 +R)PwPhP (2 +R)CwChC
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3.2.2.4 Touch Labeling

The projection space and plane sweep touch sensing algorithms address the problems of deter-

mining if and where a touch has occurred. To support dynamic, interactive touch experiences, we

must also consider the problem of labeling touches, so that multiple touches that start and end

at different time steps maintain specific information over time. Such information is important to

the semantic content engine, which makes decisions about updates to the virtual content based on

touch input; these updates may feature time-dependent components, such as updating an animation

in response to continuous touch input beginning in specific regions.

The two touch sensing algorithms make no guarantee as to the order in which detected touches

are returned. In practice, the ordering depends internally on the ordering of camera or projector

contours during the segmentation process. Instead, we apply a final common runtime method to

link the touches detected at the current time step t to those detected in the previous time step

t−1. For simplicity, we will refer to touches detected at time step t as current touches and touches

detected at the preceding time step t−1 as previous touches. We distinguish between the index of a

touch as returned by one of the detection algorithms and the label of a touch, which is a persistent,

unique identifier; the focus of the present discussion is the assignment of these labels. For each time

step, as we process touches, we maintain a list called assigned, where assigned(l) = true

once label l has been assigned to a current touch. The label l may only be assigned to a single

touch at each time step.

First, we consider the case when one or more touches are detected on the current time step t. If

no touches were detected on the previous time step t − 1, then no label matching across the two

time steps is required, and the current labels can be taken directly from the indices produced by

the detection algorithms. Otherwise, we compute the pairwise distances between the localizations

of the current and previous touches on the touch mesh S, retaining pairs with distances below a
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threshold. If current touch i is sufficiently close to previous touch j and j’s label has not been

assigned, we perform the following operations to merge them:

• Flag current touch i as being an existing touch—i.e. not a new touch beginning on time step

t.

• Previous touch j was tracked for some number of frames x: set current touch i’s frame

tracked counter to x+ 1.

• Likewise, previous touch j had information associated with semantic behavior: update cur-

rent touch i’s initial configuration to match.

• Finally, set the label of touch i to be the label of touch j, and update assigned to store

true for this label.

If no touches are detected on the current time step t, but touches were detected on the previous time

step t−1, we place the previous touches in a special lost state. Touches in this state are maintained

for a small number of frames; if a similar touch appears in a similar position within this frame

window, the touch is reverted to a normal active state, and its previous configuration information

(label, number of tracked frames, semantic behavior information, etc.) is retained for subsequent

updates. All lost previous touches are placed in the set of current touches, provided they are still

within this window of frames, and they are removed once the window expires. Lost touches are

flagged accordingly so that they do not trigger responses.

At this point, current touches that match previous touches have been assigned matching labels.

However, current touches with no previous matches—i.e. new touches—have not. For each such

touch, we assign the first unused label, found by looping through the assigned list and returning

the first label l for which assigned(l) = false.
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3.3 Responding to Touch

Once a touch has been detected and localized by the touch sensing system, the semantic content

engine is responsible for determining the appropriate semantic response, which is ultimately re-

alized by the rendering system. In the preceding discussion, we described the construction of a

relational lookup table capable of achieving touch detection and localization through the use of

encoded correspondences among coordinate spaces. The lookup table can be further augmented

with information that simplifies the process of mapping touch input to semantic output. First, we

discuss these augmentations and provide details about updates to the two touch sensing algorithms

to support them. This is followed by a description of the touch messages, which are created by the

touch sensing system and transmitted to the semantic content engine, that contain this semantic

information. Finally, we briefly cover the role of the rendering system.

3.3.1 Semantic Content Engine

The semantic content engine consists of two major components: the virtual content displayed to

users (e.g. through projected imagery and audio output) and a mechanism for assigning semantic

meaning to user touch input. In general, the virtual content consists of a three-dimensional model

representing the physical touch-sensitive surface; in earlier lookup table discussions, we referred to

this as the graphics mesh G residing in the graphics space GFX3. The touch mesh S in calibration

space TCH3 can be used as an accurate starting point for creating G. However, it is typically

a dense set of quads that is not suitable for texturing or animating that should be simplified and

retopologized first to prevent animation distortions. The graphical model has an associated set of

animations, sound effects, and other such output that can be activated in a variety of ways. Here,

we focus on enabling such interactivity through user touch input.
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For limited applications, such virtual models may not be necessary. As an example, allowing the

user to interactively paint a surface does not require a separate graphical model, and in this case

the semantic content engine is simply responsible for converting touch input to locations on the

projected output.

To increase the types of interactivity available to users, we allow for the virtual content to be

stateful, such that the selected output arising from a particular input depends on the content’s state.

For instance, a user touching a particular region might initiate an animation in one state but a sound

effect in another. As such, for the semantic content engine to determine the appropriate response

to touch input, it requires knowledge about the touch’s location on the virtual model and about the

current state. During the modeling phase, we partition the geometric faces of the graphical model

G into semantic regions to which names are assigned. Each such region can then be associated

with a variety of semantic behavior.

There are two primary forms of touch-triggered responses: discrete updates that are triggered upon

contact and continuous updates that dynamically change as a result of continuous touch input (such

as touch-and-drag operations). Discrete updates include predefined animations and sound effects,

while continuous updates involve graphical changes to either the pixels in projector space or the

actual vertices of the graphical model G. To reduce the amount of computation required by the

semantic content engine to initiate these responses, we can further augment the lookup table such

that accepted touches can be mapped either directly to semantic output or to data that facilitates the

selection of the response. Below, we describe each of these touch-triggered responses in greater

detail and present modifications to the lookup table to support this mapping. These incremental

updates to the lookup table are performed during step PP8 of the preprocessing phase, when the

relationships between the camera and projector pixels and the graphics mesh G are encoded.
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• Animations are discrete events during which vertices on the graphical modelG and/or colors

in projection space are transformed in a scripted sequence that begins at the moment of touch

input. Each semantic region defined in the space of the virtual content can be associated with

a specific animation to be played upon touch input in that region. Such animations could

range from user interface aspects, such as indicating the location of a user’s touch, to more

complicated output. For example, touch input on a physical surface representing the human

circulatory system could initiate animations representing blood flow throughout the body. In

practice, it is necessary to add a small timeout after an animation begins playing in order

to prevent it from restarting again before it has finished due to repeated touch input in that

region.

Table 3.7: Lookup table augmented with semantic regions for animations. Touches occurring at
a particular camera pixel xi are linked to the animation region index stored in Ri. If Ri = 0, no
animation is associated with the ith correspondence.

Row Cameras {Ci} Projectors {Pi} Scan Graphics Animation Region

1 {x{Ci}
1 } {u{Pi}

1 } XTCH3
1 XGFX3

1 R1

2 {x{Ci}
2 } {u{Pi}

2 } XTCH3
2 XGFX3

2 R2

...
...

...
...

...
...

n {x{Ci}
n } {u{Pi}

n } XTCH3
n XGFX3

n Rn

The information necessary to map touch in a region to the identity of a specific animation to

trigger can be directly stored in the lookup table. Each semantic animation region is com-

posed of an index number and a set of 3D coordinates on the graphical model G. In step

PP8 of the preprocessing phase, the lookup table is densely supplemented with correspon-

dences from camera and projector pixels to points on G by back-projecting all such pixels

to 3D rays and finding their points of intersection on G. A camera or projector pixel back-

projected to a 3D ray that intersects a particular animation region can thus be linked to it
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in the lookup table through the same process. For example, let Ri be the animation region

index of the coordinates in the ith correspondence on the lookup table, where Ri = 0 if the

given correspondence is not related to any such animation region. An example of a lookup

table augmented to support animation regions is shown in Table 3.7.

• Sound effects are discrete events during which prerecorded sound files are initiated at the

moment of touch input. They are implemented exactly as animations, with the graphical

model G partitioned into predetermined sound regions. However, the semantic regions de-

fined for sound effects need not be the same as those defined for animations. As a given 3D

coordinate on the virtual content could be associated with both an animation and a sound

effect, the lookup table must maintain these region assignments separately. This can be

achieved by simply extending the number of region sets: one denoted RAnim for animations

and one denoted RSound for sound effects. This can be generalized as the set of R regions

{R1,R2, . . . ,RR}, which can similarly be added directly to the lookup table such that the

ith correspondence now contains links to theseR regions. An example is shown in Table 3.8.

Table 3.8: Lookup table augmented with generic semantic region indices {R1,R2, . . . ,RR}. The
ith correspondence is linked to semantic region index Rj

i for each set of regions Rj .

Row Cameras {Ci} Projectors {Pi} Scan Graphics Semantic Regions

1 {x{Ci}
1 } {u{Pi}

1 } XTCH3
1 XGFX3

1 {R1
1,R

2
1, . . . ,R

R
1 }

2 {x{Ci}
2 } {u{Pi}

2 } XTCH3
2 XGFX3

2 {R1
2,R

2
2, . . . ,R

R
2 }

...
...

...
...

...
...

n {x{Ci}
n } {u{Pi}

n } XTCH3
n XGFX3

n {R1
n,R

2
n, . . . ,R

R
n }
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• Other discrete region-based events can be implemented similarly. Note that animations and

sound effects can be combined. For example, an interactive model of a human could verbally

identify the body part at the location of user touch via lip-synced audio output.

• Pixel-level updates are continuous responses during which color changes are made directly

within the images projected onto the touch-sensitive surface. For instance, when a user

touches the surface, he or she might receive feedback in the form of a projected white contour

surrounding his or her finger. While it is possible to achieve this effect by augmenting the

graphical model G directly—for instance, by adding a white sphere at the touch location—

it is sometimes preferable to make direct changes to projector space. Pixel-level updates

are dynamic in response to continued touch: as the user continues to touch the surface,

the feedback contour is updated. The lookup table as previously defined directly facilitates

pixel-level updates, allowing for instant conversions of touch locations in camera space to

their corresponding positions in projector space.

Such updates typically require transmission of the entire projector contour, which represents

the region of the surface being touched by the user directly in projector space. For example,

in a painting application, users essentially adjust the actual projected imagery displayed on

the surface by touch, achieved by modifying the colors of the projector contour pixels.

In the context of human patient simulation, another example of this type of touch-triggered

update is the capillary refill test (or blanch test) [84]. When pressure is applied to the skin,

blood flow is prevented at the point of contact, causing the skin to appear white. Within a few

seconds after pressure is released, blood flow returns, and the skin regains its normal color.

Similar to the painting application example, this type of change involves the modification of

colors of the entire touch contour in projector space.

• Vertex-level updates are continuous responses consisting of a transformation of a specific

set of graphical model vertices between a starting and ending configuration. In graphical
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modeling, these are commonly referred to as blendshapes. Examples include the motion of

a virtual human’s mouth or eyes as they open and close. Each blendshape has an associated

activation percentage, ranging from 0% to 100%, that controls the amount of transformation

for the entire set of affected vertices; each vertex moves linearly from its starting to ending

position based on this percentage. Internally, each blendshape exists as a separate mesh

comprising the exact same vertex ordering and edge connectivity as the graphics mesh G,

with the specific blendshape vertices located at their ending positions.

Like pixel-level updates, blendshapes are continuously updated by touch-and-drag opera-

tions. For instance, the motion of a virtual human’s mouth could be controlled directly by

touch, with the user tugging to move the lips up and down as desired. To permit greater

control, each blendshape has two associated regions: a start region and an update region.

Touches that occur in a start region initiate the corresponding blendshape, which then begins

updating in response to continuing contact in either of the start or update regions. However,

an initial touch within an update region will not initiate a blendshape. The start and update

regions are defined and stored just as the semantic regions: that is, they are included in the

set of regions {R1,R2, . . . ,RR}.

When a touch event is detected, its corresponding position on the graphics mesh G is avail-

able via the lookup table. This 3D position follows a particular 3D line in the graphics space

GFX3 as the blendshape activation percentage increases, traveling from its starting to ending

position; we will refer to this as the blendshape line. When subsequent touches in the start

or update region are detected, the vector projection of the touch’s position onto this 3D line

is computed, from which the appropriate blendshape activation percentage follows.

Thus, we wish to augment the lookup table with information permitting the computation

of blendshape lines. Each correspondence in the lookup table stores an associated point on

some face of G, denoted XGFX3 . However, the blendshapes are defined in terms of actual
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vertices of G. Thus, we add the index of the closest vertex defined on G to XGFX3 , which

we denote V̂G, to the lookup table. When touch occurs at a starting blendshape region, the

touch sensing engine retrieves the index of closest vertex of G. The line connecting the

starting and ending point of this vertex provides a reasonable approximation to this region’s

blendshape line for the user’s touch location. Table 3.9 shows the augmented lookup table.

When a touch is detected by the touch sensing system, all relevant data is packaged into a touch

message (described in Section 3.3.2) and transmitted to the semantic content engine for processing.

Given that the majority of the data is precomputed in the lookup table and transmitted directly,

the work required by the semantic content engine at runtime is minimal. The simulation may

occupy one of many different states that affect how touches are processed; for instance, touch-

triggered audio responses may be disabled in certain modes. With the range of possible responses

available, the semantic content engine simply selects the correct one based on the current mode.

As an example, for vertex-level updates, this involves selecting the appropriate blendshape and

then computing and updating its activation percentage; for sound effects, this involves triggering

the appropriate audio clip and initiating a timeout.

Table 3.9: Lookup table augmented with the closest vertex indices of the graphical mesh G. Using
these indices, the line along which a vertex travels through a blendshape can be computed.

Row Cameras {Ci} Projectors {Pi} Scan Graphics Semantic Regions

1 {x{Ci}
1 } {u{Pi}

1 } XTCH3
1 XGFX3

1 , V̂G
1 {R1

1,R
2
1, . . . ,R

R
1 }

2 {x{Ci}
2 } {u{Pi}

2 } XTCH3
2 XGFX3

2 , V̂G
2 {R1

2,R
2
2, . . . ,R

R
2 }

...
...

...
...

...
...

n {x{Ci}
n } {u{Pi}

n } XTCH3
n XGFX3

n , V̂G
n {R1

n,R
2
n, . . . ,R

R
n }
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3.3.1.1 Updates to Touch/Hover Classification Algorithms

In addition to augmenting the lookup table, we must further augment the two touch/hover clas-

sification algorithms in order to access the additional information required to achieve semantic

responses.

3.3.1.1.1 Projection Space Touch Detection

The projection space touch detection algorithm classifies touches and hovers in the coordinate

space of the projectors. During this process, camera contours of an observed touch or hover event

are converted to projector contours, and ultimately a single projector pixel is chosen to compute

correspondences (such as the 3D point on the graphics mesh G corresponding to the touch input).

To handle discrete region-based events, such as animations and sound effects, we can directly use

the region indices corresponding to this projector pixel in the lookup table. For instance, a touch

detected at projector pixel ui has an associated region index Rj
i for some set of semantic regions

Rj , as in the lookup table shown in Table 3.9. Blendshape updates are incorporated exactly as

the discrete region-based events: the projector pixel used to compute correspondences for a given

touch is further used as a lookup index to retrieve the closest vertex index on the graphics mesh G.

Finally, pixel-level updates exist in projection space and therefore are directly available via the

projector contours. That is, a pixel-level update modifies the colors of the projected imagery at the

point of contact, which is exactly represented by the projector contours.
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3.3.1.1.2 Plane Sweep Touch Detection

In contrast, the plane sweep touch detection algorithm classifies touches and hovers using a series

of planar coordinate spaces constructed at the location of a potential touch event. Consequently, the

manner in which a localized touch is mapped to semantic graphical output is more complex than for

the projection space touch detection algorithm. A touch is localized by computing the intersection

of the normal of these planes to the touch surface S. By forward-projecting this intersection point

onto each camera’s image plane, we can retrieve correspondences via the lookup table using each

camera’s forward-projected pixel as a lookup table index—for instance, to find the corresponding

region indices for discrete region-based events. It is possible that the lookup operations for each

camera’s forward-projection retrieve different region indices; in this case, the algorithm uses the

consensus among the retrieved region indices. Blendshape updates are incorporated analogously.

Finally, pixel-level updates are handled in a similar manner as the projection space algorithm, with

the camera contours of a potential touch being converted to equivalent contours in projector space

via the lookup table. However, the plane sweep algorithm differs in that this conversion is not per-

formed during the normal course of touch detection; thus, supporting pixel-level updates requires

a small amount of additional computation that is not required for touch/hover classification.

3.3.2 Touch Messages

When the touch sensing system detects a touch via either algorithm, it packages a variety of infor-

mation regarding it into a touch message that is transmitted to the semantic content engine. Each

touch message contains the information necessary for the semantic content engine to determine

the appropriate output to display to the user; information used by the detection algorithms, such

as camera pixels, is not transmitted. The exact response may depend on a variety of factors, such
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as the current state of the simulation. As the touch sensing system and semantic content engine

are decoupled, touch messages are sent over the network. The general form of a touch message is

shown in Figure 3.18. Message sections are listed in brackets.

Number of touches n
Touch 1

[Basic information]
Number of frames tracked t
Status (new touch, existing touch, lost touch)

[Localization]
Touch surface S coordinate (X, Y, Z)TCH3

Graphics mesh G coordinate (X, Y, Z)GFX3

[Semantic response]

Closest G vertex V̂G at start frame 1

Closest G vertex V̂G at current frame t
Blendshape index at start frame 1
Blendshape index at current frame t
Semantic region indices: animation, sound effect, ...
Projector contour pixels (for each projector)

Touch 2
...

...
Touch n

...

Figure 3.18: The general format of a touch message, containing the information needed by the
semantic content engine to determine the appropriate semantic response for touch input.

3.3.3 Rendering System

The rendering system is responsible for providing output to users. This output can be of a variety of

modalities, including visual and audio. To compute the appropriate image to be displayed, virtual

cameras are created in the space of the graphical content that correspond to the physical projectors:
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that is, they are positioned and oriented with respect to the graphical model equivalently to the

physical projectors relative to the physical touch surface. Additionally, each projector’s intrinsic

calibration parameters are applied to the corresponding virtual camera. As a result, the manner in

which physical projector pixels map to locations on the touch surface is replicated by the virtual

cameras, which project analogous locations on the graphical model to analogous pixels in screen

space. Therefore, the images rendered by the virtual cameras can be projected by the physical

projectors, producing registered imagery of the virtual content on the physical touch surface.

While it is straightforward to apply the position and orientation information from a projector’s

extrinsic matrix to a virtual camera, the application of the intrinsic parameters requires further

computation: specifically, the construction of a 4× 4 3D computer graphics projection matrix that

models the behavior of the typical 3 × 4 computer vision projection matrices produced through

the calibration described in Section 3.2.1. An example of this procedure for Unity virtual cam-

eras [141] is described in the Appendix.

3.4 Head-Mounted Display Touch

Our proposed method is also capable of integration with augmented reality (AR) head-mounted

displays (HMDs), with virtual imagery overlaid onto the physical touch surface instead of being

provided by a rear-mounted projector [70]. In particular, we focus on the Microsoft HoloLens, a

state-of-the-art AR HMD [105]. One major benefit of this approach as an input paradigm is that

virtual imagery provided by the HMD is not bound to the surface—it can appear anywhere in the

user’s environment. This comes at the cost of additional complexity for two primary reasons: the

use of IR light in HMD environment-mapping procedures and the alignment of virtual imagery to

physical objects.
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3.4.1 IR Environment Mapping

As part of its environment-mapping routines, the HoloLens employs a time-of-flight sensor that

projects IR light. Unfortunately, these IR projections occur in the same part of the spectrum as the

IR light utilized for touch sensing in the proposed approach. This can produce interference with

the touch sensing system, in general appearing as high-intensity flashes in the camera imagery

across one or two frames. To support the HoloLens as a source of visual content, the touch sensing

system analyzes the IR camera imagery for large intensity spikes, discarding any frames that are

substantially different from the background models.

3.4.2 Physical-Virtual Alignment

Due to the partial IR transparency of our rear-projection surfaces, the HoloLens is not able to

reliably reconstruct a 3D model of them, preventing successful environment-mapping-based align-

ment of virtual imagery. Instead, one can facilitate alignment by placing physical markers in the

environment [106, 120]. This requires the ability to accurately detect and localize the markers

and also assumes that the physical relationship between the desired virtual content and the phys-

ical markers is accurately established, which increases setup complexity. Instead, we developed

a gaze-based method performed directly in the HoloLens—which reports the user’s head position

and eye gaze direction within its own internal coordinate space—similar to calibration approaches

such as the single point active alignment method [140].

Suppose the virtual content is composed of a set of 3D vertices V within the coordinate space of

the HMD. The corresponding 3D coordinates on the physical surface will be denoted P . To align

the virtual model to the physical surface, the registration method seeks a transformation from V to
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P :

RV + T = P

where R is a rotation matrix and T is a translation matrix that together transform the virtual model

V to the physical coordinates P . However, the coordinates P are themselves unknown. Using

gaze vectors oriented toward reference points on the physical object, we can estimate a subset of P

that allows us to estimate an appropriate transform. Let {CV
i } ⊆ V denote a subset of 3D model

reference vertices which correspond to this subset of vertices {CP
i } ⊆ P on the physical object.

That is,

RCV
i + T = CP

i ∀i

Via the lookup table, we can project a visual target CP
i onto the surface corresponding to each

control point CV
i . While wearing the HMD, we carefully direct our gaze toward each projected

control point from two or more distinct orientations. Using the head position data reported by the

HMD, we can construct a set of gaze vectors Gi that pass through the control point. Collecting

additional gaze vectors produces additional information about the possible position of the actual

physical surface point CP
i . The 3D gaze vectors are not likely to intersect, but we can approximate

the position of CP
i by computing the closest point to the vectors Gi, which we denote Xi.

Now, we have a collection of known virtual control points {CV
i } and a collection of estimated

corresponding points {Xi} on the physical surface. These points are related by the transformation

RCV
i + T = Xi ∀i

Since theXi are estimates of possibly inaccurate gaze vectors, this equation will not generally have

an exact solution. Instead, we compute a rotation matrix R and translation matrix T that together
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minimize the expression ∑
i

(RCV
i + T)−Xi

using computational optimization techniques. This transformation can then be applied directly to

the virtual environment displayed in the HoloLens, which registers the virtual content onto the

physical touch surface.
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CHAPTER 4: REALIZATIONS

In this chapter, we present our specific realizations of the general method for touch sensing and

integrated semantic response on non-parametric rear-projection surfaces described in Chapter 3.

First, we cover the overall software architecture, providing practical implementation details for

each system component: the touch sensing system, the semantic content engine, and the render-

ing system. In many cases, we developed performance optimizations over straightforward, naive

implementations to reduce execution time throughout the entire pipeline. Additionally, we moti-

vate and explain various aspects that differ in practice from the theoretical framework described

previously.

Following this, we discuss the design and construction of two physical prototype touch sensing sys-

tems and introduce several rear-projection surfaces tested on each one using this software architec-

ture. Later, in Chapter 5, we will present the graphical content developed for these rear-projection

surfaces and demonstrate a variety of touch interactions on each one. Chapter 6 concerns system

evaluations of these touch-sensitive surfaces.

4.1 Software

Following the generalizable nature of the proposed methodology, we designed our software archi-

tecture to be modular and extensible; some design choices were informed by the specific hardware

and software libraries we used. Parameters that are specific to a physical implementation or to a

particular surface are instead abstracted to configuration files, maintaining overall software consis-

tency and facilitating extensions to other desired touch-sensitive surfaces or other hardware setups.

For example, the coordinates of the feature scan projections, the semantic region definitions, and
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the touch detection algorithm parameters are all stored in text-based configuration files. In partic-

ular, none of the code places restrictions on the number of cameras, the number of projectors, or

the physical size of the touch-sensitive surface.

Overall, we used the following libraries and development environments:

• In general, all live image processing is performed using the C++ interface of the OpenCV

library [20]. Likewise, we use OpenCV to display certain kinds of output via the projectors,

including the feature scan projections from the preprocessing phase and simple projection-

space-based semantic content engines.

• Camera acquisition uses the FlyCapture SDK [52], also in C++. We designed a wrapper

to integrate OpenCV and FlyCapture, which primarily handles the conversion of internal

FlyCapture image formats to the OpenCV matrix object and is responsible for managing the

set of cameras.

• We used the Boost C++ libraries [18] to handle a variety of supplementary routines, such

as networking utilities and disjoint set data structures.

• Separately, the majority of the preprocessing phase code used to incrementally create the

lookup table was written in MATLAB [101].

• The semantic content engines relating to three-dimensional animated virtual models were

written in C# for the Unity game engine [141].

• All C++ and MATLAB code was developed on Linux systems. To support cross-platform

availability, we used the CMake build automation system to compile the C++ code [31],

while MATLAB code is already cross-platform. The Unity environments were created on

Windows systems, with the builds targeting Linux environments.

112



Other libraries and toolboxes used for individual steps are presented below, along with our own

implementation details.

Our practical implementation has one major difference compared to the theoretical framework

presented in Chapter 3: whereas the lookup table was described as a single table containing all

camera and projector pixels, their correspondences in other coordinate spaces, and other relevant

semantic information, we instead create a series of sub-tables relating specific subsets of this data.

For example, the conversion of a camera (x, y) pixel to a projector (u, v) coordinate is facilitated by

two lookup tables, with one returning the u-coordinate and one returning the v-coordinate. There

are four primary advantages to enforcing this separation:

• Internally, each lookup table is stored directly as an OpenCV matrix object whose rows and

column indices correspond to the desired lookup index and whose elements correspond to

the desired lookup table retrieval. As an example, for a camera-to-projector-u lookup table,

the internal OpenCV matrix has the same dimensions as the camera, and a camera pixel can

be used directly as an index to obtain the corresponding projector u-coordinate.

• In practice, it is unlikely that a set of pixels across multiple devices that correspond will all

have integer coordinate values, which are required for the lookup. Thus, for each specific

table, we can restrict the indices to integer-valued coordinates and only compute correspon-

dences for them.

• Each touch sensing algorithm requires different subsets of the data; for instance, the projec-

tion space algorithm requires correspondences between projector pixels and 3D coordinates

on the touch surface S, but the plane sweep algorithm is independent of the projectors and

therefore does not. By separating the lookup table into sub-tables, we can implement each

algorithm such that it only loads the specific relational data necessary for it to function.
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• Finally, separating the tables simplifies the aggregation of data of certain types. In particular,

finding correspondences between the pixels of one projector to the pixels of another is chal-

lenging, since projectors are image display devices rather than image sensors. Neither the

preprocessing phase nor the two touch detection algorithms require projector-to-projector

correspondences, so they can be omitted.

First, we describe our practical implementation of the preprocessing phase used to generate lookup

tables for a rear-projection surface. Afterwards, we present the runtime phase implementation,

which processes live camera imagery for touches and determines appropriate semantic responses.

4.1.1 Preprocessing Phase Implementation

Throughout this discussion, we label each implementation step from PP1 to PP8, following the

labeling established in the general preprocessing phase description from Chapter 3.

PP1) During the initial camera calibration of the preprocessing phase, we capture dozens of

images of calibration patterns at various positions and orientations throughout the general

working volume of the desired touch-sensitive surface (Figure 4.1). We ensure that at least

one such capture has the calibration pattern oriented to match the hypothetical base plane on

which the touch surface physically rests; later, in the implementation of preprocessing phase

step PP5, we will transform the initial estimate of the touch mesh to rest on this base plane in

the calibration space TCH3, which will simplify the construction of the final touch mesh S.

We obtained the best calibration results using an asymmetric circle grid calibration pattern.

Asymmetric patterns are especially useful given the large working volume covered by the

collections of cameras, typically at different orientations, as they allow for straightforward

detection of the calibration pattern orientation. The calibration itself is performed using the
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circle grid detection and subsequent processing routines provided by OpenCV; each camera

is first calibrated individually to obtain intrinsic matrix estimates, which are subsequently

used as initial estimates for the stereo calibration of every pair of cameras.

To ensure coverage across the working volume, our camera capture utility displays statistics

about the number of usable pattern images captured for each individual camera and for each

stereo pair of cameras. Not all stereo pairs are useful—for instance, a pair of cameras suffi-

ciently far apart that there exists no overlap in their fields of view. Our capture utility can be

customized to highlight these statistics for specific predefined pairs of cameras.

For each physical setup, one camera is specified as the origin of the calibration space TCH3;

stereo calibration results for each stereo pair containing this camera are aggregated such

that all camera positions and orientations are represented with respect to the position of the

origin camera. To further improve calibration results, we perform bundle adjustment using

the sba (sparse bundle adjustment) package [97], which globally optimizes the intrinsic and

extrinsic matrices of all cameras and a point cloud of the detected calibration pattern points

obtained via triangulation. At this stage, we do not perform any distortion correction. For

visualization and later processing, we create MATLAB structures to store the intrinsic and

extrinsic calibration results.

Figure 4.1: Calibration captures of an asymmetric circle grid pattern, shown across three cam-
eras. The asymmetry in the pattern allows for each camera to uniquely determine the pattern’s
orientation.

115



PP2) The feature scan—the collection of bidirectional projector-camera and camera-camera cor-

respondences—is implemented in OpenCV, with a grid of features specified in a configura-

tion file for projection on the surface. We experimented with a variety of projected features,

including alternating horizontal and vertical lines, circles, and checkerboard patterns; in par-

ticular, we investigated structured coded light patterns [126], which encode a large number

of features within a single projected pattern. However, while we had success with this ap-

proach specifically for the physical-virtual head surface [72], the reliability of decoding such

patterns varied greatly across our different rear-projection surfaces due to light interreflec-

tions. Instead, to ensure consistency among the results across all tested surfaces, we use

individual white circle features, sequentially projected across a grid of specified coordinates

in the space of each projector.

Camera captures of the projected features are subsequently segmented in MATLAB, and

feature coordinates in projector space are linked to the centroids of the segmented features

in camera space in a simple list structure. Each list entry contains a single projector-camera

correspondence with the following data:

• the index of the projector that produced the feature,

• the center pixel of the projector feature,

• the index of the camera that observed the feature, and

• the centroid of the segmented camera observation of the feature.

Thus, given C cameras, each projected feature results in between 0 and C entries in this list

structure, depending on how many cameras observed it.

During the feature scan, we also project several test patterns onto the surface, including one

comprising all white pixels; these captures are used to create the binary region of interest

image masks for the projector-camera pairs.
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The correspondence list structure roughly represents the example lookup table shown in Ta-

ble 3.2. Projector-camera correspondences arise naturally from the individual entries of the

structure, and camera-camera correspondences can be obtained by aggregating the projector-

camera correspondences for a given projector feature. That is, if projector feature (u, v) is

observed as pixel (x, y)Ci in Ci and as pixel (x, y)Cj in Cj , then (x, y)Ci and (x, y)Cj are cor-

responding points. The list structure is continuously augmented and transformed throughout

the following steps, ultimately forming a series of individual lookup tables relating the vari-

ous coordinate spaces and semantic content behavior.

PP3) Next, we estimate the initial touch surface S by triangulating the camera-camera cor-

respondences obtained via the feature scan into a 3D point cloud in the calibration space

TCH3. As described in the implementation step of PP2, for each projected feature, we

aggregate all camera-camera correspondences and subsequently triangulate the correspon-

dences for each pair of cameras. Since certain camera pairs may be too far apart for reliable

triangulation, we establish a configuration option to select specific pairs to process, if de-

sired. Each triangulation represents an estimated 3D position for the projected feature on the

physical surface, based on observations from a particular pair of cameras. Ultimately, we

retain the 3D centroid of these points to create the point cloud estimate of the touch surface

S, which we add to the current correspondence list structure. Each correspondence list entry

now contains:

• the index of the projector that produced the feature,

• the center pixel of the projector feature,

• the indices of all cameras that observed the feature,

• the centroids of the segmented camera observations of the feature,

• the set of 3D triangulated points for each pair of cameras, and
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• the 3D centroid of these triangulations.

Thus, the current correspondence list structure roughly represents the example lookup table

shown in Table 3.3.

PP4) We implemented maximum-likelihood estimation of projection matrices [64] in MATLAB in

order to compute initial projector calibration matrix estimates, following the formulation

presented in preprocessing phase step PP4. This begins with the Direct Linear Transforma-

tion algorithm, which computes an initial estimate of each projector’s projection matrix. We

then iteratively refine these estimates by minimizing the geometric error—the sum of the

distances between each projected feature and the forward-projection of the corresponding

touch surface point cloud coordinate onto the projector’s image plane—with the Levenberg-

Marquardt algorithm [92] provided by the non-linear least-squares solver of the MATLAB

Optimization Toolbox [102]. For each projector, this results in a projection matrix P, which

is decomposed into intrinsic and extrinsic matrices through RQ decomposition (implemen-

tation from Peter Kovesi’s MATLAB functions [87]).

PP5) Next, we again use sba [97] in the final bundle adjustment phase to jointly optimize the

camera calibration matrices, projector calibration matrices, and the 3D touch surface S in

TCH3. For this bundle adjustment, we enable distortion correction routines. As mentioned

in Chapter 3, supporting distortion correction throughout the lookup table requires a few

more modifications over the abstract version presented. The actual pixels observed in cam-

era imagery (with distortion) are referred to as observed pixels, whereas pixels with these

distortions corrected are called ideal pixels. Undistorting the live imagery from all cameras

would incur additional latency; instead, we continue to use observed pixels as lookup table

indices. Later, in the implementation of step PP8, we will describe instances for which the

ideal pixels are desired. In particular, at this stage, the optimization of the final 3D touch sur-

face S coordinates by sba utilizes the ideal distortion-corrected pixels. Additionally, along
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with the refined calibration matrices, each camera and projector now has a set of distortion

coefficients. Both sba and OpenCV support the distortion model used by Bouguet, which

employs three coefficients for radial distortion and two for tangential distortion [19].

The maximum-likelihood estimation procedure from step PP4 operates over an entire 3× 4

projection matrix and as such places no constraints on calibration matrix entries, such as

the skew parameter. However, it is generally desirable to constrain the estimated calibration

matrices to have zero skew, as this reflects typical cameras [64]. While sba can enforce a

zero-skew constraint, in practice, we found that this generally decreased the quality of the

calibration, even though overall reprojection errors were minimized. Instead, we developed

an iterative approach. On the first iteration, we run sba as normal, allowing it to vary all

elements of the cameras’ and projectors’ intrinsic matrices, including the skew parameters.

Then, over the remaining iterations, we linearly decrease the skew value in each camera’s

and projector’s intrinsic matrix towards zero and again perform bundle adjustment via sba.

On the final iteration, we force the skew values to be zero and subsequently run sba with

the zero-skew constraint active. In practice, we use 10 iterations for all surfaces.

Base plane: As described in the implementation of step PP1, the calibration coordinate

space TCH3 has one of the cameras chosen as its origin, and the 3D touch surface mesh

S is positioned and oriented relative to this origin. To simplify both visualization and later

processing of S, we transform it such that it rests on the xy-plane, with the vertical axis of

the physical surface oriented along the z-axis of TCH3. This transformation is facilitated

by a calibration pattern capture specifically taken to represent the base plane on which the

physical surface is placed. The procedure is as follows:

• First, we retrieve the detected calibration pattern points of the base plane capture and

triangulate them in TCH3 using the refined camera calibration matrices.
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• Next, we compute the best-fit plane for these points. We transform the plane so that it

occupies the xy-plane of TCH3, with the normal pointing in the positive z-axis.

• This same transformation is then applied to S so that it occupies the xy-plane.

PP6) Given the final refined 3D touch surface S point cloud, we now create the 3D touch surface

mesh S by connecting its vertices to form edges. To accomplish this, we use gridfit, a

surface-fitting function that smoothly approximates a surface over a 2D grid [42]. In other

words, given a 3D point cloud and a set of query grid x- and y-coordinates, gridfit returns

a function z(x, y) that approximates the point cloud. The edge connectivity induced by the

grid can be used directly in S—that is, we create edges between x-neighbors z(xi, y) and

z(xi+1, y) and between y-neighbors z(x, yj) and z(x, yj+1), forming a set of triangular faces.

The transformation of the touch mesh point cloud to the xy-plane of the calibration space

TCH3 in step PP5 simplifies the approximation of the point cloud as a function over a grid

of x- and y-coordinates. The final touch mesh S is composed of the vertex estimates z(x, y)

and this associated edge connectivity.

At this stage, we can represent the lookup table of the general form of Table 3.4, which relates

camera pixels, projector pixels, and 3D vertices on the touch surface mesh S. However, we

will ultimately delay the actual construction of the set of sub-tables to the implementation of

step PP8.

PP7) To align the 3D touch surface scan S and the 3D graphical model G, we use an iterative

closest point algorithm [9] that estimates a rotation matrix R and translation matrix T between

S and G.

As described later, several of our semantic content engines are created in Unity. Essentially,

these comprise a virtual scene in Unity that matches a given physical setup, with virtual pro-

jectors (cameras in Unity) oriented toward the graphics mesh G analogously to the physical
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projectors oriented toward the physical touch surface. Thus, we require a means for mod-

eling the physical projectors as cameras in Unity, which we describe in more detail in the

Appendix.

PP8) Finally, we compute dense correspondences from camera and projector pixels to the

touch surface S, to the graphical model G, and to semantic regions. As described in

Chapter 3, the estimation of dense correspondences is facilitated by the back-projection of

all camera and projector pixels to three-dimensional rays; we compute the intersection points

between these rays and various meshes—S, G, and the set of semantic regions encoding

touch-triggered behaviors. Other than S, which is located in the calibration space TCH3,

these meshes all exist in the graphics space GFX3. Thus, we begin by transforming all

meshes to TCH3 via the transformation between S and G computed in step PP7.

Next, we loop over each camera and projector, which we will refer to generally as an optical

device or simply as a device. A naive implementation might back-project all device pixels to

3D rays and evaluate intersection points for all such rays across each mesh. This approach

is computationally inefficient for two main reasons:

• For a given device, not all pixels will back-project to rays that intersect a particular

surface. Any computation time expended in evaluating mesh intersections for such

pixels is therefore undesirable.

• Likewise, a device pixel that does intersect a mesh will do so only at a specific mesh

face (or perhaps faces). However, mesh intersection algorithms must generally consider

potential intersections on all mesh faces, and so a substantial amount of computation

time is unnecessarily spent. This inefficiency is especially pronounced when consider-

ing meshes with tens of thousands of faces, which must each be evaluated for a large

number of back-projected pixel rays.
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Thus, as a means of substantially decreasing preprocessing time, we compute a small set

of candidate mesh faces for each device pixel, representing the faces where an intersection

between the associated back-projected ray and the mesh must occur. Given this set, we can

drastically limit our search for intersections. Internally, the set of candidate faces is stored

in a matrix structure whose size matches the dimensions of the optical device and whose

individual elements are arbitrary-length lists of face indices.

The calibration data computed throughout the preprocessing phase directly facilitates the

construction of a set of candidate mesh faces for a given pixel. Specifically, using the stan-

dard equation for the projection of a vertex to a pixel (Equation 3.1), we can project every

vertex of a mesh M onto a device image plane P. A given vertex v of M belongs to one

or more faces {f1, f2, . . . , fn} of M , and so this immediately implies that these faces are

candidates for back-projected ray intersections of the associated pixel. This addresses the

two aforementioned inefficiencies:

• Device pixels that will not back-project to rays that intersect the surface will have an

empty set of candidate mesh faces and therefore will not be processed.

• Device pixels that will back-project to surface-intersecting rays will be associated with

a small set of candidate faces, so the entire set of mesh faces is not evaluated.

However, this only applies to device image plane pixels to which a particular mesh vertex

projects, which may not cover all device pixels. Thus, for each mesh face f , we find the

device pixels to which all vertices on f project and compute a rectangular bounding box

over this range, including a small buffer to account for any potential calibration errors. We

then append f to the set of candidate faces for each pixel in this region.

The back-projection of pixels to rays follows Equation 3.2, which we implemented as a sin-

gle matrix equation in MATLAB that operates over an entire set of valid pixels. We check

122



for intersections among the associated set of candidate faces using the line-mesh intersec-

tion routine provided by the MATLAB package geom3d [91], which we modified to include

some performance optimizations and to allow for the parallelized computation of intersec-

tions across the entire set of rays. If an intersection for the ray formed by back-projecting

pixel (x, y) is found at face index f , we store the 3D intersection point (X, Y, Z) and face

index f in the respective lookup tables at the index (x, y); the intersection points for graphics

space meshes are transformed back from calibration space TCH3 to GFX3 before storage

in the tables. As described previously, these are internally represented by individual lookup

sub-tables (i.e. pixel-to-X , pixel-to-Y , pixel-to-Z, and pixel-to-face-index sub-tables).

Furthermore, we compute the index of the closest mesh vertex to the point of intersection.

These indices are stored in an associated lookup table, used for certain graphical updates

(described in Section 3.3). For semantic regions, we additionally store the corresponding

region identification number. The start and update regions for animations are defined such

that the update region is a proper superset of the start region. Therefore, when storing region

identification numbers in the lookup tables, we assign higher precedence to start regions than

to update regions.

Distortion correction: The incorporation of distortion correction routines introduces some

complexity into the aforementioned approach, as back-projecting pixels to rays would then

use a device calibration matrix P that models ideal (i.e. distortion-corrected) pixels. As a

result, using ideal pixels as lookup table indices would subsequently require the distortion

correction of all incoming camera imagery at runtime, which would add computation pro-

portional to the number of cameras. Instead, we ensure that all lookup table indexing and

retrieval operations involving device pixels operate over observed pixels, and we encode

the three-dimensional correspondences for a given observed camera pixel that arise from its

associated ideal pixel. In this sense, the distortion correction results are encoded into the
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lookup tables, requiring no special handling for the touch sensing algorithms described in

Chapter 3. However, a few modifications to the above method for computing dense corre-

spondences are required.

First, we project all mesh vertices onto the current device’s image plane. The standard

projection model of Equation 3.1 produces a set of ideal pixels. Additionally, we apply

the distortion coefficients obtained from the bundle adjustment to these pixels to estimate

the observed pixels that would yield these ideal pixels upon distortion correction—in other

words, we manually distort the projected ideal pixels. We create a rectangular region of in-

terest (ROI) corresponding to the overall bounding box of these pixels, with some additional

padding to account for any calibration errors. The estimated set of observed pixels in this

region of interest is denoted Ô. Likewise, this same region of projected ideal pixels forms

the set I . The two sets are ordered and indexed identically: that is, the ith pixel of Ô is the

estimated observed pixel corresponding to the ith ideal pixel of I .

As before, when computing sets of candidate faces, we loop over all the faces of the current

mesh. For each face, we create a rectangular region of interest (with some padding) out of its

ideal pixel projections on the device’s image plane. For each pixel in this region of interest,

we find its index in the ideal pixel ROI I; using this same index into the observed pixel ROI

Ô produces the observed pixel estimate (x, y). We then store the current face in the set of

candidates for coordinate (x, y). The rest of the process proceeds as described previously.

Dense camera-to-projector and projector-to-camera correspondences: Finally, we take

the correspondences from observed camera and projector pixels to three-dimensional points

on the touch surface S and forward-project them onto the image planes of each of the optical

devices to estimate dense camera-to-projector and projector-to-camera correspondences. As

discussed above, this forward-projection uses a calibration matrix that models ideal (undis-
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torted) pixels; since we desire to use observed (distorted) pixels as lookup table indices, we

manually distort the forward-projected pixels.

Summary: This entire process results in the computation of data represented in the theoret-

ical lookup table shown in Table 3.9. Overall, correspondences are available from:

• observed camera pixels to observed projector pixels,

• observed projector pixels to observed camera pixels,

• observed device (camera/projector) pixels to 3D coordinates on the touch surface S,

• observed device pixels to 3D coordinates on the graphics mesh G and to the indices of

the closest mesh vertices, and

• observed device pixels to indices for each semantic region.

A set of internal lookup sub-tables is created for each class of correspondences, using pixel

coordinates in the respective optical device as lookup indices. Each sub-table returns a sin-

gle output value; for example, there are three sub-tables for each pixel-to-3D-coordinate

correspondence: one each for the X-, Y -, and Z-coordinates. Collectively, this set of sub-

tables encodes all of the data needed for touch detection and semantic response as described

throughout Chapter 3.

4.1.1.1 Special Case: Plane

In spite of their geometric simplicity, planar surfaces actually pose a problem for the above imple-

mentation: the case when all scene points exist on a single plane is a degenerate configuration [64],

and computing the maximum-likelihood estimates for the projector calibration matrices fails. This

prevents several steps in the above pipeline, including the final bundle adjustment phase (step PP5)

and the computation of dense correspondences via the camera and projector calibration matri-

125



ces (step PP8). To support planar surfaces, we instead interpolate the camera-to-projector and

projector-to-camera correspondences obtained from the feature scan (step PP2), along with the

camera-to-3D and projector-to-3D correspondences from the initial estimate of the touch surface

(step PP3). Interpolation provides a simple model of optical distortion, since it is performed di-

rectly on observed pixels; however, the accuracy of this model is limited by the number of features

projected. While such interpolation schemes are applicable for non-planar surfaces, they fail to

incorporate a significant portion of the three-dimensional context regarding the optical devices and

the touch surface modeled by the full preprocessing phase implementation described previously.

4.1.2 Runtime Implementation

Our runtime implementation consists of three primary components: the processing and segmenting

of camera imagery, the touch/hover classification algorithms, and the semantic content engines.

With the exception of the Unity-based semantic content engines, all of the runtime functionality is

implemented in C++, with OpenCV providing various image manipulation routines.

4.1.2.1 Processing Camera Imagery

Live camera imagery is analyzed and segmented into potential touch contours using the image

processing functionality of OpenCV. For incoming imagery from a given camera, we first per-

form background subtraction using the associated background model, retaining only the pixels of

the region of interest mask. In practice, the images captured by the cameras and the resulting

background-subtracted images are somewhat noisy, so we use morphological noise removal oper-

ations. To filter out background pixels, we use our own implementation of hysteresis thresholding,

which retains both pixels above a high threshold and pixels above a low threshold that are con-

nected to them (popularized as a thresholding technique in the Canny edge detector [26]). Using
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OpenCV’s contour processing routines, we segment the thresholded imagery into candidate con-

tours. An example of this process is shown in Figure 3.5. The collection of camera contours across

the entire set of cameras is subsequently used as input to the touch/hover classification algorithms.

4.1.2.2 Touch/Hover Classification Algorithms

Next, we cover our implementation of the two touch/hover classification algorithms in C++ and

OpenCV.

4.1.2.2.1 Base Touch Detector

We created a generic base touch detector class that handles certain components common to both

the projection space and plane sweep touch detection algorithms, such as handling cameras and

projectors, region of interest masks, background image models, and network communication. Ad-

ditionally, this class has helper structures used to interface with the various lookup tables. His-

torical information about a touch—such as the assignment of a consistent label and the number

of tracked frames (see Section 3.2.2.4)—is also maintained by this class, as this information is

independent of the specific detection algorithm used. This class is designed to be easily extensi-

ble; our implementations of the two touch detection algorithms inherit from it, and other potential

lookup-table-based algorithms could likewise extend this base class.

Depending on the desired semantic interactivity and on whether the touch surface is planar or

non-planar, the touch detectors must consider one of three possible lookup table types:

1. Full lookup tables support the entire set of graphical responses as described previously, with

Unity-based semantic content engines.
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2. Limited lookup tables support touch detection and response when three-dimensional graph-

ical content is not desired—that is, when interactions occur entirely within projection space.

For limited lookup tables, the touch detectors need not consider localization on a graphics

mesh G or any semantic regions (as discussed in Section 3.3.1).

3. Interpolated lookup tables support planar touch interactions. Planar surfaces require sepa-

rate lookup table construction, as described in Section 4.1.1.1.

Each algorithm uses the same basic structure, starting with the segmentation of camera images,

the detection of touches, the assignment of a label to each touch, and the transmission of touch

messages to the semantic content engine. Our implementations of the two algorithms largely

follow the theoretical presentation of Section 3.2.2; below, we highlight certain interesting aspects

of our implementation, including some specific functionality and performance optimizations.

4.1.2.2.2 Projection Space Touch Detector

In practice, the conversion of camera imagery to projector space dominates the runtime require-

ments of this touch detection algorithm. This is especially true as the number of cameras and

projectors increases. As such, we incorporated a few optimizations to reduce computation time.

Using OpenCV, it is possible to transform the pixels of a source image to a destination image using

a predefined matrix of pixel mappings. Our earliest implementation of the projection space touch

detection algorithm relied on this remap functionality. However, it is somewhat inefficient in this

case, as it remaps the entire camera images, even though only a small number of pixels represent

a potential touch event. Moreover, the remap operation functions in reverse, filling the pixels of

the destination images by indexing into mappings into the source images; this leads to additional

computation time, as the destination projector images have significantly higher resolutions than
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the source camera images. Instead, we convert only the candidate touch contours themselves,

performed via sequential lookup table conversions of each contour pixel in camera space to its

corresponding pixel in projector space.

Furthermore, we improved the efficiency of many of the projection space operations by performing

them on specific rectangular regions of interest rather than the entire projection space images. For

example, projector response masks can be naively computed by thresholding and summing each

full camera-to-projector image. However, by computing the bounding boxes of each camera-to-

projector contour, we can reduce execution time by performing these threshold and sum opera-

tions only in regions with nonzero pixels. Likewise, when evaluating the number of cameras that

contributed to a response mask contour, we can limit processing to the overall contour bounding

box. In practice, these regions of interest are on the order of a few hundred pixels—significantly

smaller than the entire 1920 × 1080 pixel projector images. Such bounding box processing is di-

rectly available in OpenCV, requiring only a few bounding box computations and resulting in a

substantial speedup.

4.1.2.2.3 Plane Sweep Touch Detector

Our implementation for back-projecting camera pixels to rays and determining their intersections

on a set of planes closely matches the theoretical presentation of Section 3.2.2.2. The singular

value decomposition used for the initial best fit plane, the convex hull operations, and the planar

area calculations are all facilitated by OpenCV routines. To compute intersections between the

plane normal vectors and the touch and graphics meshes (S and G, respectively), we implemented

the Möller-Trumbore ray-triangle intersection algorithm in C++ [107].

In general, our initial, straightforward implementation of the plane sweep touch detector was al-

ready significantly faster than even our optimized projection space touch detector implementation.
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As one optimization, when computing mesh intersections, we use the camera-to-S and camera-to-

G lookup sub-table correspondences to reduce the search to a set of candidate mesh faces, similar

to the discussion of our implementation of preprocessing phase step PP8.

4.1.2.2.4 Sending Touch Messages

Transmitting information about a detected touch from the touch sensing system to a semantic con-

tent engine depends on the type of semantic content. For simpler projection-based content engines

implemented in C++ and OpenCV, the internal detection structure—containing the coordinates of

the touch in projection space and on the touch mesh S—already contains all necessary informa-

tion to determine a touch response, so these structures are passed around as function arguments as

needed.

However, for more sophisticated semantic content engines created in Unity, we use the UDP-

based networking capabilities provided by the Boost C++ libraries [18] to send touch messages

from our C++/OpenCV touch detector implementations to Unity. Internally, the touch messages

(as described in Section 3.3.2) are created as strings storing the relevant information about the

detection. As these messages are independent of the specific touch detection algorithm used, the

base detector class handles the creation and transmission of touch messages.

4.1.2.2.5 Lookup Table Accesses

Finally, we wrote a small library comprising functions to load the lookup tables into OpenCV

matrix structures to allow for indexing operations. This library also includes various routines that

process lookup table data, such as converting camera contours to projector space. Each touch
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detection algorithm implementation uses a subset of these loading and indexing routines specific

to the lookup sub-tables it requires to function.

4.1.2.3 Semantic Content Engines

Next, we describe the implementation of various semantic content engines capable of assigning

responses to touch input. These can be organized into three primary categories: projector-space-

based, hover-based, and Unity-based. While all such semantic content engines and interaction

types could be integrated into a single application, we will discuss each separately.

4.1.2.3.1 Projector-Space-Based Applications

Interactions for projector-space-based applications occur entirely within projector space—for in-

stance, allowing users to directly affect the colors or positions of objects projected onto the surface.

This paradigm is suitable for simple user interfaces presented on a touch-sensitive surface in which

interface elements defined in projector space can be selected and manipulated by touch. For such

applications, the only relevant data from the touch sensing algorithms is the projector contour cor-

responding to a detected touch. The semantic content engine is responsible for comparing the

touch contour positions to the interface element positions to determine if one has been touched.

For example, in a paint application comprising touch-based color palette and canvas regions, the

semantic content engine determines the user’s color selection based on touch input in the color

palette region; subsequently, it applies the chosen color to the projector space touch contour based

on touch input in the canvas region.
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4.1.2.3.2 Hover-Based Interactions

In addition to distinguishing between touches and hovers, the plane sweep algorithm produces

an estimate of the distance from a hover to the surface; the projection space algorithm is not

capable of performing this estimation. This allows for hover-based interactions in which the user’s

proximity to the surface provides input to the system. For example, the semantic content engine

might modify the color or position of an interface element or play a sound based on the surface-

hover distance. For such interactions, the semantic content engine utilizes the distance of the plane

with the minimum union area to the surface as an estimate of proximity.

4.1.2.3.3 Unity Environments

For interactions with a three-dimensional graphical model, we also designed semantic content

engines based on Unity scenes [141], which serve as the graphics space GFX3. These scenes

comprise the following components:

• The graphics model G is imported and augmented with various mechanisms for controlling

animations, sound effects, and other interactive capabilities.

• Virtual cameras are placed in the scene to simulate the physical projectors—that is, with the

same intrinsic and extrinsic calibration parameters. The images rendered by these virtual

cameras are sent to the rendering system, which projects them onto the physical surface

using the projectors. This is facilitated by the conversion of projector calibration data to

Unity camera projection matrices, described in the Appendix.

• Additionally, each scene has an object responsible for receiving and interpreting touch mes-

sages, discussed later.
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Here, we focus on implementations of the various graphical responses presented in Section 3.3.

• Semantic regions: The graphics model G in Unity has associated sets of semantic-region-

based behaviors, such as specific animations and sound effects, to trigger upon touch input

in the appropriate region. Each received touch message includes an identification number

for each type of region; thus, in Unity, the only computation required corresponds to the

initiation of the behavior at the given index.

• Pixel-level updates: Such updates modify the colors of pixels rendered by the Unity cam-

eras. The graphics model G is textured with a particular base texture B. In addition, we

create a touch texture T to apply to G exclusively at the location of detected touch input.

During rendering, the relative opacity of the touch texture T is controlled by a mask M:

the final rendered texture is given by B + (M � T ), where the operation � represents the

Hadamard product (i.e. element-wise matrix multiplication). When M is the zero matrix, the

base textureB is applied toG; when M is a matrix whose elements are all 1, the touch texture

T is instead applied. Mask values in between 0 or 1 apply T with a corresponding amount

of opacity over B. For instance, given a touch texture T composed of entirely red pixels and

a mask M with values all equal to 1, this operation will modify the texture of G to be red at

the specific pixels corresponding to touch input.

However, detected touches are localized in the space of a particular projector—that is, the

screen space of the corresponding virtual Unity camera simulating this projector—and not in

the texture space of the graphics meshG. As such, forP projectors, we need a corresponding

set ofP masks {M1,M2, . . . ,MP}, and we apply these masks to the rendered output rather than

to the texture images themselves. We use a custom shader that applies this texture masking

operation directly in screen space independently for each virtual camera, since the projector
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space pixels corresponding to a touch are only appropriate for that specific projector. The

render loop for each Unity camera C is modified as follows:

– Prior to rendering, camera C applies its respective mask MC , constructed based on

detected touch input localized in the space of the projector C represents.

– Virtual camera C renders an image, which reflects the corresponding modified texture

of G.

– Following rendering, cameraC applies a zero mask so that the base textureB is applied

to G. This prevents interference for the remaining virtual cameras, which would other-

wise incorrectly apply the touch texture T at the screen space pixels corresponding to

the projector C represents.

During continuous touch input, each mask MC updates dynamically. If desired, once touch

input ceases, MC can be set to linearly approach zero over time so that the touch texture

slowly fades, gradually restoring the base texture. This allows for effects such as the simula-

tion of capillary refill, in which blood flow is temporarily restricted due to the application of

pressure, resulting in a white appearance; blood flow resumes once the pressure is removed,

indicated by the return of normal color over a few seconds.

The touch masks are created as images with the same resolution as the projector, with the

pixels corresponding to detected touch contours set to 1. Rather than sending either full

touch masks or full projector contours in the network touch messages, we implemented a

standard scanline-based flood fill algorithm in the touch sensing system, which constructs

and transmits a list of mask rows in the form of (y, x1, x2) triplets. In Unity, all mask pixels

between each row—from (x1, y) to (x2, y)—are filled.

• Vertex-level updates: Such updates are implemented as blendshapes in Unity. As with se-

mantic regions, each blendshape in Unity has an associated identification number; touches
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detected in corresponding regions are sent to the semantic content engine in messages con-

taining these identification numbers. The computation of the blendshape activation percent-

age, described in Section 3.3.1, is performed directly in Unity once a touch in a blendshape

region is received, using the lookup table correspondences to the nearest vertex on the graph-

ics mesh G. Each blendshape has two associated regions—a start and an update region. In

Unity, we use the number of tracked frames for a given touch to determine whether it is a new

or existing touch; only new touches in a start region initiate a blendshape, while subsequent

touch input in either the corresponding start or update region will update it.

The Unity-based semantic content engines also store semantic states, which can be used to change

how touch input is mapped to output behavior. For instance, in the context of virtual patient sim-

ulators, these states can correspond to the patient’s condition, which may affect how they respond

to user touches. Due to the decoupled design, the touch sensing system remains agnostic to this

state, transmitting all detected touch input for the semantic content engine to process accordingly.

4.1.2.3.4 Receiving Touch Messages

As described previously, there are two primary mechanisms for receiving the touch messages

transmitted by the touch sensing system. Basic semantic content engines implemented directly in

C++/OpenCV, such as those for projector-space-based applications and hover-based interactions,

simply pass touch detection structures as function arguments.

As the Unity-based semantic content engines operate independently, we rely on UDP networking

utilities in the Boost C++ libraries for transmission [18]. Accordingly, we implemented an asyn-

chronous function in Unity that polls for UDP messages as a non-blocking operation. When a

touch message is received, it is split into its constituent components: the touch’s label, position in
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projector space, etc. (see Section 3.3.2). These components are then passed to various functions in

the semantic content engine for processing. The asynchronous receive function cannot directly use

certain Unity functionality, such as initiating touch-triggered animations, since it does not operate

on the main thread. Instead, we create a queue structure holding such tasks to perform, which are

then sequentially executed in the main Unity update thread.

4.2 Hardware

Next, we describe two physical touch sensing prototypes, shown in Figure 4.2. Our initial develop-

ment of the overall touch sensing method was carried out on Prototype Rig I (Figure 4.2a), which

supports touch-sensitive rear-projection surfaces around 20× 30 centimeters in size using imagery

from one projector. Specifically, we focused on touch interactions on a physical-virtual head sur-

face [69,70,71,72], including for use in patient simulation scenarios [33,57,146]. We also explored

the application of touch sensing to other rear-projection surfaces, described in Section 4.2.2. As we

refined our algorithms and overall software architecture, we continued further development on the

larger Prototype Rig II (Figure 4.2b), capable of supporting touch sensing on larger rear-projection

surfaces around 50 × 70 centimeters in size, which we present in Section 4.2.3. One of the core

goals when shifting development to Prototype Rig II was extending the method to handle multiple

projectors, and we will later show touch interactions on a child-shaped surface with imagery pro-

vided by two projectors in Chapter 5. Additionally, this second prototype was designed to support

human-subject studies related to healthcare training [35, 36]. We begin with a discussion of the

hardware elements common to both of the physical prototypes.
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(a) Prototype Rig I. (b) Prototype Rig II.

Figure 4.2: Our two prototype rigs supporting touch sensing on various rear-projection surfaces.
Each has a collection of rear-mounted infrared light sources, infrared cameras, and projectors.

4.2.1 Common Elements

For both physical prototypes, we designed metal frames using 80/20, a modular extruded aluminum

framing system [1]. The desired touch-sensitive rear-projection surface rests on top of the frame,

positioned at a height suitable for interaction by standing users (Figure 4.3). Cameras, lights,

projectors, and other equipment can be mounted to the sides of the frames. Additionally, we

attached wheels to the bottom of each frame to allow for mobility.

For image acquisition, we use a collection of Point Grey Blackfly (BFLY-PGE-13E4M) GigE

cameras1, powered by Power-over-Ethernet switches. Each camera has a maximum supported

resolution of 1280 × 1024 pixels, though we set them to 640 × 512 pixels to reduce bandwidth

requirements. These cameras belong to two categories, depending on their function:

1Point Grey has since been acquired by FLIR; they continue to sell products in the Blackfly line [15].
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• The imagery from touch sensing cameras is analyzed to determine the presence and location

of user touch input. As we rely on the infrared spectrum for this processing, these cameras

must be able to image infrared light.

• Reconstruction cameras aid in the calibration (preprocessing phase step PP1) and recon-

struction of the touch surface (step PP2, the projected feature scan of the physical touch

surface). These cameras are not used for touch detection and therefore need not be able to

sense infrared light.

Maintaining this distinction allows for the use of additional cameras to improve surface recon-

struction results without the necessity for infrared light sensing. The touch sensing cameras are

additionally used in the calibration and surface reconstruction process, as they are capable of sens-

ing visible light. Prototype Rig I uses four touch sensing cameras, while Prototype Rig II uses

three touch sensing and four reconstruction cameras.

(a) Prototype Rig I. (b) Prototype Rig II.

Figure 4.3: User interaction with the two prototype touch sensing rigs.

138



For touch sensing, we add removable infrared (IR) filters (wavelength 780 nm) to eliminate inter-

ference from light in the visible spectrum; the filters are not used during the calibration procedure

so that visible light for calibration pattern captures and the feature scan can be detected. IR light

is provided by commercial off-the-shelf IR illuminators (wavelength 850 nm). The specific model

we use has a sensor that dims IR output in the presence of sufficient visible light, which we phys-

ically block so that IR light is always provided. In terms of rendering output, virtual imagery is

provided by AAXA P300 pico projectors [2] at a resolution of 1920 × 1080 pixels, and audio is

played through standard computer speakers. Prototype Rig I and Prototype Rig II use one and two

rear-mounted projectors for imagery display, respectively.

4.2.2 Prototype Rig I: Small

Our first prototype rig is designed to support touch-sensitive rear-projection surfaces around 20×30

centimeters in size, with imagery provided by a single projector. Up to four IR cameras and four

light sources are used for touch detection, depending on the surface.

In particular, we explore touch sensing on the following three rear-projection surfaces using this

prototype rig, summarized in Figure 4.4.

1. The plane surface is a flat rear-projection surface made of white acrylic that allows for

projected imagery and IR light transmission (Figure 4.4a).

2. The bowl surface is a roughly hemispherical rear-projection surface made from a clear,

plastic bowl (Figure 4.4b). We coated the bowl with a semi-transparent frosted glass spray

paint, which we experimentally determined supports both rear-projection imagery and IR

light transmission.
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(a) The plane surface.

(b) The bowl surface.

(c) The head surface.

Figure 4.4: Touch-sensitive surfaces on Prototype Rig I. Each supports the transmission of IR light
and allows for rear-projected imagery, permitting integrated touch sensing and response.
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3. The head surface is a head-shaped rear-projection surface (Figure 4.4c) created by People-

VisionFX [115]. The surface is coated with a proprietary material that produces extremely

sharp projection images and permits the transmission of IR light.

Prototype Rig I was specifically designed with camera and projector positions to support touch

sensing and display on the head surface. However, the setup is sufficiently general that it can

be applied to the plane and bowl surfaces with minor tweaking to software camera parameters

and to IR light positions. In particular, we use the same initial intrinsic and extrinsic camera

calibration for all three surfaces, since the camera positions are constant; the projector calibration

and final bundle adjustment depend on the surfaces, and so we perform these steps for each one

independently. Each surface therefore has its own associated set of lookup sub-tables, created

using the general software architecture presented in Section 4.1.

4.2.3 Prototype Rig II: Large

Our second prototype rig (Figure 4.5) is designed to support larger touch-sensitive rear-projection

surfaces up to 50×70 centimeters in size, with imagery provided by two projectors. Seven cameras

are mounted to the rig, including three IR cameras for touch sensing and four cameras for calibra-

tion and surface reconstruction. Six IR light sources are used for touch detection. Additionally,

this prototype is outfitted with hardware components intended for more realistic physical-virtual

patient simulation, particularly in the context of human-subject studies [35, 36]. This includes five

space heaters to simulate high patient temperatures and audio-haptic devices for the simulation of

pulse from pre-recorded MP3 files.

Our main focus for Prototype Rig II was the application of touch sensing to a child-shaped rear-

projection surface, created from a similar white acrylic as the plane surface on Prototype Rig I.
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Like the other surfaces, it supports projected imagery and allows for the transmission of IR light.

However, it is considerably larger than these surfaces.

Figure 4.5: The touch-sensitive child surface on Prototype Rig II.

142



CHAPTER 5: DEMONSTRATIONS

In this chapter, we present demonstrations of the general touch sensing and semantic response

methodology of Chapter 3 on the four physical-virtual surfaces introduced in Chapter 4. For each,

we begin with results from the construction of the lookup table in the preprocessing phase, includ-

ing numerical calibration results and visualizations of the calibration coordinate spaces. Addition-

ally, we provide more details on the semantic content engines developed for each surface, with

accompanying illustrative examples of actual touch interactions. As explained in Chapter 4, the

same software architecture is used to realize all of the following results.

First, we cover the two simpler surfaces: the plane and the bowl. For these two surfaces, the

semantic content engines do not have associated 3D graphical models; instead, they operate di-

rectly in the space of the projected imagery in the context of simple touch-based user interfaces,

such as a surface painting application and an object drag and drop application. Additionally, we

investigated off-surface hover interactions for the plane to create a proximity-based musical instru-

ment, based on the hover distance estimations provided by the plane sweep algorithm. The latter

two surfaces—the physical-virtual head and child—are intended for use in healthcare simulation

scenarios, and so each has a sophisticated virtual patient model with textures, animations, sound

effects, and other interactive components.

5.1 Plane

To demonstrate touch interactivity on simple parametric surfaces, we first considered a planar

surface, shown in Figure 5.1. Though we refer to it as a single surface to simplify the discussion, it

consists of two planar objects: one sturdy piece of plexiglass for support and one thin white acrylic
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sheet that supports projected imagery. The combination of materials still permits the transmission

of IR light and is therefore suitable for touch sensing. The plane rests on a wooden support structure

that elevates it to a comfortable position for use, corresponding to the focus of the single projector

in Prototype Rig I.

5.1.1 Preprocessing Phase

As discussed in Section 4.1.1.1, the planar surface poses a degenerate condition and therefore pre-

vents the projector calibration and final bundle adjustment steps of the preprocessing pipeline. Ac-

cordingly, we present only the initial bundle-adjusted camera calibration results. The four cameras

of Prototype Rig I were calibrated with reprojection errors of 0.255, 0.190, 0.291, and 0.254 pixels,

respectively (mean 0.247 pixels). Figure 5.2a shows the calibration space TCH3 for the plane. A

total of 189 features were projected during the feature scan. The touch mesh S, comprising 11919

vertices and 23392 faces, is shown in Figure 5.2b.

Figure 5.1: The touch-sensitive plane.
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(a) Plane calibration space TCH3. (b) Plane touch mesh S.

Figure 5.2: Plane surface preprocessing phase. In the calibration space TCH3 (a), the four cameras
of Prototype Rig I are represented by the red cubes.

5.1.2 Semantic Content Engines

For the planar surface, we created two simple semantic content engines that operate directly in

projector space to demonstrate touch activity. The first is a painting application, with a color palette

placed in a specific region within the projector’s imagery. Each provided color can be selected by

touch, and the currently chosen color is highlighted with a white border. Subsequent touch-and-

drag operations outside of the palette region “paint” the projected imagery with the chosen color.
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Color selection and paint operations are both facilitated by the lookup table correspondences, with

the user’s touch as imaged by the cameras being converted to a contour in projector space. If the

user touches the region corresponding to the palette, the semantic content engine determines if the

touch contour centroid has occurred within any of the palette colors, updating the currently chosen

color as appropriate. Paint operations occur outside the palette region: the entire touch contour in

projector space is filled with the selected color. Several examples of this painting application are

shown in Figure 5.3.

Additionally, we created a related application enabling drag-and-drop-based movement of colored

objects in projector space, shown in Figure 5.4. The underlying principle is nearly the same: once

a touch has been detected, the semantic content engine determines if it occurs within any of the

colored objects. If so, the object becomes active—indicated by a white border—and subsequent

dragging motions on the surface move the object to the point of contact. Once the user releases his

or her touch, the object becomes inactive.

Finally, we developed a specialized semantic content engine supporting hover-based interactions

with the plane surface via the hover distance estimations provided by the plane sweep touch sens-

ing algorithm. This application is inspired by the theremin, an electronic musical instrument that

emits sounds whose pitch and volume are determined by the proximity of the user’s hands to two

antennas [132]. In our theremin-like instrument, the estimated hover distance is translated to the

frequency of a note output by a sound synthesizer, such that larger hover distances correspond to

notes with higher pitches. Examples are shown in Figure 5.5, for which the user controlled the

instrument’s pitch with a wooden rod; the current hover distance estimation and a graph of the out-

put frequency over time are projected onto the surface. Here, the plane sweep algorithm evaluated

150 planes, each spaced 1 mm apart, supporting high-resolution hover distance estimation and thus

high-resolution note frequencies.
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Figure 5.3: A touch-based painting application on the plane surface. The user can select a color
from a provided color palette by touch; the selected color is highlighted with a white border. In the
figure, time progresses from left to right and from top to bottom.
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Figure 5.4: A touch-based drag and drop interface for the plane surface. The user can move each
individual colored circle by touching it and dragging it across the surface. The currently selected
object is highlighted with a white border. Time progresses from left to right and from top to bottom.
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(a) Estimated hover distance: 0.1 cm

(b) Estimated hover distance: 1 cm (c) Estimated hover distance: 3 cm

Figure 5.5: A theremin-like musical instrument interface based on hover distance from the plane
surface, estimated by the plane sweep algorithm. As the wand moves farther from the surface,
the emitted tone increases in pitch. The projected graph shows the current height estimate and the
output frequency over time.
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Figure 5.6: The touch-sensitive bowl surface.

5.2 Bowl

Next, we demonstrate touch interactivity on a roughly hemisphere-shaped surface: a clear plastic

bowl spray-painted with frosted glass spray paint which allows both for projected imagery to form

on the surface and for the transmission of IR light for touch detection. Like the plane, it is a simple,

intuitive surface, and we experimented with similar touch-based applications. Figure 5.6 shows the

general setup, with imagery provided by the single projector of Prototype Rig I. The bowl is placed

upside down, with its flat bottom facing the user. It rests on a flat support surface, firmly mounted

to Prototype Rig I.

5.2.1 Preprocessing Phase

During the feature scan, 2165 features were projected onto the bowl and triangulated in the calibra-

tion space TCH3 using an initial camera calibration. From these triangulated points, we computed

a maximum-likelihood estimate for the projector’s projection matrix. After the final bundle ad-

justment, the four calibrated cameras of Prototype Rig I had reprojection errors of 0.147, 0.156,
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0.193, and 0.172 pixels, respectively (mean 0.167 pixels), and the projector had a reprojection error

of 0.094 pixels. The calibration space TCH3 and the final calibrated cameras and projectors are

visualized in Figure 5.7a. The final touch mesh S (Figure 5.7b) has 7516 vertices and 14700 faces.

(a) Bowl calibration space TCH3. (b) Bowl touch mesh S.

Figure 5.7: Bowl surface preprocessing phase. In the calibration space TCH3 (a), the four cameras
and one projector of Prototype Rig I are represented by the red and blue cubes, respectively.

5.2.2 Semantic Content Engines

First, we used the same simple touch-based semantic content engines developed for the plane sur-

face: the painting application and the drag-and-drop-based movement application. For the painting

application, shown in Figure 5.8, the only difference from the plane surface implementation is the
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location of the color palette in projector space—the flat region of the bowl. The second object

movement interactivity application is shown on the bowl in Figure 5.9. In both cases, interactions

are possible between the flat and curved portions of the bowl—for instance, the user can begin

painting in one region and cross over to the other. As touches and interface elements both exist

directly in projection space, no changes are necessary in the semantic content engines to support

the bowl surface as compared to the implementation for the plane surface.

Appealing to the parametric nature of the bowl, we created a final semantic content engine based on

contour lines. The bowl is divided into a series of concentric circles, beginning in the flat portion

and proceeding throughout the curved sections. When the user touches the bowl, the corresponding

concentric circle is highlighted, as shown in Figure 5.10. Each “circle” is defined in the three-

dimensional space of the triangulated feature scan as a set of connected vertices. Prior to runtime,

the semantic content engine forward-projects each contour circle onto the projector’s image plane,

storing their locations in projector space; the images in projection space are distorted ellipses that

appear as circular contours when projected onto the bowl. Thus, when touches occur, the semantic

content engine simply determines which contour contains the user’s touch and highlights it.

5.3 Head

The preceding two surfaces are relatively simple, with correspondingly simple semantic content

engines. Next, we investigate touch sensing on a more complicated non-parametric surface: a

human head-shaped plastic shell, which we refer to as the physical-virtual patient head (or simply

as the head for short). The surface itself is composed of a proprietary material that supports sharp

projected imagery and is based on an accurate, high-frequency model of a human head, created

by PeopleVisionFX [115]. Figure 5.11 shows the head surface, with touch sensing and projected

imagery supported by Prototype Rig I.
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Figure 5.8: A touch-based painting application on the bowl surface, with user-selectable colors,
similar to the application shown on the plane surface. Time progresses from left to right and from
top to bottom.
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Figure 5.9: A touch-based drag and drop interface for the bowl surface, similar to the one shown
for the plane surface. Time progresses from left to right and from top to bottom.
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Figure 5.10: Touch-initiated contour lines on the bowl surface. As the touch location varies, the
semantic content engine determines the appropriate contour line to project.
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Figure 5.11: The touch-sensitive physical-virtual head surface.

Motivated by the benefits of physical-virtual patients in healthcare training, we developed more

extensive semantic content for the head surface. This includes a sophisticated Unity environment

containing a textured three-dimensional head model with corresponding animations and other be-

haviors; in one specific simulation mode, the virtual patient exhibits certain visual, audio, and

touch-related symptoms of a stroke (Figure 5.12). Thus, the application of touch sensing to the

head surface represents the entire proposed methodology of Chapter 3, including lookup table cor-

respondences to graphics mesh coordinates and to touch-triggered animations and sound effects.

This section replicates and extends portions of two published peer-reviewed papers:

• “Touch sensing on non-parametric rear-projection surfaces: A physical-virtual head for

hands-on healthcare training,” published in the proceedings of IEEE Virtual Reality 2015,

by Jason Hochreiter, Salam Daher, Arjun Nagendran, Laura Gonzalez, and Greg Welch [71].

• “Optical touch sensing on nonparametric rear-projection surfaces for interactive physical-

virtual experiences,” published in volume 25 of Presence (2016), by Jason Hochreiter, Salam

Daher, Arjun Nagendran, Laura Gonzalez, and Greg Welch [72].
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(a) (b)

Figure 5.12: Simulated patients on the head surface. (a) Normal patient. (b) Patient showing signs
of stroke, such as drooping eye and lips.

For this section, the word “we” refers to these colleagues. In particular, Salam Daher created the

three-dimensional models, textures, and animations for the two virtual patients.

5.3.1 Preprocessing Phase

During the preprocessing phase, a total of 2319 features were projected onto the head surface and

triangulated to form a 3D point cloud in the calibration space TCH3. The initial calibration for the

four cameras and the maximum-likelihood estimate for the projector’s calibration were then refined

via bundle adjustment, resulting in average camera reprojection errors of 0.165, 0.227, 0.300, and

0.208 pixels, respectively (overall average 0.225 pixels), and a reprojection error of 0.141 pixels

for the projector. These calibration results are visualized in Figure 5.13a. The final touch mesh S,

shown in Figure 5.13b, has 7794 vertices and 15202 faces.
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(a) Head calibration space TCH3. (b) Head touch mesh S.

Figure 5.13: Head surface preprocessing phase. In the calibration space TCH3 (a), the four cam-
eras and one projector of Prototype Rig I are represented by the red and blue cubes, respectively.

5.3.2 Semantic Content Engine

The projector-space-based semantic content engines of the plane and bowl surface are still capable

of supporting similar touch interfaces on the head surface (surface painting and object drag-and-

drop interactions). However, to demonstrate capabilities useful in healthcare training scenarios,

we developed a more sophisticated semantic content engine: a virtual Unity [141] environment

containing a three-dimensional model of a patient with various behaviors appropriate to a health

assessment scenario, including touch-triggered interactivity.
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(a) (b) (c) (d)

Figure 5.14: General process for modeling, texturing, and animating the physical-virtual head.
(a) Physical head surface. (b) Dense touch surface mesh, created from the feature scan of the pre-
processing phase. (c) Clean mesh with suitable topology for modeling, texturing, and animation.
(d) Textured mesh.

5.3.2.1 3D Model

Figure 5.14 shows the general process for creating three-dimensional imagery for projection on the

head surface (Figure 5.14a). The feature scan of the lookup table preprocessing phase produces

a dense 3D surface mesh (Figure 5.14b), providing a reasonable starting point for a graphical

model. However, the mesh is composed of a dense set of faces, arising from the grid structure of

the feature scan, which is not amenable to texturing or animating. Thus, we simplify this mesh,

reducing its density and retopologizing it to better accommodate the structure of a human head to

reduce artifacts during animations (Figure 5.14c). Using a 3D head scan of one of our colleagues,

we textured this simplified mesh (Figure 5.14d), adding geometry for the eyeballs and the inner

mouth in Maya [5] for animations in these regions. In particular, the final graphical model supports

the following animations:

• Upper and lower lip tug

• Upper and lower eyelid tug

• Eye open and close
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Figure 5.15: A touch-sensitive physical-virtual patient simulator. Left: no touch. Right: pulling
the lips apart via touch to examine the patient’s teeth and gums.

• Pupil dilation

• Pupil movement

• Eyebrow raise and lower

• Tongue movement

• Mouth movements for lip syncing

• Emotions and facial expressions, such as happiness and surprise

While these animations were selected to provide a wide variety of typical patient behavior, our

primary focus in this discussion is on the touch-triggered interactions: for instance, connecting the

“upper lip tug” animation to the touch sensing system so that a healthcare practitioner can examine

the patient’s upper gums by touch, as shown in Figure 5.15. As described in Section 3.3, each

touch-based interaction has associated regions defined directly in the space of the 3D model so

that touch input in specific locations can be linked to the appropriate behaviors in the lookup table.

The final animated model is then imported into a Unity scene with a virtual representation of the

physical setup of Prototype Rig I. A virtual camera is created based on the physical projector cal-
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ibration, oriented equivalently toward the graphical model, as described in the Appendix. Images

rendered by the virtual camera are then sent directly to the rendering system to be projected onto

the physical head surface.

5.3.2.2 Patient Simulation: Healthy and Stroke

The physical-virtual head is capable of portraying many of the visual and auditory signs and symp-

toms of a stroke, which we have separately evaluated in formative user studies (Chapter 7). We

modified the original healthy patient model to create a special simulation mode representing a

stroke patient, exhibiting signs and symptoms such as facial droop, slurred speech, facial asym-

metry, and inability to sense touch in certain locations. The simulated patient can be dynamically

switched between the two modes: normal and neurological event. We recorded a variety of verbal

responses reflecting common answers and statements a patient undergoing a neurological assess-

ment might provide. Each verbal response has two versions: one with a neutral voice and one

with a slurred voice for the healthy and stroke patient modes, respectively. For simulated patient

assessment, the verbal responses can be triggered manually, as in a Wizard of Oz paradigm [37].

Examples of manual verbal responses include:

• Patient history: e.g. her name, date of birth, health

• Current symptoms: e.g. “I have a headache,” “tingling,” and “I can’t feel anything there”

• Basic general responses: e.g. “yes,” “no,” and “I don’t remember”

Some of the semantic behavior is state-based: for instance, a touch in the normal mode might

result in an audio response, but the same touch in the neurological event mode might have no

response due to the patient’s inability to sense touch in certain places (i.e. localized numbness).
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Figure 5.16: A touch-sensitive physical-virtual stroke patient simulator. The patient is exhibiting
facial drooping and asymmetry on the left side; while the system can detect touch in the affected
regions, the patient is unable to perceive touch there and therefore does not respond. Left: no touch.
Right: pulling the lips apart via touch to examine the patient’s teeth, gums, and smile asymmetry.

Healthcare practitioners who suspect a patient might be experiencing a stroke might touch the

patient’s head at certain locations and ask her to indicate whether she felt the touch. The semantic

content engine supports a similar test. Touch input on predefined regions—such as the cheeks,

mouth, and forehead—either automatically triggers an audio recording verbally identifying its

location (e.g. “chin” and “left cheek”) or has no effect, depending on the neurological state of the

patient. Touch-triggered animations, such as opening and closing the patient’s eyes and lips, work

as expected in both modes, even when the patient’s left mouth and eye are drooping (Figure 5.16).

5.3.2.3 Touch Interactions

Many of the aforementioned visual and audio behaviors of the two patient models can be acti-

vated by touch. Figure 5.17 shows an example of capillary refill on the head. The user’s touch is

converted to projector space by the lookup tables and transmitted to the semantic content engine,

which then modifies the graphical model’s texture at the corresponding position. This is facilitated

by a separate blanched texture, with a mask that encodes the relative weight of the blanched texture
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to apply, as described in Section 4.1.2.3. During actual contact, the blanch texture is displayed with

full opacity; once touch ends, the blanched opacity linearly decreases to zero over time, simulating

the return of blood flow to this region. The blanch texture used to demonstrate capillary refill in

Figure 5.17 is somewhat exaggerated to illustrate the effect.

Figure 5.17: Touch-initiated capillary refill on the physical-virtual head surface, exaggerated for
easier visibility. The texture changes at the point of contact, indicating blood flow has temporarily
stopped. As time passes (from left to right and from top to bottom), the texture reverts to its original
state, simulating the return of blood flow.

Touch-triggered blendshapes are demonstrated in Figure 5.18, including raising and lowering the

patient’s upper and lower lips and her upper and lower eyelids. The bottom row of the figure
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shows examples of multiple blendshapes activating as a result of two detected touches. Moreover,

the stroke patient is capable of exhibiting the same blendshapes, as shown in Figure 5.19.

During a neurological assessment, a healthcare practitioner may wish to test for sensory perception

on various parts of the patient’s face. To simulate this test, the patient is capable of verbally

identifying the location of touch input (Figure 5.20). In the context of a stroke scenario, the patient

may be unable to perceive touch, indicated by a lack of a verbal response to touch in the affected

areas.

Figure 5.18: Touch-triggered blendshapes on the head surface. The bottom row shows examples
of multiple simultaneous blendshapes updating due to multiple detected touch events.
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Figure 5.19: Touch-triggered blendshapes on the stroke patient function similarly to those on the
normal patient.

Figure 5.20: Touch-triggered audio on the head surface. The physical-virtual patient verbally
identifies the location of a touch.

5.4 Child

Finally, we consider touch interactions on the most complicated of the four surfaces we investi-

gated: a physical-virtual shell in the shape of a young child from the top of the legs to the head.

Being a larger surface, it requires two projectors to display virtual imagery and so is supported
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by Prototype Rig II. One projector primarily covers the child’s body, while the second covers his

head. The physical-virtual child surface is shown in Figure 5.21. As with the physical-virtual

patient head, we developed touch-triggered semantic content for the child rig suitable for patient

simulation. The modeling, texturing, and animating of the child patient was again performed by

Salam Daher; we have separately explored initial human-subject studies of this surface and con-

tent [35,36]. In this section, we focus on the extension of the automated touch sensing and response

methodology of Chapter 3 to the child surface and virtual content.

Figure 5.21: The touch-sensitive physical-virtual child surface.

5.4.1 Preprocessing Phase

For the feature scan, a total of 3822 features were projected onto the child surface, with 2090 fea-

tures from the body projector and 1732 from the head projector. These features were collectively

triangulated to form an initial 3D point cloud representing the child surface. The final bundle ad-

justment (Figure 5.22a) produced reprojection errors of 0.264, 0.267, 0.233, 0.180, 0.204, 0.187,

and 0.167 pixels for the seven cameras of Prototype Rig II, with an overall average camera re-

projection error of 0.215 pixels. Moreover, the body and head projectors were calibrated with
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reprojection errors of 0.200 and 0.082 pixels, respectively (average 0.141 pixels). The touch mesh

S (Figure 5.22b) has 14570 vertices and 28644 faces.

(a) Child calibration space TCH3. (b) Child touch mesh S.

Figure 5.22: Child surface preprocessing phase. In the calibration space TCH3 (a), the seven cam-
eras and two projectors of Prototype Rig II are represented by the red and blue cubes, respectively.

5.4.2 Semantic Content Engine

As with the physical-virtual head surface, the child surface has a similar Unity-based semantic

content engine consisting of an animated healthy child. The primary difference compared to the

head’s semantic content engine is in the use of two projectors, requiring the creation of two virtual

cameras in Unity. With respect to touch-triggered semantic behavior, this has the greatest impact

on the capillary refill effect, demonstrated in Figure 5.23. Each virtual camera in Unity must sep-
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arately maintain its own blanch opacity mask, updated in response to the detected touch contours

specific to the respective physical projector. Following rendering, each camera must reset the child

model to use the original base texture, so that the blanch updates resulting from touch detections

in the space of one projector do not affect the other projector.

Finally, Figure 5.24 shows touch-triggered blendshapes on the child surface, including multi-

touch interactions. Functionally, these interactions operate identically to the blendshape activation

method on the head surface, and a similar set of blendshapes was created corresponding to the

child’s lips and eyes.

Figure 5.23: Touch-initiated capillary refill on the physical-virtual child surface, shown exagger-
ated for easier visibility. This interaction simulates the temporary restriction and subsequent return
of blood flow at the point of contact. Time progresses from left to right and from top to bottom.
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Figure 5.24: Touch-triggered blendshapes on the child surface. The bottom row shows examples
of multiple simultaneous blendshapes updating due to multiple detected touch events.
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CHAPTER 6: SYSTEM EVALUATION

In this chapter, we present an overall evaluation of the proposed touch sensing methodology. First,

we cover various system evaluation metrics as they pertain to both of the touch sensing algorithms

of Chapter 3, including accuracy, modeling error, and performance metrics. Next, we present

results for these metrics on the rear-projection surfaces described in Chapter 4. We conclude with

a summary comparison of the results achieved by the two algorithms.

6.1 System Evaluation Metrics

To characterize the accuracy and performance of the overall touch sensing methodology, we con-

sidered the following system evaluation metrics:

• Touch/hover classification accuracy: How accurately does the system distinguish images

of touch events from images of hovers?

• Touch localization accuracy: How close is a detected touch to the user’s intended touch

position?

• Modeling error: How accurately does the system model the observed projector-camera

correspondences?

• Runtime performance: How much time is required to detect touches from camera imagery?

Furthermore, each of these metrics can be compared for the two touch detection algorithms (pro-

jection space and plane sweep).
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Assessing the true classification and localization accuracy of the system in terms of ground truth

measurements is not straightforward. One possible avenue involves the use of a separate, vali-

dated means of locating the user’s finger in three-dimensional space with respect to a particular

physical-virtual surface. However, this poses several challenges. Many 3D tracking systems, such

as OptiTrack [114], rely on infrared light to track markers or other objects throughout an environ-

ment; as such, they are not appropriate for validating interactions supported by our prototype rigs,

as this light would interfere with the IR light used for touch sensing. This approach would also

require the temporal and spatial synchronization of data between the touch sensing and separate

tracking systems, which may introduce additional sources of error specific to this synchronization.

Moreover, the external tracking solution needs a mechanism to correctly determine if a given sam-

ple contains a touch or hover; if such a system existed, it would by definition solve the general

challenge of touch sensing.

Instead, as a means of evaluating each of the above metrics, we developed an internal guided target

acquisition process across two forms of input: projected targets1 and touch/hover targets. Both

involve the projection of circular features on the physical-virtual surface, chosen from prescribed

points in the imagery of the projectors. Captured camera imagery of the projected targets can

be processed through the detection algorithms: like touches, projected targets are located on the

surface, so the two detection algorithms should classify them strongly as touches (i.e. with high

confidence scores). Furthermore, the data encoded in the lookup table can be analyzed to deter-

mine how consistently the localizations of these projected targets match their observed positions

during the preprocessing phase, which reflects how accurately the lookup table models these ob-

servations. Separately, an expert user carefully captures touches and hovers at specific projected

feature locations to create a set of touch/hover targets, which are then classified and localized using

the detection algorithms.

1Throughout this section, we use the terms projected target and projector target interchangeably.
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In terms of touch/hover classification, the two detection algorithms differ in their reported confi-

dence scores. For the projection space algorithm, the multi-camera agreement score ranges from 0

to 1, with higher scores indicating the algorithm is more confident that the sample contains a touch.

The plane sweep algorithm, which considers a series of parallel planes starting at the surface and

extending along a normal vector, reports the distance along that normal vector corresponding to

the plane having the minimum union area; lower distances indicate the minimum union area plane

is closer to the surface, thus reflecting higher touch confidence. As touch events are located on

the surface, we expect high confidence scores from both detection algorithms: high multi-camera

agreement score and low minimum union plane distance for the projection space and plane sweep

algorithms, respectively. Likewise, we expect low confidence scores (low multi-camera agreement

score and high minimum union plane distance) for hovers, which occur off the surface.

Each touch sensing algorithm localizes detected touches on the physical surface, producing a 3D

point on the touch surface S corresponding to the user’s touch location. While a validated ground

truth coordinate representing the user’s touch is not available, we can compare the localization to

the data encoded in the lookup table—specifically, the correspondence between the centroid pixel

of the projected target the user touched and its estimated position on S. We define target-detection

distance to be the distance between

• the 3D point on the touch surface S stored as the lookup table correspondence for a projector

pixel (i.e. the target) and

• the 3D point retrieved when processing live imagery (of a projector or touch target) contain-

ing that projector pixel (i.e. the detection).

To evaluate various aspects of the system, we consider both projector-target-detection and touch-

target-detection distances.
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Lower projector-target-detection distances reflect higher consistency in the lookup table, indicating

that it accurately models the observed projector-camera correspondences of the feature scan. In

theory, this consistency additionally extends to the accuracy of touch input localizations, analyzed

via the touch target data. It is important to note that touch-target-detection distances are inherently

dependent on the ability of the expert user to touch the targets accurately. As such, these distances

are influenced by a variety of possible user-centric error sources, including the user’s visual in-

terpretation of the positions of the targets across the surface and the user’s physical dexterity in

both orienting and positioning his or her finger to touch the intended positions. However, a set

of touch-target-detection distances provides a reasonable representation of how close user touches

are to intended targets in practice, which is a valuable overall system metric that reflects the level

of accuracy achievable in real touch applications.

Touch target data is carefully collected from an expert user over two sessions: one that focuses on

only touch events and one that focuses only on hovers. In both cases, the expert user is presented

with a set of visual targets projected onto the surface, where each target contains a small crosshair

to assist in visually locating the center. For touch data, the expert user is presented with a set of

targets projected on the surface, and he is instructed to touch each one sequentially as carefully

and precisely as possible. Once his finger is in place, he presses a key on a provided keyboard to

capture imagery from the cameras. Thus, all captures are therefore known to contain touch events.

For hover data, an expert user is again presented with these visual targets, but this time he carefully

places his finger above the surface without touching it, again using the keyboard to initiate camera

capture. In the event that he inadvertently touches the surface during data collection, the current

target can be reset so that hover data can be recaptured. Given these two datasets, we can therefore

report touch/hover classification accuracy results simply by determining how the touch sensing

algorithms classify each of the touch samples and each of the hover samples.

To summarize, we propose the following procedures for evaluating the aforementioned metrics:
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• Touch/hover classification accuracy: We process the datasets of touch and hover events

using both the projection space and plane sweep algorithms and analyze the reported confi-

dence scores for each.

• Touch localization accuracy: We localize touch events from the touch dataset in 3D space

with both algorithms and compare these positions to the lookup table correspondences.

• Modeling error: We process projected targets with both algorithms and analyze the reported

confidence scores and target-detection distances.

• Runtime performance: During localization and classification of projector and touch targets,

we calculate and record the amount of required processing time.

Below, we present these metric evaluations for three of the four touch-sensitive surfaces presented

in Chapter 4: the bowl, the head, and the child; as the plane poses a degenerate configuration that

prevents successful bundle adjustment, we omit it from the present discussion (see Section 4.1.1.1).

These analyses are performed using both the projection space and plane sweep touch detection al-

gorithms. For the projected target results, we process the data collected during the respective

feature scan for each surface, which reflects how accurately the created lookup tables model the

scan observations. The visual targets presented to the expert user in the touch and hover target

data collection phases are drawn from smaller grids in projector space. We present a graph of the

projected- and touch-target-detection distances and confidence scores over each set of samples,

indexed in the order they were captured. Using the projector coordinates of the targets, we dis-

play these same results graphically in the space of the projected imagery. Finally, we texture the

touch surface meshes for each surface with these projector space result images, allowing for direct

interpretation in a three-dimensional context.
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For touch/hover classification, we provide classification accuracy independently for touches and

hovers and for the overall combined dataset based on a range of confidence score thresholds. The

two touch detection algorithms differ in this thresholding process. In the projection space algo-

rithm, given a multi-camera agreement score threshold s, samples with scores greater than or equal

to s are classified as touches, while those with scores less than s are classified as hovers. The plane

sweep algorithm classifies samples whose minimum union area plane is at a distance of some

threshold t or closer to the touch mesh as touches; samples with minimum union area planes at

distances greater than t are classified as hovers. Trivial hovers are those that are removed before

even being processed by the two algorithms, such as from hovering fingers that are sufficiently far

from the surface that they reflect no detectable infrared light to the cameras. In the touch/hover

classification results, we exclude these trivial cases, as our primary interest is in distinguishing ac-

tual touches from close hovers, which often appear nearly identical in the infrared camera imagery.

Additionally, we report the average runtime of each algorithm. In our physical prototypes (Chap-

ter 4), our cameras capture imagery at 30 frames per second—approximately 33.33 milliseconds;

thus, we can consider these touch sensing algorithms as achieving real-time performance if they

can classify a set of camera images within 33.33 milliseconds, at which point the next set of images

is available. Since samples with no usable image data—for instance, when a projected target is out-

side the bounds of the surface—are discarded and not processed for touches, they do not incur ex-

ecution time for various parts of the overall pipeline, and so we only report average runtime across

the set of usable samples. To more directly compare the execution times of the two touch sens-

ing algorithms, we separately account for the time needed to capture and process camera images,

which is constant for both, and the time each algorithm requires specifically for touch detection

given processed images. Furthermore, since projected target data tends to be “cleaner”—with light

only provided by the specific target projected—segmenting the associated camera imagery tends to

require less time than for touch data. Each algorithm performs its entire pipeline, including deter-
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mining semantic region correspondences. As such, these results provide a realistic representation

of runtime requirements in practical use cases featuring interactions with touch-triggered semantic

responses.

We conclude each section with a summarized results comparison between the two detection algo-

rithms. Finally, Section 6.5 includes an overall algorithm comparison across the three surfaces.

6.2 Bowl

Projector target and touch target results for the bowl surface are described in Section 6.2.1 and

Section 6.2.2, respectively.

6.2.1 Projector Targets

The feature scan for the bowl surface consisted of approximately 2200 projected targets.

6.2.1.1 Projection Space

The projection space touch detection algorithm successfully processed 2079 of the projected targets

at an average overall speed of 8.85 milliseconds, with detection alone requiring 2.79 milliseconds.

Projected-target-detection distance: Figure 6.1 shows the overall projected-target-detection dis-

tance results from the projection space algorithm. A graph of these distances across the set of

feature scan samples is shown in Figure 6.1a; the average target-detection distance is 0.0226 cm.

Figure 6.1b provides a graphical visualization of these results in the space of the projector on Pro-

totype Rig I, and Figure 6.1c presents them in the 3D context of the bowl touch mesh S. Here, the
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color blue corresponds to coordinates in projector space that are outside the bounds of the bowl

surface. As shown in these visualizations, the largest distances are located on the bounds of the

projected imagery.

Projected target confidence score: Overall confidence score results are shown in Figure 6.2,

taken from the multi-camera agreement scores computed by the projection space algorithm. Scores

across the projected targets are shown in Figure 6.2a: the mean score is 0.688, indicating high con-

fidence of a touch. The confidence scores are shown graphically in projector space in Figure 6.2b

and textured on the 3D bowl touch mesh S in Figure 6.2c. The targets with relatively high localiza-

tion errors on the projection image perimeter have comparably low confidence scores. Moreover,

detected targets on the slightly raised circular portion on which the bowl rests (the “lip”) have

similarly lower confidence scores.

6.2.1.2 Plane Sweep

Out of the set of projected targets, the plane sweep algorithm successfully processed 2162. The

overall average processing time was 6.37 milliseconds; the actual detection routines executed in

0.50 milliseconds.

Projected-target-detection distance: Figure 6.3 presents the overall projected-target-detection

distance results produced by the plane sweep algorithm. A graph of the distances across the set

of projected targets is shown in Figure 6.3a; the mean distance is 0.0088 cm. Figure 6.3b shows

these results directly in projector space, while Figure 6.3c visualizes them on the bowl touch mesh

S. The projected-target-detection distances are extremely consistent and small across the surface,

with the highest errors corresponding to the lip of the bowl. However, even at these locations, the

distances between the projected targets and the detections are less than 1 mm.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.1: Projection space algorithm results for the bowl surface: distance (centimeters) be-
tween localized projected targets and the 3D lookup table correspondences.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.2: Projection space algorithm results for the bowl surface: multi-camera agreement
score for projected targets.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.3: Plane sweep algorithm results for the bowl surface: distance (centimeters) between
localized projected targets and the 3D lookup table correspondences.

180



Sample

500 1000 1500 2000

M
in
im

u
m

u
n
io
n
p
la
n
e
(c
m
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Plane Sweep Minimum Union Plane

(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.4: Plane sweep algorithm results for the bowl surface: minimum union plane (centime-
ters) for projected targets.
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Projected target confidence score: The distances of the planes with the minimum union areas

determined by the plane sweep algorithm are summarized in Figure 6.4. Figure 6.4a shows a

graph across the set of feature scan targets, while Figure 6.4b and Figure 6.4c present them in two-

dimensional projector space and the three-dimensional space of the bowl surface touch mesh S,

respectively. Nearly every projected target was assigned to the initial plane located at the surface,

indicating extremely high confidence of a touch. A small number of targets were instead assigned

to the next plane translated 0.1 cm from the surface, also suggesting high touch confidence; in

general, these correspond to regions on the lip of the bowl and to areas on the back of the bowl (i.e.

the opposite of the side where the user stands for touch interactions).

6.2.1.3 Summary

Table 6.1 shows a summary of the projected target results for the bowl surface. For a direct com-

parison, Figure 6.5 plots the projected-target-detection distances across the set of feature scan

targets.

In general, the plane sweep algorithm outperformed the projection space algorithm by all the con-

sidered metrics:

• The plane sweep algorithm successfully processed more of the feature scan targets.

• On average, the 3D distance between the projected targets and the localized detections on the

bowl touch mesh S was approximately 40% that produced by the projection space algorithm.

• Overall, the plane sweep confidence scores were more consistent than the projection space

scores, with the minimum union plane chosen to be the one closest to the surface for ap-

proximately 99.6% of projected targets. However, the projection space algorithm assigned

relatively low confidence scores to a few dozen of the targets.
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• Finally, the plane sweep algorithm processed samples significantly faster than the projection

space algorithm. When considering total execution time, which includes the segmentation

of camera imagery into contours, the plane sweep and projection space algorithms executed

in 6.37 and 8.85 milliseconds, respectively. However, segmenting the imagery is a constant

time required by both of the algorithms. The time required for detection alone reveals a

much greater difference: 0.50 milliseconds for the plane sweep algorithm compared to 2.79

milliseconds for the projection space algorithm.

Table 6.1: Projector target results summary for the bowl surface.

Algorithm Successful Localization Confidence Score Runtime

Projection space 2079 0.0226 cm 0.688
Detect: 2.79 ms
Total: 8.85 ms

Plane sweep 2162 0.0088 cm 0 cm: 99.63%
0.1 cm: 0.37%

Detect: 0.50 ms
Total: 6.37 ms
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Figure 6.5: Comparison of projection space (blue) and plane sweep (red) algorithm results: dis-
tance (centimeters) between localized projected targets and the 3D lookup table correspondences
for the bowl surface, shown across the samples of the feature scan. On average, the plane sweep
distances are significantly lower.
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6.2.2 Touch Targets

Approximately 300 touch samples arising from a grid of visual targets form the touch target dataset

for the bowl surface.

6.2.2.1 Projection Space

The projection space algorithm processed 293 of these touch targets, assigning to each a classifi-

cation (either a touch or a hover) and a localized position in three-dimensional space. On average,

the algorithm processed the targets in 9.90 milliseconds, with the detection routines operating in

2.83 milliseconds.

Touch-target-detection distance: A summary of the touch-target-distance results from the pro-

jection space algorithm is shown in Figure 6.6. Across the set of samples, these distances are scat-

tered about a range from 0 to 0.5 cm, with the majority under 0.3 cm and an average of 0.1311 cm

(Figure 6.6a). There is not much structure to the errors evident in the projection space image (Fig-

ure 6.6b) or in the 3D context of the touch mesh (Figure 6.6c); some of the larger errors are near

the “lip” of the bowl, where the curved and flat portions meet.

Touch target confidence score: Figure 6.7 shows the multi-camera agreement scores for the touch

targets computed by the projection space algorithm. Compared to the target-detection distances,

these scores are a little more consistent, generally clustered around values between 0.5 and 0.7

with an average of 0.614 (Figure 6.7a). Other than a few low confidence scores on the “lip,” the

scores appear relatively uniform across the bowl surface (shown in projector space in Figure 6.7b

and textured on the bowl touch mesh in Figure 6.7c).
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.6: Projection space algorithm results for the bowl surface: distance (centimeters) be-
tween localized touch targets and the 3D lookup table correspondences.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.7: Projection space algorithm results for the bowl surface: multi-camera agreement
score for touch targets.
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Touch/hover classification: Figure 6.8 shows the touch/hover classification results for the pro-

jection space algorithm. Figure 6.8a plots the multi-camera agreement scores of the touch and

hover samples; nearly all of the confidence scores for the hovers are below 0.3, and nearly all

of the touches have confidence scores above this threshold. Total classification accuracy, along

with separate touch and hover classification accuracies, are presented in Figure 6.8b across var-

ious multi-camera agreement score thresholds. The highest overall accuracy of 99.60% correct

classifications (99.66% touches and 99.50% hovers correct) is achieved with a score threshold of

0.3.
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Figure 6.8: Projection space algorithm results for the bowl surface: touch/hover classifica-
tion. (a) Confidence scores across touch and hover samples. (b) Overall touch/hover classification
accuracy by confidence score threshold.
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6.2.2.2 Plane Sweep

The plane sweep algorithm processed 296 of the touch targets in 7.63 milliseconds on average

(0.63 milliseconds for the actual detection routines).

Touch-target-detection distance: Similarly to the projection space algorithm results, the touch-

target-detection distances reported by the plane sweep algorithm are somewhat scattered, as shown

in Figure 6.9. Here, the range of distances—from 0 to about 0.4 cm—is a little lower than that

achieved by the projection space algorithm (Figure 6.9a). Figure 6.9b and Figure 6.9c present

visualizations of these distances in projector space and in three-dimensional space, respectively.

Touch target confidence score: Figure 6.10 provides a summary of the plane sweep confidence

scores—the distances between the planes with the minimum union area and the touch surface. The

majority of the touch targets were assigned to planes with 0.2 cm of the surface, suggesting high

touch confidence (Figure 6.10a). As seen in the projection space and the textured mesh result

images— Figure 6.10b and Figure 6.10c, respectively—the curved parts of the bowl tend to be

assigned to closer planes than the flat part. The algorithm is also less confident at parts of the

perimeter.

Touch/hover classification: Plane sweep touch/hover classification results are shown in Fig-

ure 6.11. Figure 6.11a plots the distance between the plane with minimum union area and the

surface for each of the touch and hover samples, while Figure 6.11b presents overall and individual

touch and hover classification accuracies using various thresholds for the minimum union plane.

The majority of the touch samples are assigned to planes 0.3 cm from the surface and closer, and

all but one of the hover samples are assigned to planes 0.3 cm from the surface and farther. In fact,

all but two hovers are assigned to the farthest considered plane, located 0.6 cm from the surface.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.9: Plane sweep algorithm results for the bowl surface: distance (centimeters) between
localized touch targets and the 3D lookup table correspondences.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the bowl touch mesh S.

Figure 6.10: Plane sweep algorithm results for the bowl surface: minimum union plane (cen-
timeters) for touch targets.
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The best overall accuracy, 99.80% (100% of touches and 99.50% of hovers correctly classified), is

achieved using a minimum union plane threshold of 0.4 cm.
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Figure 6.11: Plane sweep algorithm results for the bowl surface: touch/hover classification.
(a) Confidence scores across touch and hover samples. (b) Overall touch/hover classification ac-
curacy by confidence score threshold.

6.2.2.3 Summary

Table 6.2 shows a summary of the touch target results for the bowl surface, and Figure 6.12 plots

the target-detection distances across the set of touch targets. Finally, Table 6.3 presents a summary

comparison of touch/hover classification results.

The two algorithms performed comparably in terms of target-detection distances: each localized

touches with an average distance of about 0.13 cm from the projected targets, with the projec-
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tion space algorithm yielding slightly lower distances (approximately 0.003 cm). Likewise, each

achieved touch/hover classification rates of over 99%. The plane sweep algorithm outperformed

the projection space algorithm by two metrics. First, the plane sweep was able to successfully

classify a few more of the touch targets than the projection space algorithm. In terms of runtime

performance, the plane sweep algorithm processed the touch targets significantly faster than the

projection space algorithm: 7.63 and 9.90 milliseconds overall (0.63 and 2.83 milliseconds for

detection alone), respectively.

Table 6.2: Touch target results summary for the bowl surface.

Algorithm Successful Localization Confidence Score Runtime

Projection space 293 0.1311 cm 0.614
Detect: 2.83 ms
Total: 9.90 ms

Plane sweep 296 0.1342 cm

0 cm: 47.64%
0.1 cm: 31.42%
0.2 cm: 15.88%
0.3 cm: 3.72%
0.4 cm: 1.35%

Detect: 0.63 ms
Total: 7.63 ms

Table 6.3: Touch/hover classification results summary for the bowl surface.

Algorithm Best Accuracy Score Threshold

Projection space 99.60% (99.66% touch, 99.50% hover) 0.3

Plane sweep 99.80% (100% touch, 99.50% hover) 0.4 cm
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Figure 6.12: Comparison of projection space (blue) and plane sweep (red) algorithm results:
distance (centimeters) between localized touch targets and the 3D lookup table correspondences
for the bowl surface, shown across the set of touch samples. Both algorithms perform about the
same on the touch samples.
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6.3 Head

Next, we present projected target (Section 6.3.1) and touch target (Section 6.3.2) results for the

head surface.

6.3.1 Projector Targets

For the head surface, the feature scan consisted of 3075 features, of which approximately 2300

were located on the surface and were visible to at least two cameras.

6.3.1.1 Projection Space

The projection space algorithm successfully classified 2267 of the feature scan samples at an aver-

age speed of 9.43 milliseconds, with detection alone executing in 3.38 milliseconds.

Projected-target-detection distance: Overall target-detection distance results are shown in Fig-

ure 6.13. On average, the distance between the localized detections and the projector targets in

3D space was 0.0256 cm. These distances are plotted across the set of feature scan samples in

Figure 6.13a. Figure 6.13b presents the same data graphically in projector space, and Figure 6.13c

visualizes these distances in the 3D context of the touch mesh S. Here, the color blue corresponds

to coordinates in projection space that are outside the bounds of the head surface. These figures

show that the samples with the highest errors correspond to the perimeter of the projectable area

of the head surface.

Projected target confidence score: Overall confidence score results are shown in Figure 6.14. The

mean multi-camera agreement score across the detected targets was 0.742. Feature scan sample

scores are plotted in Figure 6.14a. These confidence scores are shown graphically in projector
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space in Figure 6.14b and in the 3D context of the touch mesh S in Figure 6.14c. Similarly to the

distance scores, the algorithm is a little less confident for targets on the perimeter of the lookup

table data; additionally, targets on some of the curved regions of the surface—such as the nose and

the sides—are less confidently classified.

6.3.1.2 Plane Sweep

The plane sweep algorithm successfully classified 2266 of the feature scan samples at an average

speed of 6.71 milliseconds, with detection alone executing in 0.60 milliseconds.

Projected-target-detection distance: Overall target-detection distance results are shown in Fig-

ure 6.15. On average, the distance between the localized detections and the projector targets in 3D

space was 0.0132 cm, and the distances are generally less than 0.05 cm for the majority of the tar-

gets. These distances are shown across the set of feature scan samples in Figure 6.15a, in projector

space in Figure 6.15b, and on the touch mesh S in Figure 6.15c. Here, the highest errors again

correspond to targets on the perimeter of the lookup table data.

Projected target confidence score: Overall confidence score results are shown in Figure 6.16.

Feature scan sample scores are plotted in Figure 6.16a. All detections were assigned to the plane

closest to the surface, which indicates the highest possible confidence of a touch classification.

These confidence scores are presented graphically in projector space in Figure 6.16b and in the 3D

context of the touch mesh S in Figure 6.16c.

6.3.1.3 Summary

The feature scan projector target result summary for the head surface is shown in Table 6.4. A

comparison graph between the projected target-localization distances is shown in Figure 6.17.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.13: Projection space algorithm results for the head surface: distance (centimeters)
between localized projected targets and the 3D lookup table correspondences.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.14: Projection space algorithm results for the head surface: multi-camera agreement
score for projected targets.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.15: Plane sweep algorithm results for the head surface: distance (centimeters) between
localized projected targets and the 3D lookup table correspondences.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.16: Plane sweep algorithm results for the head surface: minimum union plane (cen-
timeters) for projected targets.
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The projection space algorithm successfully classified one more target. However, the plane sweep

algorithm outperformed the projection space algorithm by the remaining metrics:

• The average 3D distance between the targets and the localized detections on the touch mesh

S was half that achieved by the projection space algorithm.

• While the confidence scores are not directly comparable, for the plane sweep algorithm, the

minimum union plane indices were uniformly chosen to be the closest plane to the surface,

indicating the highest possible confidence of a touch assignment. However, the multi-camera

agreement scores for the projection space algorithm varied across the samples, with some

having relatively low values; a reasonable threshold would misclassify some of the projected

targets as hovers.

• Finally, the plane sweep algorithm outperformed the projection space algorithm in terms

of execution time. When considering overall execution time, which includes segmenting

camera imagery into contours, the two algorithms executed in 6.71 and 9.43 milliseconds,

respectively. However, if we ignore segmentation time, which is common to both algo-

rithms, the plane sweep significantly outperforms the projection space algorithm, detecting

and localizing imagery in 0.60 milliseconds (compared to 3.38 milliseconds).

Table 6.4: Projector target results summary for the head surface.

Algorithm Successful Localization Confidence Score Runtime

Projection space 2267 0.0256 cm 0.742
Detect: 3.38 ms
Total: 9.43 ms

Plane sweep 2266 0.0132 cm 0 cm: 100%
Detect: 0.60 ms
Total: 6.71 ms
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Figure 6.17: Comparison of projection space (blue) and plane sweep (red) algorithm results: dis-
tance (centimeters) between localized projected targets and the 3D lookup table correspondences
for the head surface, shown across the samples of the feature scan. On average, the plane sweep
distances are lower.
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6.3.2 Touch Targets

For the head surface, the touch target dataset is composed of over 350 touch samples, captured

across a grid of visual targets.

6.3.2.1 Projection Space

The projection space algorithm classified 359 touch targets at an overall average speed of 10.53

milliseconds; classification and localization alone executed in 3.31 milliseconds.

Touch-target-detection distance: The touch-target-distance results produced by the projection

space algorithm are summarized in Figure 6.18. In general, these distances range from 0 to 0.6 cm,

with an average of 0.1623 cm (Figure 6.18a). The largest errors tend to correspond to the curved

portions of the nose and the neck of the head surface, as shown in the projection space image

(Figure 6.18b) and in the 3D textured touch mesh image (Figure 6.18c).

Touch target confidence score: Figure 6.19 shows the touch target multi-camera agreement scores

computed by the projection space algorithm. The majority are above a confidence score threshold

of 0.4, with an average of 0.620 (Figure 6.19a). Some of the lower scores are clustered around

areas of high curvature on the forehead regions, evident in the projector space results image (Fig-

ure 6.19b) and in the textured touch mesh image (Figure 6.19c).

Touch/hover classification: Touch/hover classification results for the head surface computed by

the projection space algorithm are shown in Figure 6.20. The multi-camera agreement confidence

scores are plotted in Figure 6.20a over the set of touch and hover samples. Most of the touches

have confidences above 0.4, and most of the hovers have confidences below this value. Combined

touch/hover accuracy is presented in Figure 6.20b across a range of confidence score thresholds.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.18: Projection space algorithm results for the head surface: distance (centimeters)
between localized touch targets and the 3D lookup table correspondences.

204



Sample

100 200 300 400 500

M
u
lt
i-
ca
m
er
a
a
g
re
em

en
t
sc
o
re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Projection Space Multi-Camera Agreement Score

(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.19: Projection space algorithm results for the head surface: multi-camera agreement
score for touch targets.
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Additionally, the individual classification accuracies for touches and for hovers are shown. With a

threshold of 0.4, the projection space algorithm achieves its highest accuracy, correctly classifying

96.92% of all samples (96.66% of touches and 97.52% of hovers correct).
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Figure 6.20: Projection space algorithm results for the head surface: touch/hover classifica-
tion. (a) Confidence scores across touch and hover samples. (b) Overall touch/hover classification
accuracy by confidence score threshold.
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6.3.2.2 Plane Sweep

The plane sweep touch detection algorithm processed 359 of the touch targets. Overall, it operated

in 7.81 milliseconds, with detection routines alone executing in 0.74 milliseconds.

Touch-target-detection distance: The touch-target-detection distances achieved by the plane

sweep algorithm are shown in Figure 6.21. Like the results reported by the projection space algo-

rithm, they are scattered about a range from 0 to 0.5 cm (Figure 6.21a), with an average distance of

0.1560 cm. As seen in the projector space and 3D visualizations (Figure 6.21b and Figure 6.21c,

respectively), the largest distances are near the nose and neck of the head surface.

Touch target confidence score: A summary of the plane sweep confidence scores is shown in

Figure 6.22. All but two of the touch targets were assigned to planes within 0.2 cm of the surface,

indicating extremely high touch confidence (Figure 6.22a). These two touch targets for which

the algorithm was less confident are located on the neck of the head surface, as visualized in

Figure 6.22b and Figure 6.22c.

Touch/hover classification: Figure 6.23 shows the plane sweep touch/hover classification results.

The confidence scores—the distances between the surface and the planes with minimum union

area—are plotted across the touch and hover samples in Figure 6.23a. Nearly all of the hovers

are assigned to the farthest plane, located 0.6 cm from the surface. Thus, the plane sweep is able

to successfully distinguish between touches and hovers with extremely high accuracy, classifying

99.43% of the samples (99.44% of touches and 99.39% of hovers) correctly when using a plane

threshold of 0.2 cm (Figure 6.23b).
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.21: Plane sweep algorithm results for the head surface: distance (centimeters) between
localized touch targets and the 3D lookup table correspondences.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the head touch mesh S.

Figure 6.22: Plane sweep algorithm results for the head surface: minimum union plane (cen-
timeters) for touch targets.
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Figure 6.23: Plane sweep algorithm results for the head surface: touch/hover classification.
(a) Confidence scores across touch and hover samples. (b) Overall touch/hover classification ac-
curacy by confidence score threshold.

6.3.2.3 Summary

A summary of the touch target results for the head surface is shown in Table 6.5, and the touch-

target-detection distances are plotted in Figure 6.24. Touch/hover classification results are summa-

rized in Table 6.6.

The plane sweep algorithm slightly outperformed the projection space algorithm in terms of touch-

target-detection distances, achieving an average distance of 0.1560 cm compared to 0.1623 cm.

Confidence scores tended to be more indicative of touches for the plane sweep, which further

outperformed the projection space algorithm in touch/hover classification accuracy (99.43% overall

accuracy compared to 96.92%). Finally, as in previous results, the plane sweep algorithm required
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less time to classify the touch targets than the projection space algorithm; the former executed in

7.81 milliseconds on average (0.74 milliseconds for detection), while the latter operated in 10.53

milliseconds (3.31 milliseconds for detection).

Table 6.5: Touch target results summary for the head surface.

Algorithm Successful Localization Confidence Score Runtime

Projection space 359 0.1623 cm 0.620
Detect: 3.31 ms
Total: 10.53 ms

Plane sweep 359 0.1560 cm

0 cm: 48.47%
0.1 cm: 42.06%
0.2 cm: 8.91%
0.3 cm: 0.28%
0.4 cm: 0.28%

Detect: 0.74 ms
Total: 7.81 ms

Table 6.6: Touch/hover classification results summary for the head surface.

Algorithm Best Accuracy Score Threshold

Projection space 96.92% (96.66% touch, 97.52% hover) 0.4

Plane sweep 99.43% (99.44% touch, 99.39% hover) 0.2 cm
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Figure 6.24: Comparison of projection space (blue) and plane sweep (red) algorithm results:
distance (centimeters) between localized touch targets and the 3D lookup table correspondences
for the head surface, shown across the set of touch samples. Both algorithms perform about the
same on the touch samples, with the plane sweep achieving slightly lower distances on average.
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6.4 Child

Unlike the bowl and head surfaces supported by Prototype Rig I, for which touch detection is

facilitated through four infrared cameras, the setup for the child surface on Prototype Rig II uses

three touch sensing cameras (oriented toward the head of the surface) and four additional cameras

to aid in reconstruction (oriented toward the body). The latter cameras are unable to sense infrared

light, and so we only report touch target results (Section 6.4.2) for the regions of the child surface

the former cameras are capable of imaging. To supplement these results, we present localization

and classification results for the projected targets across the entire surface (Section 6.4.1), which

provides evidence that successful touch sensing is possible in these regions through the use of

additional infrared-sensing cameras.

Furthermore, imagery for the child surface is provided by two projectors rather than one. The body

projector, capable of covering most of the surface, is responsible for displaying imagery on the

legs and torso regions of the child shell. Imagery for the child’s head is provided by a specific head

projector. As such, we present projected target results for the two projectors separately, along with

summary results across them both.

6.4.1 Projector Targets

The feature scan for the child surface consisted of nearly 4000 total features projected onto the

surface, with approximately half from each of the two projectors. Below, we present visualizations

of projector target classification and localization results separately for the two projectors along

with summary results across the entire set of projected targets.
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6.4.1.1 Projection Space

The projection space algorithm successfully classified 3899 of the projected feature samples across

the two projectors. Processing executed in 20.41 milliseconds on average (5.99 milliseconds for

detection alone).

Projected-target-detection distance: Figure 6.25 and Figure 6.26 show summary projected-

target-detection distance results for the body and head projectors, respectively. The body projector

covers a larger physical volume, requiring more cameras to image; while target-detection distances

are relatively low in general (Figure 6.25a), there are a few large errors visible at certain curved

parts of the child’s arm and face (shown in projector space in Figure 6.25b and textured on the

touch mesh in Figure 6.25c). Several of the projected targets on the face are significantly distorted

due to the orientation of the body projector relative to this region, and some targets in this region

are not visible to at least two cameras. By comparison, the projected-target-detection results for

the head projector are consistently low (Figure 6.26a). In this case, some of the projected fea-

tures on one of the curved parts of the child’s face are not successfully localized, again due to

an insufficient number of cameras capable of imaging these regions, as shown in Figure 6.26b

and Figure 6.26c. The average projected-target-detection distance across the entire collection of

features is 0.0473 cm.

Projected target confidence score: Projection space algorithm confidence scores are summarized

for the body and head projector targets in Figure 6.27 and Figure 6.28, respectively. Scores across

both projectors are comparable, with most over 0.7 and a variety of lower scores spread out across

the targets (Figure 6.27a and Figure 6.28a); the overall average confidence score for the entire set

of targets from both projectors is 0.824. Targets with lower confidence scores are located in similar

regions, such as the curved parts of the face and shoulders, as seen in the visualizations in projec-

tion space (Figure 6.27b and Figure 6.28b) and on the 3D mesh (Figure 6.27c and Figure 6.28c).
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.25: Projection space algorithm results for the child surface: distance (centimeters)
between localized projected targets and the 3D lookup table correspondences. Results are shown
for the body projector, which covers the majority of the child shell.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.26: Projection space algorithm results for the child surface: distance (centimeters)
between localized projected targets and the 3D lookup table correspondences. Results are shown
for the head projector, which covers the head portion of the child shell.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.27: Projection space algorithm results for the child surface: multi-camera agreement
score for projected targets. Results are shown for the body projector.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.28: Projection space algorithm results for the child surface: multi-camera agreement
score for projected targets. Results are shown for the head projector.
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Furthermore, the projection space algorithm assigns lower confidence scores to targets projected

on parts of one of the child’s arms. In general, the targets with low confidence scores tend to have

correspondingly higher target-detection distances.

6.4.1.2 Plane Sweep

The plane sweep algorithm successfully classified 3910 of the feature scan samples displayed by

the two projectors. On average, the entire pipeline operated in 9.52 milliseconds, and classification

alone executed in 0.68 milliseconds.

Projected-target-detection distance: Plane sweep projected-target-detection distances are sum-

marized in Figure 6.29 and Figure 6.30 for the body and head projectors of the child surface,

respectively. The majority of the distances are close to 0, with an overall average of 0.0223 cm

across the two projectors (Figure 6.29a and Figure 6.30a). As with the projection space algorithm

results, there are a few targets with relatively high localization errors, generally corresponding to

certain curved regions of the child surface such as the arm and head, as seen in the visualizations

in projector coordinate space (Figure 6.29b and Figure 6.30b) and in 3D context on the touch mesh

(Figure 6.29c and Figure 6.30c).

Projected target confidence score: Figure 6.31 and Figure 6.32 show the plane sweep confidence

scores for the projected targets from the body and head projectors, respectively. Nearly all of the

targets were assigned to the plane closest to the surface, indicating extremely high confidence of

touch classifications (Figure 6.31a and Figure 6.32a). The remaining targets—assigned to planes

within 0.2 cm of the surface and thus still classified with high confidence—are generally on the

periphery of the shell or on the curved parts of the face. Figure 6.31b and Figure 6.32b show these

results in the coordinate spaces of the two projectors, while Figure 6.31c and Figure 6.32c visualize

them directly on the 3D child surface touch mesh.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.29: Plane sweep algorithm results for the child surface: distance (centimeters) between
localized projected targets and the 3D lookup table correspondences. Results are shown for the
body projector.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.30: Plane sweep algorithm results for the child surface: distance (centimeters) between
localized projected targets and the 3D lookup table correspondences. Results are shown for the
head projector.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.31: Plane sweep algorithm results for the child surface: minimum union plane (cen-
timeters) for projected targets. Results are shown for the body projector.
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(a) Graph over feature scan samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.32: Plane sweep algorithm results for the child surface: minimum union plane (cen-
timeters) for projected targets. Results are shown for the head projector.
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Table 6.7: Projector target results summary for the child surface.

Algorithm Successful Localization Confidence Score Runtime

Projection space 3899 0.0473 cm 0.824
Detect: 5.99 ms
Total: 20.41 ms

Plane sweep 3910 0.0223 cm
0 cm: 99.77%
0.1 cm: 0.20%
0.2 cm: 0.03%

Detect: 0.68 ms
Total: 9.52 ms

6.4.1.3 Summary

Table 6.7 summarizes the results for the projected target evaluation on the child surface for the

projection space and plane sweep algorithms. The projected-target-detection distances across the

body and head projectors are shown in Figure 6.33.

As in many of the preceding results, the plane sweep algorithm outperformed the projection space

algorithm by all of the considered metrics. The plane sweep algorithm successfully classified more

projected targets, and the resulting target-detection distances are less than half of those produced

by the projection space algorithm. In terms of confidence scores, the plane sweep classified almost

99.8% of the targets as touches with the highest possible confidence, whereas the projection space

algorithm assigned relatively low classification scores to many of the targets.

Finally, the difference in execution time between the two algorithms is significant. As the child

surface requires two projectors for image coverage, the runtime requirements for the projection

space algorithm increase: potential camera contours must be converted to the coordinate spaces of

both projectors, and the results from each projector must be subsequently merged. Likewise, both

algorithms must consider seven total cameras on Prototype Rig II, compared to the four cameras

for the preceding surfaces on Prototype Rig I. As a result, the projection space algorithm required

20.41 milliseconds for execution, with classification operating in 5.99 milliseconds. However, the
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overall execution time of the plane sweep was only 9.52 milliseconds on average, with classifica-

tion executing in 0.68 milliseconds.

Both algorithms experienced a few difficulties localizing targets on regions of high curvature on

the child shell. Furthermore, some targets were missed due to insufficient camera coverage; only a

single camera was capable of imaging targets in these regions, which does not provide the neces-

sary 3D context for the two algorithms to localize the targets on the surface. These issues can be

addressed through the use of additional cameras across the child surface.
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Figure 6.33: Comparison of projection space (blue) and plane sweep (red) algorithm results: dis-
tance (centimeters) between localized projected targets and the 3D lookup table correspondences
for the child surface, shown across the samples of the feature scan over both the body and head
projectors. On average, the plane sweep distances are roughly half the distances produced by the
projection space algorithm.
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6.4.2 Touch Targets

As described previously, touch sensing on the child surface on Prototype Rig II is supported by

three touch sensing cameras. Four additional cameras that are unable to sense infrared light are

used to aid in the calibration and surface reconstruction process. The three cameras used for touch

detection are oriented toward the head of the surface, since the touch interactions we target are

located there (as demonstrated in Section 5.4). Thus, the touch target results presented below arise

from visual targets projected by only the head projector on Prototype Rig II, totaling around 240

captured touch samples.

6.4.2.1 Projection Space

Of the touch targets, the projection space algorithm successfully classified 239. On average, the al-

gorithm required 15.87 milliseconds to completely process images, with detection alone operating

in 5.26 milliseconds.

Touch-target-detection distance: Projection space algorithm touch-target-distance results are

summarized in Figure 6.34. These results are similar to those obtained on the other surfaces, with

an average distance of 0.1751 cm (Figure 6.34a). Some of the highest distances, on the order of

0.5 cm, accompany targets located on the periphery of the head of the child surface (Figure 6.34b

and Figure 6.34c). As with the projected target results, some regions on the curved parts of the

face are not successfully localized due to insufficient camera coverage.

Touch target confidence score: Confidence scores from the projection space algorithm for the

touch targets are shown in Figure 6.35. The average multi-camera agreement score is 0.621 across

the targets, though many are assigned confidences of less than 0.5 (Figure 6.35a). As seen in

the visualizations in projector space and on the 3D touch mesh (Figure 6.35b and Figure 6.35c,
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respectively), regions with low confidence detections generally correspond to the curved parts of

the head of the child surface along with certain regions on the neck.

Touch/hover classification: Figure 6.36 shows the projection space algorithm touch/hover classifi-

cation results for the child surface. In general, the hovers are classified with confidence scores rang-

ing up to 0.4; however, many touches are assigned confidence scores in this range (Figure 6.36a).

Overall touch/hover classification accuracy is plotted in Figure 6.36b, along with individual clas-

sification accuracy for touches and for hovers. The projection space algorithm misclassifies more

of the touch and hover samples on the child surface than on the preceding ones. With a confidence

score threshold of 0.4, it correctly classifies only 89.66% of the targets—84.94% of the touches

and 97.32% of the hovers.

6.4.2.2 Plane Sweep

The plane sweep touch detection algorithm processed 238 of the touch targets on the child surface,

executing in 10.53 milliseconds on average. Detection alone required 0.61 milliseconds.

Touch-target-detection distance: Plane sweep touch-target-detection distances are summarized

in Figure 6.37. Compared to the projection space results, these distances occupy a smaller range,

with an average of 0.1638 cm and a maximum of just over 0.6 cm (Figure 6.37a). However, the

distances are lower for the periphery of the child surface head, with the highest errors generally

clustered around the neck region. These distances are visualized in projection space in Figure 6.37b

and textured on the 3D touch mesh in Figure 6.37c.

Touch target confidence score: Figure 6.38 presents the confidence scores assigned by the plane

sweep algorithm to the set of touch targets on the child surface. Around 80% of these touch

targets are assigned to the plane closest to the surface, indicating the highest confidence of a touch.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.34: Projection space algorithm results for the child surface: distance (centimeters)
between localized touch targets and the 3D lookup table correspondences.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.35: Projection space algorithm results for the child surface: multi-camera agreement
score for touch targets.
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Figure 6.36: Projection space algorithm results for the child surface: touch/hover classifica-
tion. (a) Confidence scores across touch and hover samples. (b) Overall touch/hover classification
accuracy by confidence score threshold.

The remaining targets are assigned to planes within 0.2 cm of the surface, which similarly suggest

high touch confidence (Figure 6.38a). Interestingly, the regions with the highest touch-target-

detection distances are still strongly classified as touches. Instead, lower confidence is assigned to

regions by the left eye of the child surface, as visualized in projection space (Figure 6.38b) and on

the 3D mesh (Figure 6.38c).

Touch/hover classification: Child surface touch/hover classification results for the plane sweep

algorithm are plotted in Figure 6.39. While the touch targets are all classified as touches with high

confidence—the plane with the minimum union area is close to the surface—several of the hovers

are erroneously classified as touches (Figure 6.39a). However, in terms of classification accu-

racy, the plane sweep algorithm outperforms the projection space algorithm on the child surface.
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(a) Graph over touch samples. (b) Results shown in projection space.

(c) Results shown in two views in 3D space on the child touch mesh S.

Figure 6.37: Plane sweep algorithm results for the child surface: distance (centimeters) between
localized touch targets and the 3D lookup table correspondences.
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(a) Graph over touch samples. (b) Results shown in projection space.
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Figure 6.38: Plane sweep algorithm results for the child surface: minimum union plane (cen-
timeters) for touch targets.
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Figure 6.39b presents the classification accuracy for the overall touch/hover dataset and for the in-

dividual touch and hover datasets using various thresholds for the minimum union plane. The plane

sweep algorithm achieves its highest overall accuracy of 96.63% (100% of touches and 91.22% of

hovers correctly classified) with a minimum union plane threshold of 0.2 cm.
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Figure 6.39: Plane sweep algorithm results for the child surface: touch/hover classification.
(a) Confidence scores across touch and hover samples. (b) Overall touch/hover classification ac-
curacy by confidence score threshold.

6.4.2.3 Summary

A summary of the touch target results on the child surface for both the projection space and

planes sweep algorithms is shown in Table 6.8. Touch-target-detection distances are plotted in

Figure 6.40. Finally, touch/hover classification results are summarized in Table 6.9.

233



Table 6.8: Touch target results summary for the child surface.

Algorithm Successful Localization Confidence Score Runtime

Projection space 239 0.1751 cm 0.621
Detect: 5.26 ms
Total: 15.87 ms

Plane sweep 238 0.1638 cm
0 cm: 78.57%

0.1 cm: 17.65%
0.2 cm: 3.78%

Detect: 0.61 ms
Total: 10.53 ms

The projection space and plane sweep algorithms correctly classified 239 and 238 of the touch

targets, respectively. However, by the remaining metrics, the plane sweep algorithm achieved the

best results. In particular, the plane sweep algorithm localized the touch targets with lower target-

detection distances (0.1638 cm compared to 0.1751 cm) and classified the targets with higher touch

confidence. As a result, it correctly classified around 96.6% of the touch and hover samples, while

the projection space algorithm achieved an overall accuracy of about 89.7%. Additionally, the

plane sweep algorithm executed significantly faster than the projection space algorithm. Overall,

the plane sweep processed targets in 10.53 milliseconds on average (compared to 15.87 millisec-

onds for the projection space algorithm). The difference is even more significant when we consider

the execution time specific to detection alone: 0.61 milliseconds for the plane sweep algorithm and

5.26 milliseconds for the projection space algorithm.

Table 6.9: Touch/hover classification results summary for the child surface.

Algorithm Best Accuracy Score Threshold

Projection space 89.66% (84.94% touch, 97.32% hover) 0.4

Plane sweep 96.63% (100% touch, 91.22% hover) 0.2 cm
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Figure 6.40: Comparison of projection space (blue) and plane sweep (red) algorithm results:
distance (centimeters) between localized touch targets and the 3D lookup table correspondences
for the child surface, shown across the set of touch samples. Both algorithms perform about the
same on the touch samples, with the plane sweep algorithm achieving slightly lower distances.

6.5 Algorithm Comparison

Table 6.10 compares the results achieved by the projection space and plane sweep algorithms on

the bowl, head, and child surfaces. With the exception of the touch targets on the bowl surface,

the plane sweep target-detection distances were lower than those from the projection space algo-

rithm. In particular, the plane sweep projected-target-detection distances were generally half those

of the projection space algorithm, indicating better modeling of the observed camera-projector cor-

respondences from the feature scan in the preprocessing phase. Both algorithms localized detected

user touches for all surfaces within less than 2 mm from the intended targets on average.

Touch/hover classification results were comparable for both algorithms on the bowl surface, with

both classifying nearly all samples correctly. However, the plane sweep algorithm correctly clas-
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sified more of the touch and hover targets on the head and child surfaces than the projection space

algorithm. This is perhaps due to the more direct utilization of three-dimensional context by the

plane sweep algorithm as compared to the projection space algorithm, which collapses images of a

potential touch or hover event into one two-dimensional coordinate space per projector. The child

surface features the most significant difference in the results: the plane sweep correctly classified

approximately 96.6% of the touch and hover targets compared to only 89.7% for the projection

space algorithm. The larger size and optical properties of the child surface contribute to these

classification difficulties for both algorithms, specifically due to challenges in segmenting camera

imagery into candidate event contours.

Finally, the plane sweep algorithm outperformed the projection space algorithm in terms of ex-

ecution time across all evaluations. For the head and bowl surfaces, the plane sweep classified

and localized targets five times faster than the projection space algorithm. The difference is more

pronounced for the child surface. While both algorithms are impacted by the seven cameras of

Prototype Rig II—compared to only four for the bowl and head surfaces on Prototype Rig I—the

two projectors used for the child surface require additional computation for the projection space

algorithm, which must now convert camera imagery to two projectors and merge results. However,

the plane sweep algorithm operates independently of the number of projectors. As a result, the

projection space algorithm execution time increases significantly for the child surface compared to

the bowl and head surfaces, while the plane sweep algorithm execution time increases only a small

amount. Still, it is important to note that both algorithms achieved real-time performance on all

surfaces, processing camera imagery faster than it was captured.
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Table 6.10: Summary of results for the projection space and plane sweep touch detection algo-
rithms, evaluated on the bowl, head, and child surfaces. For projector and touch targets, we provide
target-detection distances and overall execution times, with the execution time specific to the de-
tection routine provided in parentheses. For touch/hover classification, we include the best overall
accuracy and the confidence score threshold used to achieve it.

Surface Data Projection Space Plane Sweep

Bowl Projector
0.0226 cm

8.85 (2.79) ms
0.0088 cm

6.37 (0.50) ms

Touch
0.1311 cm

9.90 (2.83) ms
0.1342 cm

7.63 (0.63) ms

Classification

Total: 99.60%
Touch: 99.66%
Hover: 99.50%
Threshold: 0.3

Total: 99.80%
Touch: 100%

Hover: 99.50%
Threshold: 0.4 cm

Head
Projector

0.0256 cm
9.43 (3.38) ms

0.0132 cm
6.71 (0.60) ms

Touch
0.1623 cm

10.53 (3.31) ms
0.1560 cm

7.81 (0.74) ms

Classification

Total: 96.92%
Touch: 96.66%
Hover: 97.52%
Threshold: 0.4

Total: 99.43%
Touch: 99.44%
Hover: 99.39%

Threshold: 0.2 cm

Child

Projector
0.0473 cm

20.41 (5.99) ms
0.0223 cm

9.52 (0.68) ms

Touch
0.1751 cm

15.87 (5.26) ms
0.1638 cm

10.53 (0.61) ms

Classification

Total: 89.66%
Touch: 84.94%
Hover: 97.32%
Threshold: 0.4

Total: 96.63%
Touch: 100%

Hover: 91.22%
Threshold: 0.2 cm
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CHAPTER 7: USER STUDIES

In this chapter, we describe controlled user studies examining various aspects about our proposed

touch sensing methodology. First, we cover a formative study designed to obtain qualitative feed-

back on the usefulness of the paradigm in a healthcare training scenario involving nursing student

assessments of a touch-sensitive physical-virtual patient [33, 57, 146]. The second study concerns

the effects of mismatches between the physical and visual perceptions of a touch interface—for

instance, when virtual content is displayed on a physical surface with mismatched geometry [70].

7.1 Formative Study: Stroke Patient Simulation

This section replicates portions of the following published works:

• “Preliminary assessment of neurologic symptomatology using an interactive physical-virtual

head with touch,” by Salam Daher, Laura Gonzalez, and Gregory Welch, presented at the

International Meeting on Simulation in Healthcare (IMSH) 2016 [33].

• “Student nursing assessment of discrete neurology symptoms using an interactive physical

head,” by Laura Gonzalez, Salam Daher, Jason Hochreiter, and Gregory Welch, presented

at the International Nursing Association for Clinical Simulation and Learning (INACSL)

2016 [57].

• “Interactive rear-projection physical-virtual patient simulators,” by Gregory Welch, Salam

Daher, Jason Hochreiter, and Laura Gonzalez, presented at Medicine Meets Virtual Reality

(NextMed/MMVR) 2016 [146].
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Early detection and treatment of stroke is of paramount importance to reduce damage to the brain,

as certain treatments lose effectiveness within a few hours following the onset of symptoms [121].

As a tool to aid the early recognition of stroke, the American Stroke Association (ASA) suggests

the mnemonic FAST [134]. The letters stand for the following warning signs:

• F: face drooping. A person experiencing a stroke may exhibit drooping on one side of the

face, and they may be unable to perceive touch on the affected side. The ASA recommends

checking for asymmetry in the person’s smile.

• A: arm weakness. The person may experience weakness or numbness in one of the arms and

have difficulty raising it.

• S: speech difficulty. This often presents as slurred speech or difficulty repeating simple

phrases.

• T: time to call 9-1-1. Someone who exhibits these symptoms may be experiencing a stroke.

The ASA recommends immediately calling emergency services and keeping track of when

the person first began showing symptoms.

In addition to the mnemonic, the ASA lists several other potential warning signs of stroke. These

include difficulty understanding speech, one-sided numbness, vision problems, dizziness, and sud-

den severe headache.

Stroke recognition training generally involves the use of task trainers and standardized patients.

Standardized patients are capable of exhibiting some of the symptoms of stroke, such as slurred

speech and decreased touch sensation, but they are not able to realistically simulate signs such as fa-

cial droop [82] and lid lag. Simulated stroke patients are not commonly used in healthcare training

due to their inability to accurately portray certain symptoms, such as localized weakness, perhaps

resulting from a general lack of simulators designed specifically for stroke assessment [55].

239



As many of the signs and symptoms of stroke are related to the face—for example, involving

appearance, vocals, pain expression, and touch perception—our physical-virtual patient head pro-

vides a suitable platform for stroke simulation. We created virtual content corresponding to visual,

auditory, and touch-related symptoms of a stroke and their complementary representations in a

healthy patient, which we examined in a preliminary user study [33, 57, 146]. The content, de-

scribed in more detail in Chapter 4, included patient dialog, with slurred speech for the stroke

patient; various animations, including facial expressions and manipulations of the patient’s eyes

and lips; and audio responses that indicated the healthy patient’s ability and the stroke patient’s

inability to sense touch in certain locations. In a formative study, nursing students assessed this

content across two conditions:

1. The PVHT condition features the physical-virtual head surface with automated touch sens-

ing as described in Chapter 3. The head surface is situated near a simulated mannequin

body.

2. The MV condition features a standard physical mannequin augmented with virtual imagery

from a nearby computer monitor.

Both conditions presented the same scenario with signs and symptoms suggesting a stroke. In the

PVHT condition, the virtual imagery was presented directly on the head surface, which was further

capable of touch interactions (as shown in Section 5.3). This included the ability to examine the

patient’s eyes, mouth, and sensation of touch. Meanwhile, in the MV condition, the virtual imagery

was instead shown on a separate computer monitor. In both conditions, simulated vital signs were

also displayed on the monitor. The two conditions are shown in Figure 7.1.

This study featured a between-subjects design. A total of 23 nursing students assessed the simu-

lated patient presented by one of these two conditions. We observed their ability to recognize the
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asymmetry of facial expressions, their assessment of the patient’s perception of touch, the specific

diagnostic questions they asked, and their evaluation of the patient’s speech. After their assess-

ments, students were prompted to answer the following free-response question: “Please comment

on anything that would help us better understand your interaction with the patient—you can touch

upon any topic you like, such as where you think such virtual humans could be beneficial, what

they should look like, how they should behave, and so on.”

(a) (b)

Figure 7.1: The two experimental conditions of the stroke study. (a) PVHT condition, with the
physical-virtual touch-sensitive head surface. (b) MV condition, with a physical mannequin and
virtual imagery on a separate display.

In subjective questionnaire results, the students who participated in the PVHT condition com-

mented on the value of the physicality of the head, the realism of the voice in terms of clinical

presentation, and the ability of the patient to communicate with them. Many expressed appre-
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ciation for the touch interaction capabilities and noted that the verbal and non-verbal cues were

tightly linked; in particular, one commented that this synchrony allowed her to perform most of

the standard neurological and head assessment tasks she learned to perform. Several participants

praised the realism of this presentation, noting that it supported treatment of the simulated patient

“as if she were a real person” and that it was “easier to work with and much more realistic than

any of the [other] mannequins.” A common sentiment among participants was the desire to extend

the technology to a full-body system to allow for the simulation of symptoms and direct touch

interaction for conditions that are not isolated to the head.

The nursing students who participated in the MV condition described the separate visual display

as being a “great bonus” over standard mannequins with static appearances. In general, the par-

ticipants rated the realism of the visuals highly, including simulated symptoms specific to stroke

(such as right-sided sagging). Compared to the PVHT condition, the MV was perceived to be less

able to communicate freely—that is, not speaking unless directly prompted. However, when asked

“what would you have done differently if [the patient you assessed] was a human patient instead

of a simulator?” more of the MV participants indicated that they would have called for a doctor

or the nurse in charge of the healthcare facility, whereas the PVHT participants tended to focus on

tests they would have performed on the rest of the patient’s body, if it were present.

7.2 Physical-Virtual Mismatches

When users interact with 3D content via touch input, they are affected by their physical and visual

perceptions of the interface. The level to which the geometry of the touch interface matches the

geometry of the displayed content can vary. Additionally, the source of virtual content can have

performance implications. In this study, we examined how mismatches between physical and

visual perceptions can affect cognitive load and performance in an AR touch task [70]. Across
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four conditions, our study design varied the degree of physical fidelity—how well the physical and

virtual content matched—and the visual mechanism used to display virtual imagery (Figure 7.2).

Touch performance, cognitive load, usability, and subjective preferences were all influenced by the

physical interface used to interact with the virtual content and the source of the imagery.

Figure 7.2: Participants interacted with four representations of a 3D virtual head that varied in
physical form and visual display.

This section substantially replicates a peer-reviewed paper, “Cognitive and touch performance ef-

fects of mismatched 3D physical and visual perceptions,” published in the proceedings of IEEE

Virtual Reality 2018, by Jason Hochreiter, Salam Daher, Gerd Bruder, and Greg Welch [70]. In

the context of this dissertation research, the presented study focuses on touch interactions on the
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physical-virtual plane and head surfaces on Prototype Rig I described in Chapter 4, facilitated by

the projection space touch detection method described in Section 3.2.2.1. An additional interaction

paradigm involving free space touching, separate from this algorithm, was specifically created to

support one of the study conditions.

7.2.1 Introduction

This study concerned an AR touch task on a virtual human head model displayed to users in various

physical-virtual representations. Participants were tasked with accurately touching specific targets

on the virtual head across these representations; in one study phase, they had limited time with

which to select from one of three targets based on size while completing a concurrent counting task.

As touch performance metrics, we considered accuracy, response time, target selection, usability,

cognitive load, and various subjective ratings. Our four physical-virtual representations considered

two dimensions, each with two levels:

1. The physical fidelity of the display surface as a physical touch interface for the virtual

content—either matching or non-matching

2. The visual mechanism by which the virtual content was displayed to users—either through

projector-based spatial augmented reality (SAR) or an AR head-mounted display (HMD)

The experiment thus featured four corresponding conditions:

1. SAR Head: rear-projection spatial augmented reality (SAR) imagery displayed on a match-

ing physical head-shaped surface

2. SAR Plane: rear-projection SAR imagery displayed on a flat surface
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3. HMD Head: HMD-based AR imagery registered to a matching physical head-shaped sur-

face

4. HMD Hologram: HMD-based AR imagery with no physical surface present

Spatial Augmented
Reality

HMD-Based
Augmented Reality
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Figure 7.3: The four study conditions each differed in their physical and virtual representation of
a 3D human head model. Across one dimension, the physical object with which users interacted
either matched or did not match the geometry of the virtual object. Separately, the virtual object
was displayed either using a projector or an HMD. For the HMD conditions, the imagery above is
simulated.

These conditions are summarized in Figure 7.3. For the conditions involving physical touch

surfaces—SAR Head, SAR Plane, and HMD Head—participants interacted with the virtual con-

tent directly by touch, using the touch sensing methodology described in Chapter 3. In the HMD
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Hologram condition, no physical surface was present: participants instead placed their finger at

the desired location and then indicated a “touch” by pressing a button on a separate input device

(Figure 7.4). This approach, involving the localization of the user’s finger in midair, was created

specifically for this study.

When designing these four conditions, we had three primary goals. First, we aimed to create

reasonable, ecologically valid interfaces that reflect how these paradigms are used in AR touch

tasks in practice. For example, our decision to use an external input device in the HMD Hologram

condition follows from the typical inclusion of such interactive devices with current HMDs. This

may increase the cognitive load experienced by users, but such load is inherent to these interfaces,

and it is this load we wished to measure. Furthermore, we wanted to ensure consistency across

the four conditions. While HMD-based free-space interaction methods could instead allow users

to indicate a touch by leaving their fingers in place for several seconds or performing a gesture,

this would lead to inconsistencies in response time measures. Finally, to specifically investigate the

impacts of physical-virtual mismatches, we designed our conditions so that participant interactions

followed naturally from their physical and visual perceptions of each representation. This includes

limitations that are imposed by the conditions; for instance, visually searching for targets on a

3D surface may require examining it from multiple viewpoints, which is not the case for planar

surfaces. We intentionally omitted visual, audio, or other aids for target search and selection,

which would interfere with the perceptions of participants and could induce additional unintended

cognitive load.

Here, we briefly summarize the major findings of the study:

• Touch performance was highest for the two SAR conditions. Touch errors, computed as the

distance between displayed targets and the locations of participant touches, were comparable

for the SAR Head and SAR Plane.
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Figure 7.4: Midair touch condition. Top: participant wearing a HoloLens interacting with a virtual
3D head hologram with no physical surface present. Bottom: example (simulated) participant view,
with virtual imagery provided by the HoloLens.
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• Our participants were less accurate in selecting targets of specified sizes in the two HMD

conditions than in the two SAR conditions.

• According to subjective questionnaire results, participants found the SAR Head to be the

least demanding of the four conditions. The two SAR conditions were considered roughly

equal in terms of usability.

• Participants found the SAR Head to be the easiest condition in terms of accurately touching

the targets. The SAR Plane was considered to be the easiest in terms of visually locating

targets by over 50% of participants, since all targets were visible from a single vantage

point. However, the SAR Head was ranked as the easiest in this regard by almost 40% of

users, despite requiring some physical effort to view certain locations.

• Participants overwhelmingly preferred interacting with the SAR Head compared to the other

three conditions, finding it largely intuitive and user-friendly. The second-most preferred

condition was the HMD Head; although it was considered to be more difficult and less intu-

itive than the SAR Plane, participants expressed appreciation for interacting with a matching

physical object and for the novelty of the HoloLens. However, this novelty did not outweigh

the difficulty of the HMD Hologram condition, which was the least preferred.

7.2.2 Experimental Setup

Our study platform (Figure 7.5), common to all conditions, uses Prototype Rig I and the physical-

virtual plane and head surfaces (Chapter 4). To support touch sensing, we used four Point Grey

Blackfly monochrome cameras (resolution 640 × 512 capturing at 30 frames per second) with re-

movable 780 nm IR filters and three IR illuminators (850 nm). Imagery for the two SAR conditions

is provided by an AAXA P300 pico projector (resolution 1920× 1080). The cameras and projec-

tor are jointly calibrated, following the process outlined in the preprocessing phase of Chapter 3.

248



Figure 7.5: Study platform, following the general setup of Prototype Rig I from Chapter 4. Infrared
lights and cameras are used for touch sensing, with registered graphics from a projector. In some
conditions, virtual imagery is instead provided by a HoloLens. We also considered interactions on
a plane surface and in midair.
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For the HMD conditions, we used a Microsoft HoloLens to display virtual imagery of the head

model. For the HMD Head condition, virtual imagery was aligned to the physical head surface

using the physical-virtual alignment method discussed in Section 3.4. Once the alignment was

performed, we created a spatial anchor in the HoloLens that preserved this position over time. The

physical head was removed for the HMD Hologram condition; augmented imagery was presented

in the same physical location the head previously occupied via the spatial anchor.

We made a few modifications to this platform to support the four experimental conditions. To

allow for simple removal and replacement, we attached our physical head surface to the aluminum

frame with hinges. This ensured that the head had a constant position. Similarly, we constructed a

wooden support for our planar surface that attaches firmly to the top of the platform. As a safety

mechanism, we placed a wooden guard with a wire grid on top of the frame during the HMD

Hologram condition to prevent participants from accidentally touching internal equipment.

7.2.2.1 Touch Sensing

Touch input for the four conditions was achieved using two related camera-based methods.

1. The first method, used in the conditions featuring a physical rear-projection surface (SAR

Head, SAR Plane, and HMD Head), employs the relational lookup table architecture out-

lined in Chapter 3, specifically using the projection space touch sensing algorithm of Sec-

tion 3.2.2.1. Additionally, to support touch sensing alongside the use of the HoloLens in the

HMD Head condition, we follow the special considerations discussed in Section 3.4.

2. The second method was designed specifically for the HMD Hologram condition to allow

for free-space touching. Instead of processing camera imagery for potential touches on a

physical surface, the touch sensing system localizes a user’s finger in 3D space. When user
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input is indicated through the separate input controller, this 3D position is used as the touch

location. We asked participants to wear a special glove experimentally determined to not

reflect IR light with a hole cut in the index fingertip to simplify localization.

Rather than creating a specific virtual model for the plane surface, we forward-projected the full

three-dimensional head model onto it and modified the internal set of lookup tables accordingly.

As a result, touches detected on the plane were immediately converted to their corresponding

positions on the 3D head model. This allowed us to use the same semantic content engine for all

conditions, with some additional functionality to support the HoloLens interactions.

7.2.2.2 Visual Stimuli

For the two SAR conditions, virtual imagery is provided by a projector. Following our previously

described touch sensing setup, this requires calibrating the projector and determining its geometric

relationship to the physical surfaces so that the appropriate projection image can be computed.

For the two HMD conditions, visuals are instead provided by a Microsoft HoloLens (Figure 7.6).

In particular, for the HMD Head condition, the hologram is registered to the physical head sur-

face; for the HMD Hologram condition, the physical head is removed, and the hologram is pre-

sented in the same physical location the head previously occupied. To support this, we used the

physical-virtual alignment procedure discussed in Section 3.4. While developing this method, we

determined that roughly sixty control points on the virtual model with two corresponding gaze

vector captures resulted in reasonably close alignments. In practice, they required small manual

translational adjustments on the order of 1 or 2 cm and minimal rotational tweaks. For the study,

we performed this alignment procedure only one time, using the same transformation across all

participants.
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Figure 7.6: Alignment of a virtual HoloLens hologram to a physical object. Top: participant wear-
ing a HoloLens interacting with a virtual 3D head hologram on a matching head-shaped surface.
Bottom: example (simulated) participant view, with virtual imagery provided by the HoloLens.
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7.2.2.3 Computing

The study setup closely follows the methodology presented throughout Chapter 3 and the imple-

mentation described in Chapter 4. Touch sensing and rendering were completely decoupled, with

one computer processing camera imagery to detect touches and a second computer running a Unity

server. Along with controlling the visual stimuli displayed to users, the Unity server also handled

study state and data logging routines. The same Unity server managed all four study conditions,

featuring the same semantic content engine; in particular, detected touches across all conditions

were always linked to their corresponding positions on the same virtual head model. For the SAR

conditions, the Unity server created appropriate projected imagery through a virtual camera with

the physical projector’s calibration data applied to it. To support the two HMD conditions, the

server interfaced with a HoloLens client containing the same virtual head model for display in the

HMD. After performing the physical-virtual alignment procedure, we stored a spatial anchor so

that the HoloLens would render the virtual head imagery on top of the physical head surface. The

partial IR transparency of the head surface, along with reflective materials in the physical setup,

prevented the HoloLens from obtaining reliable environmental maps, so we added several color

images with asymmetric features to the study environment to help preserve the anchor over time.

7.2.3 Experiment

Next, we present an overview of our within-subjects experiment. Participants experienced all four

conditions in counterbalanced order using a Latin square design. Each condition featured two

phases, both focusing on accurate target selection via touch on a physical-virtual representation of

a 3D human head model.
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7.2.3.1 Participants

Twenty-four people (14 males), all students or professionals within our local university community,

participated in the study. Their ages ranged from 18 to over 50. Eight of the participants wore

glasses during the experiment, and no participants reported any visual or motor disorders. We

asked participants to interact with the physical-virtual content using their dominant hand; twenty-

two were right-handed. Of the two left-handed participants, one used the non-dominant hand

due to a medical condition. Only three subjects had previously used a HoloLens, and fourteen

total had some level of experience interacting with 3D content. Prior to the start of the study,

we measured each participant’s interpupillary distance (IPD), used by the HoloLens to accurately

generate virtual content (M = 6.12 cm, SD = 0.3 cm).

7.2.3.2 User Tasks

First, we created a set of 39 vertices uniformly distributed across the 3D head model (Figure 7.7).

Each vertex had three associated spheres of specific radii—small (5 mm), medium (7.5 mm), and

large (10 mm)—which served as the basis for the visual targets. Rather than displaying the spheres

directly, which would have resulted in different appearances across the four study conditions, we

intersected them with the head geometry, producing consistent targets that were approximately

circular in shape. These targets were displayed individually in the Touch Accuracy Phase and

in sets of three during the Cognitive Load Phase. In both phases, participants were tasked with

touching these targets. In the SAR Head, SAR Plane, and HMD Head conditions, the location of

the first detected contact on the head or planar surface was retained as the participant’s touch; for

the HMD Hologram condition, the location of the participant’s finger at the time he or she pressed

the HoloLens clicker was accepted as the submitted touch.
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Figure 7.7: The set of 39 visual targets displayed to participants during the four study conditions,
distributed across the 3D head model. For the Touch Accuracy Phase, the targets were divided into
three groups: small (5 mm, shown above in red), medium (7.5 mm, green), and large (10 mm blue);
all targets are shown with small sizes above for the purposes of visualization.

7.2.3.2.1 Touch Accuracy Phase

In the first study phase, participants were presented a sequential set of individual targets, and they

were asked to touch the centers of these targets as carefully and precisely as possible with no

time constraints. Here, we were interested in evaluating the touch performance of each participant

across the four study conditions. The set of 39 targets was divided into three groups—13 small, 13

medium, and 13 large—again distributed uniformly across the 3D head model. Figure 7.7 shows

these assignments by color: red for small, green for medium, and blue for large. Each condition

had a preassigned, random sequence of these sized targets, and each individual target appeared

twice. Upon touching each target, participants pressed the spacebar key of a separate keyboard,
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using the same finger they used for touch selections. This advanced the study state to the next

target. Furthermore, this ensured that all touches in the Touch Accuracy Phase started from a

consistent position, allowing for response time comparisons. The keyboard was only used during

this phase, and it was not used to indicate touch input.

There were two dependent variables representing participant touch performance in the Touch Accu-

racy Phase. The first, distance from touch to target, is the Euclidean distance between a displayed

target and the location of the participant’s touch. For the conditions involving a physical surface,

the 3D touch location was obtained directly via the lookup table; for the HMD Hologram condi-

tion, the participant’s finger was triangulated in 3D space. The response time reflected the amount

of time that elapsed between the spacebar key press and the participant’s next touch.

7.2.3.2.2 Cognitive Load Phase

In the second study phase, participants were presented with a sequential set of target triplets. Each

triplet comprised one small, one medium, and one large target, each drawn from the original set of

39 targets (Figure 7.8). Participants were responsible for completing two simultaneous tasks during

this study phase. The primary task concerned target size estimation, requiring the participants to

select the medium-sized target by touch (Figure 7.8a). Each condition again had a predetermined,

random sequence of target triplets, and all of the 39 targets were included as the correct answer for

two trials.

Concurrently, participants completed a secondary task. Along with the predetermined sets of target

triplets, each condition had an associated starting number around 500, which participants used in

a mental arithmetic task. For some target triplets, the virtual human closed her eyes. For these

trials, participants were required to subtract 7 from their current count and then verbally report

the result (Figure 7.8b). If the virtual human’s eyes were instead open during a trial, participants
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were instructed to retain the current count and provide no verbal response. The eye behavior of the

virtual human was only allowed to change upon the display of a new target triplet. In some cases,

the virtual human’s eyes remained closed for two consecutive triplets; participants were instructed

to update the count and verbally respond twice in this situation. The eye behavior sequence of the

virtual human was predetermined for each condition.

(a) (b)

Figure 7.8: Example Cognitive Load Phase trials, for which a set of one small, one medium, and
one large target is presented to participants, who must quickly select the medium-sized one. This
phase also included a secondary counting task: given a starting number around 500, participants
would decrement by 7 and provide a verbal update of their number for trials for which the virtual
human’s eyes were closed (b).

Unlike the Touch Accuracy Phase, the Cognitive Load Phase had a time limitation: target triplets

were only shown for 4 seconds, after which the next triplet would automatically appear. Par-

ticipants were asked to give priority to the primary size estimation task and only complete the
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secondary verbal counting task after touching the medium-sized target from the current triplet.

The dual-task paradigm in this phase was intended to provide a means of assessing the mental,

physical, and temporal demands induced by each physical-virtual interface.

The Cognitive Load Phase also featured two dependent variables. The first, selection of correct

target, considered the percentage of trials for which participants correctly touched the medium-

sized target out of the target triplets. The verbal counting task response reflected the participant’s

accuracy in performing the secondary mental arithmetic task and providing verbal responses.

7.2.3.3 Study Procedure

After providing consent and completing a short demographic questionnaire, participants watched

a 2-minute video providing simplified samples of the cognitive load tasks. This provided them

an opportunity to practice the verbal counting task as prompted by the eye behavior of the virtual

human. The video also presented target triplets every 4 seconds, just as in the Cognitive Load

Phase. However, the targets were all the same size, requiring no size estimation or touching. This

was to familiarize participants with the timing of the Cognitive Load Phase trials and to ensure

they understood when verbal counts were and were not required.

Prior to each condition, participants completed a short training phase featuring 6 Touch Accuracy

Phase practice trials and 25 Cognitive Load Phase practice trials on the upcoming physical-virtual

interface. They were given a final opportunity to ask questions. Afterwards, the Touch Accuracy

Phase began. Following this phase was a 60-second break period, during which the virtual imagery

was disabled, allowing participants time to rest their arms, neck, and eyes. Ten seconds prior to the

end of the break, participants were reminded of their starting number for the secondary counting

task. The Cognitive Load Phase began immediately after the break. After the Cognitive Load

Phase, participants completed subjective questionnaires. The NASA Task Load Index (TLX) [63]
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provides a measurement of cognitive load, and the Simple Usability Scale (SUS) [22] concerns the

perceived usability of each physical-virtual interface.

Following completion of the four conditions, participants were asked several subjective questions

relating to their personal difficulty rankings of various aspects of the different interfaces and their

preferences. During a brief followup interview, we asked other qualitative questions regarding

their experiences.

7.2.4 Results

As an overview of the results, we found significant main effects of display condition on the fol-

lowing:

• Touch Accuracy Phase:

– touch-target distance

– response time

• Cognitive Load Phase:

– medium-sized (correct) target selection

– small-sized (incorrect) target selection

• Subjective responses:

– NASA-TLX task load scores

– SUS usability scores

– subjective rankings of the easiest and hardest conditions in terms of both accurately

touching and visually locating targets
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Below, we present these results in more detail. For our analysis, we used repeated-measures

ANOVAs and Tukey multiple comparisons with Bonferroni correction at the 5% significance level.

To confirm normality, we used Shapiro-Wilk tests at the 5% level and QQ plots. When Mauchly’s

test indicated the violation of the sphericity assumption, we corrected degrees of freedom using

Greenhouse-Geisser estimates of sphericity. For the analysis of questionnaire responses, we used

parametric statistical tests, following the ongoing discussion in the field of psychology suggesting

that such tests are valid and potentially more expressive for such ordinal data analyses [85, 88].

7.2.4.1 Touch Performance

During the Touch Accuracy Phase, participants were tasked with touching individual targets as

carefully and precisely as possible. We found significant main effects of display condition on

both dependent measures: touch-target distance (F (1.02, 23.50) = 25.16, p < 0.001, η2p = 0.52)

and response time (F (2.08, 47.90) = 32.45, p < 0.001, η2p = 0.59). Figures 7.9a and 7.9b show

the average Euclidean distance between displayed targets and participant touch and the average

touch time, respectively, for the four study conditions. Pairwise comparisons also revealed signif-

icant differences between all pairs of conditions in terms of touch-target distance (all p < 0.05).

Additionally, according to pairwise comparisons, the HMD Hologram condition had significantly

longer response times than the other three conditions (all p < 0.001).

7.2.4.2 Cognitive Load

During the Cognitive Load Phase, participants performed a size estimation touch task along with

a concurrent mental arithmetic task. Figure 7.10 shows the average percentage of trials for which

participants correctly selected the medium-sized target (Figure 7.10a) or incorrectly chose the

small or large target (Figure 7.10b and Figure 7.10c, respectively).
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Figure 7.9: Results for the Touch Accuracy Phase, separated by study condition. The error bars
show the standard error. (a) Average distance between displayed target and user touch. (b) Average
time taken to touch a target. We found significant main effects of display condition on both touch-
target distance and response time.
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Figure 7.10: Results for the target selection task in the Cognitive Load Phase. (a) The percentage
of trials for which participants correctly touched the medium-sized targets. (b) and (c) The per-
centage of trials for which participants incorrectly touched either the small- or large-sized targets,
respectively. We found significant main effects of display condition on medium (correct) and small
(incorrect) selections.
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We found a significant main effect of display condition on the correct selection of medium tar-

gets (F (1.40, 32.10) = 3.87, p = 0.045, η2p = 0.14) and on incorrect selections of small targets

(F (1.39, 31.99) = 4.83, p = 0.025, η2p = 0.17). However, we did not observe a significant main

effect of display condition on incorrect selections of large targets (F (1.39, 31.88) = 2.52, p =

0.113, η2p = 0.10). Pairwise comparisons revealed a significantly lower percentage of correct se-

lections for the HMD Head condition than for the SAR Plane condition (p = 0.019) as well as

trends suggesting a lower percentage of small selections for the SAR Plane than for the HMD

Head (p = 0.066) and the HMD Hologram (p = 0.062).

Interestingly, we did not observe a significant main effect of display condition on either correct or

incorrect verbal counting task responses.

7.2.4.3 Subjective Responses

Figures 7.11 and 7.12 show the results of the subjective questionnaires (concerning task load and

usability), participant preferences, and participant rankings for the four conditions.

7.2.4.3.1 Task Load

Results for the NASA-TLX questionnaire are shown in Figure 7.11a. Lower values indicate de-

creased task load. We found a significant main effect of display condition on the NASA-TLX

task load scores (F (3, 69) = 3.40, p = 0.023, η2p = 0.129). In particular, pairwise comparisons

revealed significantly higher average task load for the HMD Hologram condition than for the SAR

Head condition (p = 0.033).
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7.2.4.3.2 Usability

Results for the SUS questionnaire are shown in Figure 7.11b. Higher values indicate higher

usability. We found a significant main effect of display condition on the SUS usability scores

(F (1.75, 40.22) = 9.95, p = 0.001, η2p = 0.302). Pairwise comparisons revealed significantly

lower usability for the HMD Hologram condition compared to the SAR Head (p = 0.003) and

SAR Plane (p = 0.002) conditions. Additionally, pairwise comparisons suggested trends for lower

usability for the HMD Head condition compared to the SAR Head (p = 0.074) and the SAR Plane

(p = 0.067) conditions.

7.2.4.3.3 Preferences

After completing the four study conditions, we asked participants subjective questions regarding

their preferred conditions (Figure 7.12a). There was a statistically significant preference for the

SAR Head condition over the other three (z = 2.357, p = 0.018). In particular, participants

generally preferred interactions with a matching surface that provided natural physical touch feed-

back; separately, many participants commented about discomfort due to wearing the HMD, and

all noticed the narrow field of view. Those participants who preferred the HMD Head and HMD

Hologram conditions generally appreciated the novelty of the interface, but there was still a strong

preference for interacting with a physical surface. Participants provided many recurring justifica-

tions for their preferences, including:

The SAR Head was easier to use “because [it was] physically there”

The HoloLens was “uncomfortable” and “very heavy”

The SAR Plane was easier to use because “[I am] used to seeing [imagery] on [a]

screen”
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7.2.4.3.4 Rankings

Additionally, we asked participants to rank the difficulty of the four conditions across two tasks:

accurately touching and visually locating the targets (Figure 7.12b and Figure 7.12c, respectively).

For analysis of these rankings, we calculated the exact Clopper-Pearson confidence interval [30,

51]. In terms of accurately touching targets, the SAR Head was considered to be the easiest

(z = 3.771, p < 0.001) and the HMD Hologram was considered to be the hardest (z = 5.185,

p < 0.001). Likewise, participants found the task of visually locating the targets much easier in

the two SAR conditions (z = 3.674, p < 0.001) and more challenging in the HMD conditions

(z = 2.449, p = 0.014).

7.2.5 Discussion

Overall, we observed a strong preference for the SAR Head condition. Questionnaire results and

recurring subjective comments indicated that this condition was easier to use and more intuitive in

the presented touch task. Because of familiarity with smart phones and touchscreens and the ability

to see all targets from a single viewpoint, many participants found the SAR Plane to be the easiest

condition in terms of visually locating the targets. Interestingly, participants expressed that it was

easier to accurately touch the targets on the SAR Head, even compared to the SAR Plane. Touch-

target distance was indeed the lowest for the two SAR conditions; even though the HMD Head

condition featured touch interactions on the same head-shaped surface as the SAR Head condition,

touch-target distances nearly doubled, perhaps due to the differences in visual display or to the

increased cognitive load of the interface. The HMD Hologram featured the largest touch-target

distances—roughly 2.5 cm on average. Touch response times were generally quite similar across

the SAR Head, SAR Plane, and HMD Head conditions, while response times were noticeably

longer for the HMD Hologram condition.
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The two most preferred conditions, the SAR Head and HMD Head, featured a physical object

whose geometry matched the displayed virtual content. Many participants specifically expressed

the usefulness of interacting with the virtual head on a matching head-shaped object that provides

physical feedback on touch. The two HMD conditions were generally perceived to be more difficult

than the two SAR conditions; indeed, participants tended to select the wrong-sized targets in the

Cognitive Load Phase slightly more frequently in these cases. Several participants mentioned that

the use of an external input device to indicate “touches” during the HMD Hologram condition was

a less enjoyable and less user-friendly experience than the direct touch paradigms. It is important

to note that the preferences and results for the HMD conditions are affected by the attributes of

the HoloLens, such as general comfort, ergonomics, field of view, and the inability for physical

objects (particularly hands) to occlude the augmented imagery. Such issues are inherent to modern

HMDs, and so we expect these results hold in general for similar AR touch tasks.

These results suggest general guidelines for practitioners interested in supporting similar AR touch

tasks, depending on the available equipment and on the importance of usability factors and cogni-

tive load requirements. The use of projected imagery for visual content over HMDs is preferable

for training systems focusing on high touch accuracy, high usability, and low cognitive load; when

possible, the geometry of the physical display surface should match the geometry of the virtual

content. However, physical objects in such touch tasks are not always appropriate for projected

imagery. In such cases, augmenting the object with an HMD leads to similar (but reduced) benefits

compared to free-space interaction, which can be quite challenging and exhibit significantly lower

user touch performance and accuracy.
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Figure 7.11: Results of the subjective questionnaires. (a) NASA Task Load Index (TLX): lower
scores indicate lower mental, physical, and temporal demands. (b) Simple Usability Scale (SUS):
higher scores indicate higher perceived usability. We found significant main effects of display
condition on both scores. These results align with objective user performance across the four study
conditions in terms of touch-target accuracy and response time.
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Figure 7.12: Subjective rankings for the four experimental conditions. (a) Overall preferred con-
dition. (b) and (c) Subjectively ranked easiest and hardest conditions, respectively, in terms of
accurately touching and visually locating the targets. Participants preferred interacting with the
head-shaped surface, since it affords physical feedback on touch, and they found the HoloLens
uncomfortable and disliked the field of view limitations.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK

This dissertation introduced a generalizable system for integrated touch detection and semantic re-

sponse on non-parametric rear-projection surfaces. In Chapter 3, we described a theoretical frame-

work based on a lookup table architecture storing relationships between optical devices (cameras

and projectors), a physical touch surface, and the virtual content registered to and displayed on

the surface. This includes two algorithms for detecting touch using the lookup table (Section 3.2),

along with a related mechanism for associating detected touch input with semantic responses in

the context of the virtual content (Section 3.3). Next, we presented a general software architecture

capable of realizing this framework in Chapter 4; in addition, we discussed two physical prototype

implementations supporting touch interactions on several rear-projection surfaces using this soft-

ware architecture. Chapter 5 covered a variety of semantic content created for these surfaces, along

with illustrative examples of touch-triggered behavior on them. These behaviors include dynamic

imagery changes, such as touch-based painting and object manipulation; dynamic graphical model

changes, such as raising and lowering a virtual human’s eyelids; and hover-based events, such as a

musical interface that produces a note whose pitch is based on surface proximity.

Additionally, we evaluated a variety of system consistency metrics in Chapter 6, demonstrating

that the lookup table accurately encodes device-content relationships; furthermore, in practice, our

system localized datasets of user touch input within less than 2 mm of the intended targets with

low latency across these surfaces. Finally, we investigated the use of this methodology in human-

subject studies (Chapter 7), including an initial exploration of a touch-capable stroke patient sim-

ulator and an examination of the effects of mismatches between physical and visual perceptions in

an augmented reality touch task. In the latter study, we showed that users exhibit improved touch

performance, decreased cognitive load, and greater subjective enjoyment when interacting with

physical surfaces with geometry that matches the virtual content, which our method facilitates.
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The main contributions of this research over typical touch interfaces can be summarized as follows:

• the design and implementation of a relational lookup table architecture that supports touch

sensing on non-parametric surfaces, extending beyond the simple geometric shapes tradi-

tionally used for touch surfaces (such as tabletops);

• the registration of virtual imagery to such physical touch surfaces to support semantically

defined touch responses;

• a plane sweep approach for detecting hover input;

• the novel application of touch input and response to patient simulators; and

• a controlled investigation into the benefits of touch input on content-matched physical sur-

faces.

Here, we briefly consider potential future work in the scope of this research.

Automated or guided camera/projector placement: The placement of cameras and projectors in

this paradigm requires some forethought and potentially some trial and error. While final system

evaluation results can indicate insufficient camera coverage, this only occurs after the system has

been fully calibrated. Instead, we suggest tools that provide some amount of guidance during the

camera and projector placement process to improve overall system performance, a topic which has

been explored in the context of surveillance applications [16] and image-based modeling [50]. This

could potentially include machine learning methods that analytically model and assess alternative

configurations.

Off-surface interactions: The plane sweep algorithm of Section 3.2.2.2 is able to estimate the

distance between an object and the surface. While we presented an initial exploration of this

paradigm in the form of a proximity-based musical instrument (Section 5.1), such interactions
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could be explored in greater detail. For example, in the context of human patient simulation,

neurological exams often require the patient to follow the healthcare provider’s finger with his or

her eyes [127], which could be facilitated as a hover interaction.

Continuous calibration: The preprocessing phase calibration routine, presented in Section 3.2, is

performed a single time prior to system use. In the event that a camera, a projector, or the surface

moves, the calibration process must be repeated. Instead, we expect that continuous online cali-

bration techniques [39] can be employed to maintain a sufficient level of calibration accuracy over

time—for instance, through static calibration markers on the physical rigs and through monitoring

routines that detect when devices have moved.

Novel applications: The comparison of various physical-virtual interfaces in the second human-

subject study presented in Chapter 7 highlights advantages of this touch sensing paradigm in terms

of user performance and cognitive load. We anticipate further benefits afforded by this approach in

facilitating the integrated visual and tactile understanding of the geometric relationships of com-

plex virtual content, such as relative shapes, sizes, and positions. The ability to register these

virtual components to matched-geometry physical touch surfaces with dynamic imagery capabil-

ities could support a variety of novel three-dimensional touch-based applications, such as terrain

maps, anatomical models, telepresence (e.g. [47, 119]), and artistic media.

Given the preliminary feedback from nursing students in the simulated stroke assessment (Sec-

tion 7.1), we anticipate that the addition of touch input capabilities to physical-virtual patient

simulators will provide significant benefits to healthcare training scenarios. These include im-

provements to presence and the ability for learners to perform more realistic diagnostic procedures

compared to standard patient simulators. Likewise, we expect these benefits could translate nat-

urally to intelligent virtual agents in general—for instance, through the use of touch input for the

conveyance of emotions (e.g. [65, 66]) and cultural proxemics training [60, 144].
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APPENDIX: UNITY PROJECTION MATRICES
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Here, we describe the process for modeling a calibrated projector in the calibration coordinate

space TCH3 as a virtual Unity camera in the graphics space GFX3. The former is represented

by a 3 × 4 calibration projection matrix P, while the latter is represented by a 4 × 4 graphical

projection matrix U. Each models the forward-projection of a three-dimensional point in space

onto a pixel of a two-dimensional image plane differently, and the primary purpose of this pro-

cess is the computation of a graphical projection matrix that produces forward-projections equiv-

alent to the calibration matrix. While our discussion here is specific to Unity, it relies on general

graphical projection matrices and therefore could be implemented in other graphics engines (e.g.

OpenGL [131]), potentially with some small tweaks. Once this process is complete, the imagery

of the graphics mesh G computed by the virtual camera in Unity will be registered to the actual

touch surface S when displayed by the projector. The overall framework utilizes various compo-

nents of the general methodology described in Chapter 3, and the graphical projection matrices are

computed as part of the lookup table preprocessing phase.

To simplify notation, we will refer to the calibration space TCH3 as T and the graphics space GFX3

as G. Moreover, we will denote the local space of a virtual camera as L: in this space, the camera’s

position is the origin [0, 0, 0]T , the x- and y-axes of its image plane are aligned to the world’s x-

and y-axes, and the camera’s forward-vector is the local z-axis [0, 0, 1]T . A transformation from

coordinate space A to B is represented by the rotation matrix RB
A and translation matrix TB

A.

The input to the process is the projection matrix PT of a given projector, located at CT in the

calibration coordinate space T. This 3× 4 matrix PT can be decomposed to intrinsic and extrinsic

calibration matrices, given by

PT = K[RT | tT]

where

tT = −RTCT (A.1)
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We will make use of both of these formulations as necessary. It is assumed that we have computed

a transformation between the calibration space T and graphics space G, consisting of a rotation

matrix RG
T and a translation matrix TG

T (from preprocessing phase step PP7). First, we compute an

equivalent calibration matrix in graphics space G

PG = K[RG | tG]

such that PT and PG forward-project equivalent points in their respective coordinate spaces to the

same pixels on their image planes. From PG, we will compute a frustum that will be applied to the

final Unity projection matrix U. Below, we describe this process in more detail.

A note on coordinate handedness: The coordinate space in Unity is left-handed, whereas the

coordinate conventions in standard computer vision calibration approaches are right-handed. As a

result, when computing a 3D point or vector to apply to Unity, we convert from right-handed to

left-handed coordinates by negating the x-values.

1. First, we transform the projector calibration in the calibration space T to an equivalent

projection matrix PG in graphics space G using the transformation between these two

coordinate spaces. The transformed projector position in G is obtained directly from the

transformation matrices:

CG = RG
TC

T + TG
T

where CT is the original position of the projector in calibration space T. The point CG (with

negated x-coordinate to account for handedness) is directly used as the position of the virtual

camera in Unity.

While the intrinsic calibration matrix K of PG remains the same in both coordinate spaces,

the extrinsic matrix changes. To compute it, let us consider a point XT in the calibration
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space T. Given the transformation, this point moves to

XG = RG
TX

T + TG
T

in the graphics space G. The goal is to construct a calibration matrix PG such that both points

XT and XG are forward-projected onto the same pixel x on the image planes of PT and PG,

respectively:

x = PTXT = PGXG

Expanding, we have

K[RT | tT]XT = K[RG | tG](RG
TX

T + TG
T )

[RT | tT]XT = [RG | tG](RG
TX

T + TG
T )

We wish to solve for the extrinsic parameters RG and tG. We start by moving the registration

transformation applied to XT into the extrinsic parameters so that we can see how they

operate on XT directly:

[RT | tT]XT = [RGRG
T | tG + RGTG

T ]XT

We immediately have

RT = RGRG
T

RG = RT(RT
G)

T
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Finally, we can compute

tG = −RGCG

analogously from Equation (A.1). Thus, with CG, RG, and tG known and with K fixed, we

can compute the calibration projection matrix

PG = K[RG | tG]

in the graphics space G equivalent to the original calibration projection matrix PT in the

calibration space T.

2. Next, we compute the axes of the projection matrix PG, which we will use to set the orien-

tation of the virtual camera in Unity. The y- and z-axes of the physical projector correspond

to the up-vector and forward-vector of the virtual camera, respectively. The back-projection

of a pixel x = [x, y, 1]T to a ray in the graphics space G is given by

BG(x, µ) =

 (MG)
−1

(µx− pG
4 )

1


where PG is written in block form as [MG | pG

4 ] [64]. Since we are computing direction vec-

tors, the exact value of the parameter µ, which determines the length of the back-projected

ray, is not important; thus, we can assume µ = 1 and remove it as a parameter for the pixel

back-projection function BG(x). Using this function, we back-project the corner pixels of

the projector’s image plane to rays:

{BG([0, 0, 1]T ),BG([w, 0, 1]T ),BG([0, h, 1]T ),BG([w, h, 1]T )}
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where w and h are the width and height of the projector image, respectively.

The x- and y-axes correspond to edges of the projector’s image plane. Thus, they can be

computed as follows:

XG = norm
(
BG([w, 0, 1]T )−BG([0, 0, 1]T )

)
YG = norm

(
BG([0, h, 1]T )−BG([0, 0, 1]T )

)
(While the x-axis is not used directly, it can be a useful debugging aid.)

The z-axis of the projector PG may not be aligned with the center of the image plane; in

practice, this is true for our projectors, which use off-axis projection. Thus, for the direction

of the z-axis, we compute the principal ray of PG

ZG = norm
(
det(MG)(mG)

3T
)

where (mG)
3T is the third row of MG [64].

To set the virtual camera’s orientation, we use Unity’s LookAt function, which specifies the

camera’s forward- and up-vectors as points within graphics space G. For the forward-vector

point FG, we simply add the camera’s position CG to the principal ray of PG:

FG = CG + ZG

The up-vector UG is exactly equal to the y-axis of the projector’s image plane:

UG = YG
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Both the forward- and up-vectors must have their x-components negated to account for

Unity’s left-handedness.

At this point, we could construct the frustum of the projector in the graphics space G. How-

ever, the final projection matrix we need to apply to the virtual Unity camera must be in the

local space of the camera, denoted L.

3. Accordingly, we transform the projector calibration matrix PG in graphics space G to an

equivalent matrix PL in local space L. In local space, the camera is positioned at the origin

[0, 0, 0]T . Likewise, the camera’s forward-vector should correspond to the local space z-axis

[0, 0, 1]T , and the camera’s up-vector should correspond to the local space y-axis [0, 1, 0]T .

To satisfy these constraints, the projection matrix PL should have the identity matrix for its

rotation matrix and a zero-vector for its translation—that is, RL = I and tL = 0. Thus, we

have

PL = K[I | 0]

4. Finally, we compute the frustum in local space, from which we will compute the graphical

projection matrix U for the virtual camera in Unity. Following the standard format of the

perspective projection matrix [131], the near plane is composed of the points

{(l, b, n), (l, t, n), (r, b, n), (r, t, n)}

From these points, we will construct a perspective projection matrix of the form

U =



2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0


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where n and f refer to the z-coordinates of the near and far clipping planes, respectively,

in L.1 To find the x-coordinates l and r and the y-coordinates b and t, we back-project the

corner pixels of the projector’s image plane to 3D rays in local space L. These rays must

have z-coordinates equal to n. Let BL(x, µ) be the parameterized back-projection function

in L. We wish to compute µn such that BL(x, µn) has z-coordinate equal to n.

Let the x-coordinate of BL(x, µ) be given by xL(x, µ), the y-coordinate by yL(x, µ), and the

z-coordinate by zL(x, µ). In other words,

BL(x, µ) =

 (ML)
−1

(µx− pL
4 )

1

 =



(m−1L )
1T · (µx− pL

4 )

(m−1L )
2T · (µx− pL

4 )

(m−1L )
3T · (µx− pL

4 )

1


=



xL(x, µ)

yL(x, µ)

zL(x, µ)

1


where (m−1L )

iT is the ith row of (ML)
−1 and · represents the dot product. It follows that

zL(x, µ) = (m−1L )
3T · (µx− pL

4 )

Note that PL = K[I | 0], and so pL
4 = 0:

zL(x, µ) = (m−1L )
3T · µx

Solving for µ:

µ =
zL(x, µ)

(m−1L )
3T · x

1Note that camera points in Unity are located in the positive z-axis, and so we use n instead of −n as the z-
coordinate for these points.
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Thus, the value for µn such that the z-coordinate of the back-projection is n is given by

µn =
n

(m−1L )
3T · x

Since the projection matrix PL is located at the origin, we can use any pixel x in the projec-

tor’s image plane to compute µn. As we are computing the positions of the frustum, we will

again use the corner pixels for these computations. We compute

{BL([0, 0, 1]T , µn),BL([w, 0, 1]T , µn),BL([0, h, 1]T , µn),BL([w, h, 1]T , µn)}

The left edge of the frustum is composed of the back-projections of the pixels along the left

edge of the projector: [0, 0, 1]T and [0, h, 1]T . To compute the x-coordinate l, we could take

the x-coordinates of either back-projection; instead, to improve stability, we use their means.

With an analogous construction for the right, bottom, and top edges of the frustum, we have:

l =
1

2

(
xL([0, 0, 1]T , µn) + xL([0, h, 1]T , µn)

)
r =

1

2

(
xL([w, 0, 1]T , µn) + xL([w, h, 1]T , µn)

)
b =

1

2

(
yL([0, 0, 1]T , µn) + yL([w, 0, 1]T , µn)

)
t =

1

2

(
yL([0, h, 1]T , µn) + yL([w, h, 1]T , µn)

)

From these, we can compute the projection matrix for Unity. Since the Unity coordinate sys-

tem is left-handed, we want to reverse the x-coordinates. This can be achieved by swapping

l and r with −r and −l, respectively, or by multiplying by an identity matrix with a −1 in
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position (1, 1):

U =



2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0





−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



281



LIST OF REFERENCES

[1] 80/20 Inc. - T-slotted aluminum framing system. https://www.8020.net. Accessed:

2018-07-06.

[2] AAXA P300 pico projector. http://www.aaxatech.com/products/p300_

pico_projector.htm, 2019. Accessed: 2019-06-01.

[3] O. Ariza, P. Lubos, F. Steinicke, and G. Bruder. Ring-shaped haptic device with vibrotactile

feedback patterns to support natural spatial interaction. In Proceedings of the 25th Interna-

tional Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium

on Virtual Environments, pages 175–181. Eurographics Association, 2015.

[4] R. Arsenault and C. Ware. Eye-hand co-ordination with force feedback. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, pages 408–414. ACM,

2000.

[5] Autodesk. Maya — computer animation & modeling software — Autodesk. https:

//www.autodesk.com/products/maya/overview, 2018. Accessed: 2018-07-

19.

[6] F. Bacim, M. Sinclair, and H. Benko. Understanding touch selection accuracy on flat and

hemispherical deformable surfaces. In Proceedings of Graphics Interface, pages 197–204.

Canadian Information Processing Society, 2013.

[7] H. Benko, A. D. Wilson, and R. Balakrishnan. Sphere: Multi-touch interactions on a spheri-

cal display. In Proceedings of the 21st Annual ACM Symposium on User Interface Software

and Technology, pages 77–86. ACM, 2008.

282

https://www.8020.net
http://www.aaxatech.com/products/p300_pico_projector.htm
http://www.aaxatech.com/products/p300_pico_projector.htm
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview


[8] H. Benko, A. D. Wilson, and P. Baudisch. Precise selection techniques for multi-touch

screens. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, pages 1263–1272. ACM, 2006.

[9] P. Bergström. Iterative closest point method. MATLAB Central File Exchange, 2016. Ac-

cessed: 2019-05-12.

[10] J. Beskow, C. E. Peters, G. Castellano, C. O’Sullivan, I. Leite, and S. Kopp, editors. Intelli-

gent Virtual Agents - 17th International Conference, IVA 2017, Stockholm, Sweden, August

27-30, 2017, Proceedings, volume 10498 of Lecture Notes in Computer Science. Springer,

2017.

[11] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(2):239–256, Feb 1992.

[12] X. Bi, Y. Li, and S. Zhai. Ffitts law: Modeling finger touch with Fitts’ law. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages 1363–1372.

ACM, 2013.

[13] O. Bimber and R. Raskar. Spatial Augmented Reality: Merging Real and Virtual Worlds.

AK Peters/CRC Press, 2005.

[14] F. Biocca, C. Harms, and J. K. Burgoon. Toward a more robust theory and measure of

social presence: Review and suggested criteria. Presence: Teleoperators and Virtual Envi-

ronments, 12(5):456–480, 2003.

[15] Blackfly S GigE. https://www.flir.com/products/blackfly-s-gige/,

2019. Accessed: 2019-06-01.

283

 https://www.flir.com/products/blackfly-s-gige/


[16] R. Bodor, A. Drenner, P. Schrater, and N. Papanikolopoulos. Optimal camera placement for

automated surveillance tasks. Journal of Intelligent and Robotic Systems, 50(3):257–295,

Nov 2007.

[17] J. Bolton, K. Kim, and R. Vertegaal. A comparison of competitive and cooperative task

performance using spherical and flat displays. In Proceedings of the ACM 2012 Conference

on Computer Supported Cooperative Work, pages 529–538. ACM, 2012.

[18] Boost C++ libraries. https://www.boost.org, 2019. Accessed: 2019-05-12.

[19] J.-Y. Bouguet. Camera calibration toolbox for Matlab. http://www.vision.

caltech.edu/bouguetj/calib_doc/index.html, 2015. Accessed: 2019-5-22.

[20] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[21] E. Brockmeyer, I. Poupyrev, and S. Hudson. PAPILLON: Designing curved display surfaces

with printed optics. In Proceedings of the 26th Annual ACM Symposium on User Interface

Software and Technology, pages 457–462. ACM, 2013.

[22] J. Brooke. SUS: A ‘quick and dirty’ usability scale. In P. Jordan, B. Thomas, I. McClelland,

and B. Weerdmeester, editors, Usability Evaluation in Industry, pages 189–194. Taylor &

Francis, 1996.

[23] G. Bruder, F. Steinicke, and W. Stuerzlinger. Touching the void revisited: Analyses of

touch behavior on and above tabletop surfaces. In IFIP Conference on Human-Computer

Interaction, pages 278–296. Springer, 2013.

[24] G. Bruder, F. Steinicke, and W. Sturzlinger. To touch or not to touch?: Comparing 2D

touch and 3D mid-air interaction on stereoscopic tabletop surfaces. In Proceedings of the

1st Symposium on Spatial User Interaction, pages 9–16. ACM, 2013.

284

https://www.boost.org
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html


[25] W. Buxton, R. Hill, and P. Rowley. Issues and techniques in touch-sensitive tablet input.

ACM SIGGRAPH Computer Graphics, 19(3):215–224, 1985.

[26] J. Canny. A computational approach to edge detection. In Readings in Computer Vision,

pages 184–203. Elsevier, 1987.

[27] X. Cao, A. D. Wilson, R. Balakrishnan, K. Hinckley, and S. E. Hudson. ShapeTouch:

Leveraging contact shape on interactive surfaces. In 3rd IEEE International Workshop on

Horizontal Interactive Human Computer Systems, pages 129–136. IEEE, 2008.

[28] J. H. Chuah, A. Robb, C. White, A. Wendling, S. Lampotang, R. Kopper, and B. Lok.

Increasing agent physicality to raise social presence and elicit realistic behavior. In 2012

IEEE Virtual Reality Short Papers and Posters (VRW), pages 19–22. IEEE, 2012.

[29] J. H. Chuah, A. Robb, C. White, A. Wendling, S. Lampotang, R. Kopper, and B. Lok.

Exploring agent physicality and social presence for medical team training. Presence: Tele-

operators and Virtual Environments, 22(2):141–170, 2013.

[30] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated in the

case of the binomial. Biometrika, pages 404–413, 1934.

[31] CMake. https://cmake.org/, 2019. Accessed: 2019-05-12.

[32] E. Costanza and J. Robinson. A region adjacency tree approach to the detection and design

of fiducials. In P. Hall and P. Willis, editors, Vision, Video, and Graphics (VVG) 2003. The

Eurographics Association, 2003.

[33] S. Daher, L. Gonzalez, and G. Welch. Poster: Preliminary assessment of neurologic symp-

tomatology using an interactive physical-virtual head with touch. In 17th International

Meeting on Simulation in Healthcare (IMSH), 2016.

285

https://cmake.org/


[34] S. Daher, J. Hochreiter, N. Norouzi, L. Gonzalez, G. Bruder, and G. Welch. Physical-virtual

agents for healthcare simulation. In Proceedings of the 18th International Conference on

Intelligent Virtual Agents, pages 99–106. ACM, 2018.

[35] S. Daher, J. Hochreiter, N. Norouzi, R. Schubert, G. Bruder, L. Gonzalez, M. Anderson,

D. Diaz, J. Cendan, and G. Welch. Poster: Matching vs. non-matching visuals and shape

for embodied virtual healthcare agents. IEEE VR, 2019.

[36] S. Daher, J. Hochreiter, R. Schubert, L. Gonzalez, J. Cendan, M. Anderson, D. Diaz, and

G. Welch. The physical-virtual patient simulator: A physical human form with virtual

appearance and behavior. Simulation in Healthcare, 2019. To appear.
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