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Synonyms

Kalman-Bucy filter; KF

Related Concepts

� Sensor Fusion

Definition

The Kalman filter is a set of mathematical
equations that provides an efficient computational
(recursive) means to estimate the state of a
process, in a way that minimizes the mean of
the squared error. The filter is very powerful in
several aspects: it supports estimations of past,
present, and even future states, and it can do so
even when the precise nature of the modeled
system is unknown.

Background

In 1960, Rudolf E. Kalman published his famous
paper describing a recursive solution to the
discrete-data linear filtering problem [1]. Since
that time, due in large part to advances in digital
computing, the Kalman filter has been the subject
of extensive research and application, particularly
in the area of autonomous or assisted navigation.
The goal of the filter is to produce evolving
optimal estimates of a modeled process from
noisy measurements of the process.

Theory

The Kalman filter addresses the general problem
of trying to estimate the state x ∈ R

n of a
discrete-time controlled process that is governed
by the linear stochastic difference equation

xk = Axk−1 + Buk−1 + wk−1 (1)

at time step k, with a measurement z ∈ R
m that is

zk = Hxk + vk. (2)

The random variables wk and vk represent the
process noise and measurement noise, respec-
tively. They are assumed to be independent of
each other, white, and with normal probability
distributions

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-03243-2_716-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03243-2_716-1&domain=pdf
http://link.springer.com/Kalman-Bucy filter
http://link.springer.com/KF
http://link.springer.com/Sensor Fusion
https://doi.org/10.1007/978-3-030-03243-2_716-1


2 Kalman Filter

p(w) ∼ N(0,Q), and (3)

p(v) ∼ N(0, R). (4)

The n × n matrix A in the difference Eq. (1)
relates the state x at the previous time step k − 1
to the state x at the current step k , in the absence
of either a driving function or process noise. The
n × l matrix B relates an optional control input
u ∈ R

l to the state x. The m × n matrix H in
the measurement Eq. (2) relates the state to the
measurement zk .

One usually does not know the true form of
the process (1) and associated noise parameter (3)
nor the true measurement model (2) and associ-
ated noise parameter (4), but in practice one can
often arrive at useful models via analytical for-
mulations and laboratory-based measurements.

Using the process and measurement models
(1)–(4), and real (noisy) measurements ẑk at each
time step k, the Kalman filter is used to recur-
sively estimate the first two statistical moments
of the process: the mean x̂k and the error covari-
ance Pk .

The filter is typically implemented in two
steps, a time update step and a measurement
update step, as follows:

Time update:

x̂−
k = Ax̂k−1 + Buk−1

P −
k = APk−1A

T + Q

Measurement update:

K = P −
k H T(HP −

k H T + R)−1

x̂k = x̂−
k + K(ẑk − Hx̂−

k )

Pk = (I − KH)P −
k

Repeatedly applying these steps recursively esti-
mates the process mean x̂k and the error covari-
ance Pk . Because the measurements can vary in
form and timing, the filter is often characterized
as a tool for sensor fusion.

The Kalman filter is optimal in that the n × m

Kalman gain matrix K minimizes the trace of a
posteriori error covariance Pk .

Kalman Filter, Fig. 1 An example: estimating a random
constant from noisy measurements. The true random con-
stant xk (solid line), the noisy measurements ẑk (cross
marks), and the filter estimate x̂k

An accessible high-level introduction to the
general idea of the Kalman filter can be found in
Chap. 1 of [2]. A more complete introduction can
be found in [3] and in [4] which also contains
some interesting historical narrative. More exten-
sive references include [2, 5–9].

Application

Despite the fact that employed process models
rarely match the corresponding true systems, and
the noise models rarely exhibit the characteristics
required for optimality (zero mean, normally dis-
tributed, and independence over space and time),
the Kalman filter remains popular – perhaps due
to its relative simplicity and robustness. It contin-
ues to be used widely in diverse application areas
such as electronics, robotics, localization, navi-
gation, and even economics. In computer vision,
variations of the Kalman filter are typically used
to estimate structure, motion, and camera param-
eters. Early examples include [10–13]. Both the
OpenCV software project [14,15] and the Matlab
numerical computing environment [16] include
Kalman filter functions.
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Kalman Filter, Fig. 2 The error covariance Pk associated
with the estimates in Fig. 1. After 50 iterations, the covari-
ance has settled to a relatively small 0.0002 volts2

Experimental Results

A relatively simple example of using the Kalman
filter to estimate a scalar random constant is given
in [3], with complete details for the structure of
the filter, the parameters, the initial conditions,
and various results. The example presumes access
to noisy measurements of a voltage that is cor-
rupted by a 0.1 volt RMS white measurement
noise. Referring back to Eqs. (1) and (2), the
value to be estimated is presumed constant so
A = 1, there is no control input so u = 0 (and
B is irrelevant), and the noisy measurements are
of the state (the voltage) directly so H = 1. For
a true voltage of x = −0.37727, Q = 1 × 10−5,
and R = (0.1)2 = 0.01, plots for the true voltage
xk , noisy measurements, and estimated voltage x̂k

are shown in Fig. 1; and the error covariance Pk

is shown in Fig. 2.
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