Journal on Multimodal User Interfaces
https://doi.org/10.1007/s12193-020-00330-2

ORIGINAL PAPER O‘)

Check for
updates

Sharing gaze rays for visual target identification tasks in collaborative
augmented reality

Austin Erickson'® - Nahal Norouzi'® - Kangsoo Kim'® - Ryan Schubert'® - Jonathan Jules’ -
Joseph J. LaViola Jr.'® - Gerd Bruder'® - Gregory F. Welch'

Received: 8 January 2020 / Accepted: 6 June 2020
© Springer Nature Switzerland AG 2020

Abstract

Augmented reality (AR) technologies provide a shared platform for users to collaborate in a physical context involving both
real and virtual content. To enhance the quality of interaction between AR users, researchers have proposed augmenting users’
interpersonal space with embodied cues such as their gaze direction. While beneficial in achieving improved interpersonal
spatial communication, such shared gaze environments suffer from multiple types of errors related to eye tracking and
networking, that can reduce objective performance and subjective experience. In this paper, we present a human-subjects
study to understand the impact of accuracy, precision, latency, and dropout based errors on users’ performance when using
shared gaze cues to identify a target among a crowd of people. We simulated varying amounts of errors and the target
distances and measured participants’ objective performance through their response time and error rate, and their subjective
experience and cognitive load through questionnaires. We found significant differences suggesting that the simulated error
levels had stronger effects on participants’ performance than target distance with accuracy and latency having a high impact
on participants’ error rate. We also observed that participants assessed their own performance as lower than it objectively
was. We discuss implications for practical shared gaze applications and we present a multi-user prototype system.

Keywords Shared gaze - Eye tracking - Eye tracking errors - Collaborative augmented reality - Target identification

1 Introduction

Austin Erickson and Nahal Norouzi have contributed equally to this

research. Over the last several years, great strides have been made

to improve sensor and display technologies in the fields of
augmented reality (AR) and virtual reality (VR) [19]. These
advances, such as with respect to head-mounted displays
(HMDs) and eye trackers, have provided new opportunities
for applications in fields such as training, simulation, ther-
apy, and medicine. For many of these, collaboration between
multiple users is an important aspect of the experience. In
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real life, people use both verbal and nonverbal cues to com-
municate information to the person they are interacting with.

In order to understand and improve collaborative expe-
riences using AR/VR technologies, researchers have evalu-
ated the impact of different embodied and behavioral cues
on users’ efforts and performance [21,32,34]. Researchers
have also investigated how certain embodied cues could be
augmented to improve their efficiency in interpersonal com-
munication. A prime example of such augmented cues are
shared gaze environments [32]. Eye gaze is an important cue
for spatial interaction and collaboration among humans as it
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lets us know what another person is looking at, which is often
in line with their focus of attention [23]. Gaze cues further
inform us about a person’s mental processes, eye contact, and
gaze avoidance. Joint gaze occurs when multiple people are
looking at the same object when it is the focus of discussion
[20].

Advances in AR requires a better understanding of its
interaction space [41], such as AR technologies’ potential to
augment such eye gaze cues in interpersonal communication,
e.g., by providing a gaze ray from the user’s head to the object
in the environment that they are looking at. Different meth-
ods have been proposed to share gaze rays, cones, or focus
points between users [21,34,42]. Some of these approaches
require information about the geometry of the physical envi-
ronment, while the most basic and generalizable approaches
are mainly based on rays that indicate the direction of gaze
but do not terminate at any object.

All shared gaze environments have to track users’ gaze
direction with an eye tracker, e.g., integrated into a HMD,
and they have to transmit that information for subsequent
rendering in their AR view, e.g., via a wireless network. The
quality of shared information and the errors involved in this
process are highly important to quantify and understand for
practitioners in shared spaces [8,35,42].

In this journal article, we resume and extend work orig-
inally published in an impactful conference publication by
Norouzi et al. [28], presenting a human-subject study aimed
at understanding the importance and influence of four types
of errors in AR shared gaze environments on users’ perfor-
mance and perception. We focused on accuracy and precision
related to the eye tracker as well as latency and dropout
related to the network. We created a scenario where a partic-
ipant had to collaborate with a simulated partner to identify
a target among a crowd of humans. Inspired by related work
[21,34,42], we augmented the participant’s view with a gaze
ray that indicated which person their simulated partner was
looking at. We measured participants’ performance using
response time and error rate. Our findings suggest that partic-
ipants performed surprisingly well, better than they believed
themselves when we asked them to judge their performance,
even when the simulated error levels were high, with accu-
racy and latency having the highest impact on participants’
error rates. We discuss the results for practical shared gaze
applications and present a prototype of an AR multi-user
shared gaze system.

With this work, we aim to contribute to the research com-
munity by providing answers to the research questions below:

— RQ1 How do different types of errors affect users’ col-
laborative performance in AR shared gaze environments?

— RQ2 What are the thresholds for the amounts of error
introduced without affecting users’ performance?
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— RQ3 How different are users’ subjective and objective
assessment of the experience and what is their subjective
perception of an acceptable amount of error for the task
at hand?

This paper is structured as follows. Section 2 discusses
related work. Section 3 describes the experiment. Section 4
describes our results and Sect. 5 discusses our findings. We
further present and discuss a prototype AR shared gaze sys-
tem in Sect. 6. Section 7 concludes the paper and discusses
future opportunities for research.

2 Related work

In this section, we present related work on collaborative
shared spaces, shared gaze cues, and errors impacting user
experience and performance.

2.1 Sharing gaze in AR/VR

In an early work by Kiyokawa et al., a mixed-space collab-
orative platform was introduced that included an awareness
enhancing technique to improve the quality of collaboration
between the two users [21]. This was achieved by visual-
izing a gaze ray initialized from between the user’s eyes,
finding that participants rated their task to be easier with
the gaze ray when one participant had to guide the other in
finding stationary targets. Similarly, Bauer et al. investigated
the effects of a “reality augmenting telepointer” used for
expert-worker scenarios for mobile workers. Using their sys-
tem, the expert’s pointer was displayed to the user [2]. They
found that with the inclusion of the pointer, similar speech
behaviors were observed as in face-to-face conversations.
Piumsomboon et al. introduced a system called COVAR that
could facilitate collaboration between AR and VR users and
is able to share their head frustum related to their field of
view, head-ray, gaze-ray, and hand gestures of users with
each other to improve the collaborative experience [34]. Their
results emphasize the positive impact of these cues on aspects
such as performance and subjective preference. Brennan et
al. compared different combinations of gaze and voice cues
where remote users took part in a search task finding that
sharing gaze information alone resulted in faster search times
than gaze and voice conditions [3]. In a helper-worker sce-
nario, Gupta et al. looked at effects of sharing the worker’s
gaze with the helper and the helper’s pointer with the worker.
Their results indicate positive impacts of having both cues on
performance and quality of the experience [13]. With such
findings emphasizing the benefits of shared gaze, Zhang et
al. investigated the impact of the methods used to visual-
ize the gaze (i.e., highlight, spotlight, trajectory, and cursor)
on users’ performance and cognitive load [42]. Their find-
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ings suggest that users perceived the highlight and spotlight
modes as less distracting compared to other modes such as
cursor and trajectory. Although past research have had valu-
able contributions in understanding the influence of sharing
gaze in AR/VR for collaborative purposes, to our knowledge,
the influence of different types of errors inherent to shared
gaze experiences have not been studied. Knowing these influ-
ences exist in single user experiences, a better understanding
is required for shared experiences.

2.2 Gaze tracking performance

As the quality of the data reported by eye trackers is depen-
dent on various factors, understanding the causes and effects
of these issues on user performance is important for practi-
cal applications. Holmqvist et al. discussed basic examples
of different types of errors in eye tracking environments that
are caused by limitations of current-state eye trackers (e.g.,
accuracy and precision), and how these can cause misinter-
pretations in different measures such as dwell time [16]. They
discussed factors that can affect the quality of the data such
as the experimental task and eye tracking algorithms. Other
researchers also provided explanations for sources of eye
tracking errors such as variations in pupil size [7], eye color
as well as calibration instructions and methods [29].

Some researchers proposed methods to compensate for
these errors. For instance, Cerrolaza et al. proposed cal-
ibration techniques to compensate for the impact of user
movement on the devices’ accuracy [5]. For less expensive
commercial off-the-shelf (COTS) eye trackers, Ooms et al.
proposed steps to improve their data quality [30]. Hornoff et
al. proposed using the disparity between the true position of
implicit fixation points and the reported value from the eye
tracker as a way to measure the robustness of the reported
data [17]. Barz et al. proposed a computational approach
that would model and predict gaze estimation errors in real
time and could be used in applications to identify high error
regions during user interaction and modify the elements such
as increasing the size of the objects [1]. While varying fac-
tors such as lighting and eye tracker type, Feit et al. found
large differences in eye tracking data quality and proposed
new design choices such as target placement and size adjust-
ments to compensate for these variabilities [10].

With most of past work’s focus on assessing the gaze
tracking errors, identifying contributing factors and solutions
reducing their impact, further investigation of these errors in
more dynamic shared AR/VR setups can be beneficial.

2.3 Network sharing performance
Network performance in terms of transmission latency and

dropout is an important factor that shapes user performance
in shared AR/VR experiences. A large body of literature

showed that latency has a negative effect on user perfor-
mance, but most of that research focused on tracker or
rendering latency between a person’s physical movements
and the computer-generated feedback [8,18,22,24,31,35]. In
contrast, effects of network latency and dropout in shared
AR/VR environments have less immediate cause-effect rela-
tionships.

We are not aware of previous research investigating
latency and dropout in shared gaze environments, but related
work in AR/VR and general communication focused on
aspects of collaborative environments [12,36]. Recently,
Toothman and Neff investigated different network errors in
an embodied multi-user VR setup, including latency and
dropout and their effects on social presence [38]. Their results
showed practical thresholds such as that a latency of 300 ms
and dropout with freezing frames for 100-350 ms for 67%
of the time had a negative impact on users’ experience and
performance. dropout (or frame dropping) has been further
researched by Pavlovych et al., who identified a threshold
of 10% frame drops, after which it had a negative effect
on participants’ tracking task performance on a computer
[31]. Geelhoed et al. showed that the conversation flow in a
telepresence system was reduced by added network latency,
recommending a limit of 100-600ms for round trip time
latency, but they also found that basic conversations with-
out time sensitive tasks were not that affected by latency
and could go up to 2000 ms of latency [12]. Other research
showed that network latency might further lead to misinter-
pretations of users’ dispositions during interactions [36].

Further investigation of different error types for collabo-
rative purposes can provide a better understanding of their
implications on users’ collaborative performance and expe-
rience.

3 Experiment

In this section, we present the experiment that we conducted
to assess the impact of different types of errors that are inher-
ent to collaborative shared gaze environments in AR.

3.1 Participants

We recruited 21 participants (7 female, 14 male, age 19-36,
average 23.28) from the graduate and undergraduate pop-
ulation of our university. The protocol for our experiment
was approved by the institutional review board (IRB) of
our university. All participants indicated normal hearing and
normal/corrected vision. Before the experiment, we asked
our participants to use a 7-point scale (1 =novice/unfamiliar,
7 =expert/familiar) to rate their familiarity with AR (average
4.7), VR (average 5.19), virtual humans (average 3.9), and
overall computer expertise (average 5.52).

@ Springer
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3.2 Material and task description

We conducted the experiment in an open 4.6m x 10.4m
space in our laboratory. We used two computers with Intel
Xeon 2.4 GHz processors comprising 16 cores, 32GB of
main memory and two Nvidia Geforce GTX 980 Ti graphics
cards for the stimulus control and for participants to answer
questionnaires. We used the Unity graphics engine version
2018.2.11f1 for rendering, and a Microsoft HoloLens for the
presentation of the visual stimulus.

We tasked the participants with working with a virtual
human partner who took the form of a police officer. The
participant and their virtual partner are tasked with identify-
ing a threat in the crowd of moving virtual humans, and the
virtual officer communicates the presence of this threat non-
verbally by sharing his gaze information with the participant.
It is the participants’ goal to utilize this gaze information in
order to identify who the potential threat is out of all of the
virtual humans in the crowd.

3.2.1 Shared gaze stimuli

To provide repeatable controlled shared gaze stimuli in a
manner similar to what has been previously done by Mur-
ray et al. [27], we decided to use a simulated virtual human
partner in this study. We placed a 3D virtual human charac-
ter (see Fig. 1) at a distance of one meter on the left side to
the participants, which was visible to them on the HoloLens.
During the experiment, the simulated partner stood with an
idle animation, facing in the same forward direction as the
participants. A 20-meter gaze ray was presented in AR that
originated in the partner’s eye location and went forward into
the environment. The gaze ray was programmed to be ren-
dered on top of the real or virtual entities in the environment
to be more in line with practical shared gaze setups and to not
give away or misrepresent a target through depth cues result-
ing from an intersection with a target at any moment. We
would like to point out that such gaze rays are mainly used
when one does not have access to a high-precision real-time
reconstruction of the geometry of a physical environment, as
discussed in Sect. 1.

We tested different gaze simulation algorithms but noticed
that these were largely not able to create realistic gaze behav-
ior in AR. In order to create a natural gaze behavior for the
simulated partner, we recorded the eye behavior of one of the
experimenters looking at a stationary target located at a dis-
tance of one meter away. We used the Pupil Labs! software to
capture the recording and assess its accuracy (0.55 deg) and
precision (0.08 deg). This recorded data was then analyzed
to find the average gaze position observed (with the accuracy

! https://pupil-labs.com/.
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Fig.1 Annotated screenshot showing a participant wearing a HoloLens
with the simulated virtual partner on their left side, looking at a target in
a crowd of virtual humans. The virtual target humans are differentiated
by the floating numbers above their head

error), and was then normalized around this position to yield
data with no accuracy error.

This recorded gaze data was played back in Unity and
oriented to simulate saccades and smooth pursuit movements
to follow target points on the moving target humans in the
environment. Each of them had three points of interest, one
on their head, one on their chest, and one near their waist
(see Fig. 1).

The script that controlled the gaze behavior would target
one of these points at random every 750ms, with a fifty-
percent probability of choosing the head as the target and a
twenty five percent chance of choosing either of the other
two points. This behavior made the virtual partner’s gaze
seem as though it was identifying the target human by rec-
ognizing their face, while scanning the target for concealed
weapons. The simulated gaze followed the targets when they
were moving.

3.2.2 Gaze target crowd

Our setup consisted of nine simulated virtual human targets
shown in Figs. 1 and 2. The 3D models and animations were
acquired through the Unity Asset Store® or Mixamo.> The
virtual humans (4 female, 5 male) were placed 0.7 m apart
from each other in depth. Walking animations were added to
each model so they could pace back and forth between two
predefined points on the left and right sides from the partic-
ipants with a total distance of 6 m. Each virtual human was
presented with a floating number over their head to make
it easier for the participants when reporting the gaze target.
The walking speed for the virtual humans was chosen from
the range 0.8 £ 0.2 m/s, which is close to average human
walking speed [11]. Target virtual humans could be chosen

2 https://assetstore.unity.com/.

3 https://www.mixamo.com/.
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Fig. 2 a Shows a top-down view of the starting configuration of the
virtual humans from within the Unity editor. The virtual humans appear
in a randomized order with randomized speeds for each trial. b Shows
a view of the virtual humans from the participants’ perspective after the
crowd has started moving. In this case, the virtual partner is observing
the waist of virtual human 1

from one of three different distances (see below) which cor-
responded to two different social proxemics categories as
laid out by Hall, where the closest potential target fell into
social distance while both other distances fell into public dis-
tance [14]. The order of the virtual humans in depth and their
walking speed were randomized prior to commencing the
first trial as well as between trials in the study (Fig. 2).

3.2.3 Gaze error implementation

As discussed in Sect. 1, we considered four different types
of error that are common to eye trackers and shared gaze AR
experiences. Figure 3 illustrates each error type in compari-
son to a no-error example. Below, we describe each error, its
possible source and how it was implemented.

Accuracy: Persistent angular offset between the true eye
gaze direction and the direction of the drawn gaze ray. To
implement this error, the gaze ray for no accuracy error was
calculated based on the simulated virtual partner’s gaze direc-
tion and the recorded gaze data. This ray was then rotated
towards the rightward horizontal axis of the target by a vari-
able number between Oand 5degrees at 1degree intervals
to achieve an accuracy offset along the horizontal axis. It is
important to note that while a physical eye tracking system
would introduce errors in both the x and y directions, we
opted to simulate the most extreme type of accuracy error
that could occur for the study scenario, which was a horizon-
tal shift away from the target. Due to the nature of our study
scenario, a vertical offset would still appear on the target’s

body or slightly above the target’s head, which would make
the target easier to identify than if the shift had occurred in
the horizontal direction alone. Additionally, a combination
of these two directions would only limit the horizontal offset
away from the target, and would also result in a target that is
easier to identify than if the shift had occurred in solely the
horizontal direction.

Precision: Dynamic angular differences between an eye
tracker’s reported eye gaze direction and the true direction
to the gaze target. To implement this error, we calculated
the gaze ray position based on the simulated virtual partner’s
gaze direction, then offset this position by an amount based
on the recorded gaze data which was multiplied by a variable
scale factor between O and 2.5 degrees at 0.5 degree inter-
vals. This calculation would yield a gaze behavior that was
centered on the target with increased variations around the
target point as the scale factor increased.

Latency: End-to-end delay in the presentation of the gaze ray
from the simulated partner’s eyes. Here, our focus is on the
latency introduced by the complex setup of a collaborative
AR shared gaze system, which includes latency from the eye
tracker, a wireless network, a rendering system, and a display.
To realize this error, we computed the position of the target
virtual human at a simulated temporal offset up to 1000 ms
into the past. This past position was then set as the target
for the simulated gaze ray. This was achieved by creating a
dictionary that paired vector positions with timestamps for
each virtual human in the scene. This dictionary could be
searched to find a virtual human’s past position based on the
time difference between the current time and the amount of
latency in milliseconds that was simulated.

Dropout: Here we define dropout as the probability of
dropped or lost frames due to networking or eye tracking
issues (e.g., eye tracker not being able to detect the pupil).
To implement this error, for every gaze ray that was rendered
we measured the chance of the next ray being dropped based
on predefined values that are introduced in Sect. 3.3.1. As an
example, if the predefined value was set to 90%, then there
was a 90% chance that the next frame was dropped resulting
in an inconsistent gaze ray.

To choose ecologically valid error ranges, we looked at
the literature described in Sect. 2 and included the nomi-
nal performance reported by manufacturers for commercial
head-worn eye trackers such as from Tobii* and Pupil Labs.
To make sure that participants were able to perceive at least
the maxima of all types of errors, we chose the maxima of
our error ranges as slightly larger than the range of values
reported in the mentioned sources.

4 https://www.tobii.com/.
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Fig.3 Illustration of the different error types simulated in the shared gaze interface in comparison to a no-error example

3.3 Methods
3.3.1 Study design

We chose a 4 x 6 x 3 within-subjects design for our exper-
iment. This choice was made to account for the impact of
individual differences on task performance. Our independent
variables were:

— Error type and error level (4 x 6 factors):

— Accuracy: 6 levels of accuracy error were introduced
to the gaze ray from 0 deg to 5 deg with increments
of 1deg.

— Precision: 6 levels of precision error were introduced
to the gaze ray from 0 deg to 2.5 deg with increments
of 0.5 deg.

— Latency: 6 levels of latency error were introduced to
the gaze ray from O to 1000 ms with increments of
200 ms.

— Dropout: 6 levels of dropout error were introduced
to the gaze ray starting at 0% and going from 10 to
90% with increments of 20%.

— Target distance (3 factors):

— Close: The target was pacing back and forth at a dis-
tance of 3m.

— Medium: The target was pacing back and forth at a
distance of 5.1 m.

— Far: The target was pacing back and forth at a dis-
tance of 7.2m.

These combinations of independent variables resulted in a
total of 72 trials. For the experiment, we randomized the
participants’ exposure to each error type resulting in four
combinations, and within each error type, we randomized
their exposure to the error levels for different target dis-
tances, resulting in 18 combinations.

3.3.2 Procedure

After giving their informed consent, participants were asked
to take a seat and answer a pre-questionnaire to rate their
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familiarity with AR, VR, computers, and virtual humans and
to assess their hearing and vision. After this, they were asked
to read a document about their task in the experiment and
then the experimenter reviewed the written document with
them.

Participants were guided to stand on the white cross
marked on the floor a meter apart from the simulated AR
collaboration partner and don the HoloLens. They were
informed that they could move their head freely but that they
should remain standing on that spot. Participants were asked
to use the information from the partner’s gaze ray to identify
a potential suspect among the gaze target crowd in front of
them.

Two distinct beep sounds were used to mark the start and
end of each trial and participants were told that they should
say their answers out loud by naming the number on top of
the identified target human in the crowd. Participants were
informed that they have a maximum of 60 s to make a decision
for each trial but that they have to answer as quickly and
confidently as possible. Upon reaching the 55th second in
each trial, the virtual background turned red to indicate that
the end of the trial was close and participants were asked to
indicate their best guess.

After going over the procedure, participants took part in
five practice trials. We then asked them if they think they
need more practice. If their answer was yes, they took part in
five more practice trials. Among our participants, only one
asked for the extra five practice trials and we checked the
response times for the 72 main trials for that participant to
ensure that the extra five practice trials had not given them
an advantage over the others.

After each block of 18 trials (i.e., one error type with six
error levels and three target distances) they were asked to doff
the HoloLens and answer a post-questionnaire. For each par-
ticipant, this process was performed four times in randomized
order within and between the blocks. After finishing the last
block, participants were asked to answer further question-
naires. Then, they took part in a short debriefing session to
discuss their experience. They received monetary compen-
sation ($15) for their participation in the study.
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3.3.3 Measures

In this section, we present the objective and subjective mea-
sures used to assess participants’ performance and perception
of each error type.

Objective measures As participants were asked to iden-
tify the potential gaze target as quickly and confidently as
they can, we used these criteria to separately assess their
performance in the form of response time and error rate.
We would like to point out that although different models
for speed-accuracy trade-offs have been introduced in the
human-computer interaction literature, we are not aware of
any validated model that could be applied to our specific
stimulus-response case, such that we had to treat these mea-
sures separately:

— Response time: We recorded the amount of time taken
for each participant to indicate a gaze target for each trial.

— Error rate: We recorded if participants identified the
correct gaze target for each trial.

When participants made selection errors during the study,
a log file recorded information about the participants’
selected virtual human and the correct virtual human. This
log recorded the z-depth in meters for both of these virtual
humans, and speed in meters per second for both of these
virtual humans. These pairs of depth and speed values could
be compared to reveal insights into the selection strategy that
participants used to make their decisions during the task.

Subjective measures We measured the subjective percep-
tion of our participants about the various error types and
levels, and how their performance and general experience
was impacted. The subjective measures used were:

— Subjective performance: For each block associated with
a certain error type, three questions were used to assess
participants’ confidence in their answers (7-point Likert
scale), their subjective performance (numeric response),
and their subjective judgment of what constitutes an
acceptable amount of error for the task at hand (numeric
response). Table 1 shows these questions.

— Subjective experience: To understand the impact of our
independent variables on how participants experienced
each error type, we included questions from the NASA
TLX cognitive load (CL) questionnaire [15], System
Usability Scale (SUS) questionnaire [4], and a ques-
tion asking about the realism of the gaze behavior. A
7-point Likert scale was used for all the questions in this
questionnaire. Table 2 shows the questions used for this
questionnaire.

— Trustin Technology: To assess participants’ overall trust
in technology and the shared gaze interface, we included
several questions from McKnight et al.’s Trust in Tech-
nology questionnaire [26]. A 7-point Likert scale was
used for all items and they were adjusted to match our
interface. This questionnaire, shown in Table 3, was pre-
sented to the participants after they completed all four
blocks.

3.3.4 Hypotheses

Based on the literature (see Sect. 2) and a hypothesis-
generating pilot study with five participants (different from
our study population, who generally made conservative
estimates on their own performance), we formalized the fol-
lowing hypotheses:

— H1: Participants’ response time and error rate will
increase as the error levels increase within each error
ype.

— H2: Participants’ response time and error rate will
increase as the target distance increases within each error
type.

— H3: Based on the inherent nature of accuracy and latency
errors that provide a constant spatial and temporal offset,
compared to precision and dropout errors, participants
will:

a Give lower SP1 scores for the former error types and
indicate less confidence in their answers,

b Give higher scores for CL1, CL2, CL3 for the former
error types and indicate higher cognitive load,

¢ Give a lower SUSI score for the former error types,
assessing them as more difficult to use.

— H4: Participants’ subjective estimate of the percentage
of correctly identified targets answered through SP2 will
be lower than their actual performance.

4 Results

In this section we present the objective and subjective
results for our experimental conditions. For the analysis of
our results, we removed the data of one of our participants as
it failed our sanity checks; we noticed that several responses
were for targets that were located in completely opposite
places compared to the actual target.

4.1 Objective measures

We analyzed the results for the objective performance mea-
sures with repeated-measures ANOVAs and Tukey multiple

@ Springer
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Table 1 The subjective Performance questionnaire

1D Question

SP1 How confident were you on the correctness of your choices in this section of the experiment?

SP2 What percentage of the targets do you think you identified correctly from 0 to a 100%?

SP3 What do you think is an acceptable error margin for the system, based on your assessment of your performance?

Table 2 The subjective
Experience questionnaire

Table 3 The adjusted Trust in

Technology questionnaire

Question

CL1
CL2
CL3

SUS1

SE1

How mentally demanding was the task?

How hard did you have to work to accomplish your level of performance?
How insecure, discouraged, irritated, stressed, or annoyed were you?

I thought the system was easy to use

I felt the gaze behavior of my partner was realistic

ID

Question

TT1
TT2
TT3
TT4
TT5

The shared gaze system is a very reliable piece of software

The shared gaze system has the features required for my task

I am totally comfortable working with the shared gaze system

I believe that most technologies are effective at what they are designed to do

I usually trust a technology until it gives me a reason not to trust it
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Fig. 4 Performance results related to eye tracking errors: The top row (a, b) shows results for accuracy and the bottom row (c, d) for precision.
The left column (a, ¢) shows results for response time and the right column (b, d) for error rate
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comparisons with Bonferroni correction at the 5% signifi-
cance level. We confirmed the normality with Shapiro-Wilk
tests at the 5% level and QQ plots. Degrees of freedom were
corrected using Greenhouse-Geisser estimates of sphericity
when Mauchly’s test indicated that the assumption of spheric-
ity had been violated.

4.1.1 Accuracy

Response time For accuracy, we found a significant main
effect of error level, F(3.21,61.09) = 13.02,p < 0.001,
ni = 0.4, no significant main effect of target distance,
F(2,38) = 143, p = 0.25, r/% = 0.07, and a significant
interaction between the two factors, F(4.98,94.71) = 2.63,
p=10.02, nf, = 0.12. Figure 4a shows the aggregated response
time for the simulated accuracy error levels at different target
distances.

Error rate For accuracy, we found a significant main effect
of error level, F(2.99, 56.84) = 4.91, p = 0.004, nf, =0.2.
We did not find a significant main effect of target distance,
F(2,38) = 041, p = 0.606, n?, = 0.02, suggesting that
the tested target distances did not have a noticeable impact
on participants’ accuracy of responses. Figure 4b shows the
aggregated error rate for the simulated accuracy error levels
at different target distances.

4.1.2 Precision

Response time For precision, we did not find a significant
effect of error level, F(2.79,53.141) = 1.04, p = 0.37,
n?? = 0.05, and target distance, F'(1.61,30.73) = 2.08,
p = 0.15, n% = 0.09, on participants’ response time, sug-
gesting that the tested target distances and error levels did
not noticeably add to the difficulty of the target identification
task for this type of error. Figure 4c shows the aggregated
response time for the simulated precision error levels at dif-
ferent target distances.

Error rate For precision, we did not find a significant effect
of error level, F'(5,95) = 091, p = 0.47, nf, = 0.04, and
target distance, F(2,38) = 0.37, p = 0.68, n% = 0.01,
on participants’ error rate, again suggesting that the tested
target distances and error levels did not noticeably add to the
difficulty of the target identification task for this type of error.
Figure 4d shows the aggregated error rate for the simulated
precision error levels at different target distances.

4.1.3 Latency

Response time For latency, we found a significant main
effect of error level, F(5,95) = 16.12, p < 0.001, nf, =

0.45. We did not find a significant main effect of target
distance, F(1.61,30.64) = 1.27, p = 0.27, n%, = 0.06,
suggesting that the tested target distances did not noticeably
add to the difficulty of the target identification task. Figure 5a
shows the aggregated response time for the simulated latency
error levels at different target distances.

Errorrate For latency, we found a significant main effect of
error level, F'(2.96, 56.32) = 14.23,p < 0.001, n%, = 0.42.
We also found a significant main effect of target distance,
F(2,38) =5.18,p = 0.01, nf, = 0.21. Figure 5b shows
the aggregated error rate for the simulated latency error levels
at different target distances.

4.1.4 Dropout

Response time For dropout, we found a significant main
effect of error level, F(3.41,64.80) = 26.26,p < 0.001,
n?? = 0.58, no significant main effect of target distance,
F(1.61,30.74) = 0.61, p = 0.51, n%, = 0.03, and a signifi-
cant interaction between the two factors, F(7.81, 148.56) =
2.68,p =0.009, nf, = 0.12. Figure 5c shows the aggregated
response time for the simulated dropout error levels at dif-
ferent target distances.

Error rate For dropout, we did not find a significant main
effect of error level, F(2.59,49.28) = 0.74, p = 0.51,
n% = 0.03, or target distance, F'(1.39,26.55) = 1.30,
p =0.27, nf, = 0.06, on participants’ error rate, which sug-
gests that the tested target distances and error levels did not
noticeably impact participants’ responses. Figure 5d shows
the aggregated error rate for the simulated dropout error lev-
els at different target distances.

4.1.5 Error analysis

We analyzed the participants’ selections in terms of the
selected target compared to the correct target with respect
to characteristics of their walking speed and depth. For this,
a depth interval of + 1 indicates that a participant’s selection
is one person behind the correct target, and — 1 indicates
that the selection is one person in front of the correct tar-
get. The range of these depth intervals is between 6 due
to the way that the virtual humans were positioned in the
crowd as well as where the targets could be positioned (see
Sect. 3.2.2). Similarly, as the speed of the virtual humans
was randomly assigned from a predefined list, a speed inter-
val of 41 indicates that a participant’s selection moved at one
speed interval faster than the correct target, and —1 indicates
that the selection moved at one speed interval slower than
the correct target. These speed intervals had a range between
48, as there were a total of nine different possible speeds.
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Fig.5 Performance results related to network errors: The top row (a, b) shows results for latency and the bottom row (c , d) for dropout. The left
column (a, ¢) shows results for response time and the right column (b, d) for error rate

The distributions of these intervals were split into four
different categories based on the condition error type, and
are shown in Fig. 6.

When analyzing the effects of error type and error level
on the average absolute value of speed and depth intervals
using the methods described at the beginning of this section,
we found several significant main effects. We found that the
error type had significant main effects on the depth intervals
between the correct target and the participants’ selected tar-
gets, F(3,57)=3.38,p = 0.024, n*> = 0.15, indicating that
when participants made mistakes in the accuracy and latency
conditions, their target choice was significantly farther away
from the correct target than it was when mistakes were made
in the precision and dropout conditions. We also found that
error level had a significant main effect on depth intervals,
F(5,95) = 7.79,p < 0.001, nz = 0.29, and speed inter-
vals, F(5,95) = 4.19,p = 0.002, 172 =0.18, indicating that
when participants made mistakes in conditions with higher
error levels, then their target choice tended to be significantly
farther away and move at a different speed than the correct
target.

4.2 Subjective measures

For the subjective questionnaire responses with an ordinal
data type, we used non-parametric statistical tests to analyze
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the responses. We used Wilcoxon signed-ranks tests for the
related samples.

4.2.1 Subjective performance

We analyzed the results for the Performance questionnaire
(Table 1) with respect to questions SP1, SP2, and SP3. See
Table 4.

For SP1, we did not find a significant difference among
the error types when assessing participants’ confidence in
their responses, and the similar results for the different error
types suggest that they did not have a noticeable impact on
self-assessments of their performance.

However, for SP2, we found significant differences between
participants’ subjective assessment of performance and
their actual performance for accuracy, F(1,19) = 8.07,
p=0.01, nf, = 0.29, precision, F(1,19) = 20.05,p <
0.001, nf, = 0.51, and dropout, F(1,19) = 29.16, p
0.001, n% = 0.6. We observed a trend for latency, F'(1, 19) =
3.23, p = 0.08, n% = 0.14. These results are shown in Fig. 7
and suggest that participants subjectively self-judged their
performance as worse than what it actually was.

For SP3, we further looked at participants’ subjective
judgment of what they think constitutes the threshold for
an acceptable amount of error. We identified a subjective
accuracy threshold, M = 2.35deg, SD = 1.37deg, pre-
cision threshold, M = 1.36deg, SD = 0.64 deg, latency

A
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Fig. 6 These figures show the distributions of depth intervals and speed intervals for participants’ errors made during the study task. The x-axis
show the depth/speed interval as explained in Sect. 4.1.5, and the y-axis shows the frequency of occurrence
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Fig.7 Comparison of participants’ subjective estimates of their perfor-
mance and their objective performance in terms of correctly identified
targets during the experiment for a accuracy, b precision, ¢ latency,
and d dropout. Statistical significance: ***p < 0.001; **p < 0.01;
*p < 0.05

threshold, M = 265.9ms, SD = 267.7ms, and dropout
threshold, M = 23.35%, SD = 17.49%. We added these
subjective thresholds as vertical red lines to the objective
measures shown in Figs. 4 and 5. It is interesting to observe
that these subjective thresholds seem to be in line with a drop
in objective performance for accuracy and latency, while they
do not seem to match changes in performance for precision
and dropout.

4.2.2 Subjective experience

We analyzed the results for the Experience questionnaire
(Table 2) with respect to cognitive load questions CL1, CL2,
and CL3, as well as ease of use question SUS1, and realism
question SE1. See Table 4.

To measure the cognitive load related to each error type,
we computed the mean value of CL1, CL2, and CL3. We
found significant differences between precision and accu-
racy, W = 126, Z = 3.01, p = 0.003, between precision
and latency, W = 124, Z = 2.9, p = 0.004, and between
precision and dropout, W = 162, Z = 2.13, p = 0.03, indi-
cating that the levels of precision error were less mentally
demanding. We did not find significant differences for the
other comparisons.

For SUS1, we did not find significant differences among
the different error types, with overall similar results indicated
for ease of use.

For SE1, looking at realism of gaze behavior, we found
significant differences between precision and accuracy, W =
13, Z =2.99, p = 0.003, and a trend between accuracy and
latency, W =31, Z = 1.68, p = 0.09.
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4.2.3 Trust in technology

The adapted Trust in Technology questionnaire (Table 3) was
completed by participants at the end of the experiment. We
analyzed the results with respect to questions TT1, TT2, and
TT3 focused on participants’ perception of the shared gaze
interface and questions TT4 and TT5 measuring participants’
general view of technology. We calculated the mean values
of the questions in each group for TT1-3 (M = 4.78,SD =
1.09) and TT4-5 (M = 4.50, SD = 1.07).

We found a significant Pearson correlation between ques-
tions focusing on the shared gaze interface and technology,
r = 0.701, p = 0.001. This suggests that participants who
have a more trusting outlook towards technology rated the
shared gaze interface as better even though 60 out of the 72
trials included some amount of error.

4.3 Qualitative feedback

We conducted short interviews after the experiment to get a
better understanding of our participants’ impressions of the
experience. Most of our participants indicated some level
of discomfort associated with wearing the HoloLens for
the duration of the experiment. Eleven of our participants
reported experiencing slight or moderate amounts of eye
strain. Only two of our participants reported experiencing
slight amounts of headache or dizziness.

We asked our participants whether or not they observed
differences in the gaze behavior of their simulated virtual
partner within each block and between any two blocks to
gauge how perceptible the simulated differences in error
types were. Only three of our participants mentioned that the
gaze behaviors within each block were similar and seemed
to follow a consistent model. Apart from one participant who
mentioned that the gaze behavior seemed similar comparing
any two blocks, six participants noted that some blocks had
similarities with each other. Interestingly, one of our partici-
pants mentioned the impact of the limited field of view of the
HoloLens and that they tried to compensate for it by leaning
slightly backwards while standing in place.

Some participants remarked on the fact that the gaze rays
did not terminate at the body of the target human, which
would provide useful depth cues for practical shared gaze
environments. As discussed in Sect. 1, we expected this feed-
back, but such approaches would require accurate real-time
information about dynamic scene geometry, which is highly
challenging for practical applications, and not considered in
the scope of this paper.

Most participants further indicated that they made judg-
ments based on a visual comparison between the movement
patterns of the target humans and those of the gaze ray, and
that it helped them in completing the task. It would be more
challenging to identify a stationary target among a group of
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Table 4 Subjective responses

for the Performance and ID Accuracy Precision Latency Dropout

Experience questionnaires SP1 530 (1.38) 5.55 (1.57) 5.10 (1.37) 5.00 (1.29)
N 77 (20.93) 83.40 (16.94) 78.00 (16.17) 77.10 (14.43)
SP3 235 (1.37) 1.36 (0.64) 265.9 (267.7) 23.35 (17.49)
CL1-3 3.78 (1.34) 3.00 (1.27) 4.01 (1.25) 3.60 (1.05)
susl 4.55 (1.46) 5.05 (1.66) 435 (1.53) 455 (1.50)
SE1 3.33 (1.46) 438 (2.03) 4.00 (1.89) 3.76 (1.75)

We report the means (standard deviations) for the four error conditions

stationary objects. That is, unless one’s simulated partner is
moving as well, which could provide similar cues as in this
study, and would be interesting for future research.

5 Discussion

In this experiment, we observed different effects on partici-
pants’ performance for error types when error level and target
distance were varied. We also noticed the relatively high
performance of many of our participants even though the
subjective estimates of their performance were lower. Last
but not least, we identified subjective thresholds for tolera-
ble error levels. In this section, we discuss our findings and
their implications for practitioners.

5.1 Effects of error type on performance and
subjective response

To answer our initial research question RQ1, based on the
differences in the nature of each error, we predicted that
accuracy and latency errors can impact participants’ per-
formance more negatively. Indeed, this can be observed in
Fig. 7. In the case of our task, the temporal and spatial offset
introduced through accuracy and latency errors led to more
misinterpretations than precision and dropout errors. This
offset posed a bigger potential for the gaze ray to be on the
wrong human for a longer duration of time, causing tempo-
rary misinterpretations similar to Holmqvist et al.’s example
for accuracy errors [16]. This required participants to rely
more on the movement patterns of the human targets and
spend more time on target identification.

We also observed that our participants subjectively assessed
their performance to be worse than their actual performance,
supporting our Hypothesis H4 and suggesting a response to
part of our research question RQ3, which is similar to Wal-
temate et al.’s findings on how participants had a tendency
to rather perceive themselves as the cause of error in a visual
movement task rather than an introduced system error [40].
We also observed a lower score for cognitive load for pre-
cision compared to other error types, partly supporting our
Hypothesis H3b. Surprisingly, we did not find a difference

for SP1 (i.e., confidence in answers) and SUSI (i.e., ease
of use), thus not supporting our Hypotheses H3a and H3c.
We think that the novelty of the interaction, some perceived
similarity among blocks, and participants’ generally lower
self-assessment of performance might have caused them to
give similar confidence scores for the different error types,
although it is important to note that for all error types the
mean confidence was higher than 5 on a scale of 1 to 7.

5.2 Effects of error level on performance and
subjective error estimation

We found multiple effects indicating a relative increase in
response time and an increase in error rate for simulated error
levels for different error types, partly confirming our Hypoth-
esis H1. To answer our second research question RQ2, we
collected subjective estimates of what participants indicated
as tolerable thresholds for error levels. Their responses indi-
cate that for our task, thresholds of 2.35 deg for accuracy,
1.36 deg for precision, 265.9 ms for latency, and 23.35% for
dropout were acceptable.

We compared these subjective thresholds to the objec-
tive performance for accuracy and latency and found that
they indeed seem to be indicating an objective drop in per-
formance, which is supported by our statistical analysis.
For less demanding situations, we would go as far as to
say that thresholds of 3.5 deg for accuracy and 600ms for
latency are acceptable before the performance drops more
drastically. Practitioners may select an appropriate level of
performance based on their constraints with respect to the
temporal demands and severity of errors of the task at hand,
and invest in corresponding eye trackers and network solu-
tions.

In contrast, the subjective thresholds do not seem to
match noticeable changes in performance for precision and
dropout. For dropout, we observed most of the significant
differences in performance around the highest error value in
the tested range (i.e., 90% chance of frame drops). We did
not observe a change in performance for precision through-
out the tested range, suggesting that our tested values were
not large enough to cause any disruptions in our participants’
performance. We would like to point out that we chose these

@ Springer



Journal on Multimodal User Interfaces

ranges based on reported error levels in the literature and by
eye tracker manufacturers (Sect. 3.2), and that it is encour-
aging for shared gaze applications if these levels are already
tolerable.

5.3 Effects of target distance on performance

In contrast to what we had hypothesized in H2, there were
only a few instances of error types and error levels where we
observed a significant decrease in performance for some tar-
get distances, and this was not always for the farthest targets.
Although there were instances where we saw a significant
decrease in performance as the targets were further back such
as for accuracy errors, we also observed the opposite effect
for some latency and dropout error levels where the response
time and error rate was higher for targets at the close and
medium distances. We think that this can partly be explained
by the limitations in the field of view of the HoloLens HMD
used for the experiment. It was more difficult for participants
to see the AR gaze ray and the human targets at a close dis-
tance since they could easily move out of the augmented field
of view.

5.4 Participant selection strategies

By observing the depth and speed distributions for each error
type, shown in Fig. 6, we can gain insight into the strategies
used by participants when selecting virtual humans from the
crowd.

In examining the speed interval distributions, we observe
that when users made selection errors, they tended to select
virtual humans that were moving at similar speeds to the
correct target. This suggests that the primary selection strat-
egy used by participants was judging their speed relative to
that of the gaze visualization. This is further supported by the
depth distributions, which are in general normally distributed
with a higher variance than the speed interval distributions.
These normal distributions in the depth interval data would
be caused by the randomized nature of assigning depth val-
ues to each of the non-targeted virtual humans in the crowd,
where high interval values of up to 6 are not likely because
the depth of the target virtual human is set at one of the three
variable depths.

This explanation fits very well for the distributions seen
in the dropout and latency conditions. However, the accuracy
and precision distributions for the speed intervals show more
variance. This increase in variance could be explained by par-
ticipants making a small portion of their selections based on
a factor other than depth or speed, which may be the position
of the virtual humans as they approach an endpoint where
they switch directions. Several of our participants mentioned
using this turning point as a selection strategy due to the pat-
terns in the gaze behavior that it produces. For example, if
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there is an accuracy or precision error on the gaze visualiza-
tion, then the correct target and the gaze visualization should
switch directions of movement at the same time once the
target virtual human hits one of the endpoints of its pacing
behavior. Such a strategy would not necessarily work as well
for the dropout or latency conditions, however, as for those
type of conditions the switch in direction may occur after
a certain offset of time. Therefore, it seems likely that this
increased variance seen in the accuracy and precision con-
ditions may have come from participants using this location
information as part of their selection strategy.

Since speed is an important factor for participants when
deciding which virtual human is being targeted, future imple-
mentations of shared gaze systems may be able to mitigate
the effects of eye tracking errors by assisting users in select-
ing the correct target by analyzing the speed of entities within
the sensors’ field of view. For example, if there are several
entities moving at similar speeds as the gaze ray, the system
could provide an indication as to which of the entities are
likely to be confused for each other and an indication as to
which target best matches the gaze pattern. Such a feature
may help reduce the amount of selection errors that users
make, and may be investigated in future work.

5.5 Eliminating error

Because of the impact of latency and accuracy on user
performance, future shared gaze systems should take care
to mitigate these errors wherever possible. While accuracy
based errors may be able to be partially corrected through
use of techniques such as bendable rays [37] or motion
correlation [39] between points in the users view and user
eye movements, latency errors are more difficult to elimi-
nate, especially in applications which involve streaming of
large quantities of information. For this reason, future shared
gaze systems should prioritize implementations where large
amounts of network data, such as dynamic spatial mapping
data, can be avoided. For colocated shared experiences, we
suggest an implementation similar to what we describe below
in section 6 where spatial mapping can be done locally on
each user’s device. However, for remote shared experiences,
we recommend in general prioritizing shared gaze informa-
tion over other information on the network and employing
latency reducing techniques such as those described by Con-
ner and Holden [6] in order to avoid a decrease in user
performance.

5.6 Limitations

To fully control for behavioral factors among participants and
the trials, in this experiment we chose to use a simulated vir-
tual human partner. Although we did not measure for social
presence and co-presence among collaborators, we under-



Journal on Multimodal User Interfaces

stand that the social impact of the partner could have been
different if a real person was chosen instead or if the virtual
human partner initiated a conversation with the participants
during the experiment. As a separate experiment, it would be
interesting to investigate how the different partners (i.e., real
or virtual) and level of interaction with that partner might
influence the overall collaborative experience although we
expect that the perception of gaze should remain the same
for the different partners.

Separately, we chose the same viewing direction for both
the participants and the simulated partner, who were standing
at a relatively close distance to each other (i.e., one meter).
It is important to note that the participants’ position relative
to the virtual human collaborator, as well as the participants’
distances to the targets likely have a significant impact on
participants’ performance and their overall experience.

It is also possible that the limited field of view of the
HoloLens (around 30 degrees horizontal by 17 degrees verti-
cal) may have influenced our results by limiting the number
of simultaneously available visual cues which could help the
participant in making their decision. It is possible that with
increased field of view that we could see improvement in the
participants performance, and could even potentially change
users’ preferences when it comes to gaze visualization. While
not investigated here, future work should evaluate the role
that such factors play in remote collaboration experiences.

6 Prototype for gaze-based augmented
reality collaboration

To facilitate gaze-based interaction between multiple colo-
cated users in AR, we used several software assets and
commercial devices to create a prototype platform where
each user can be aware of their collaborators’ gaze. We imple-
mented gaze rays as used in Sect. 3 as well as other gaze
visualizations for users to communicate their focus of atten-
tion in a shared space.

Our prototype makes contributions beyond the existing lit-
erature by allowing for multiple colocated eye-tracked users
wearing AR optical see-through head-mounted displays (AR
OST-HMDs) to share eye gaze information. Such a combina-
tion is beneficial because it allows for the 3D gaze point to be
shared regardless of whether the user is looking at a physical
or virtual object, and has the added benefit of not having to
share spatial mapping data over the network between users
as is the case with prototypes such as CoVAR [33]. As far
as we know, ours is the first prototype in which eye gaze
information is shared between users of OST-HMDs coupled
with mounted eye trackers, and thus extends the work such
as that done by Li et al. in which head gaze is coupled with
techniques such as the parallel bar technique or double ray

User’s Gaze Ray

HoloLens
with
Eye Trackers

Fig. 8 Annotated screenshot of a user, wearing a backpack computer
and a Microsoft HoloLens with the Pupil Labs eye trackers from the
point of view of another user, showing the user’s gaze ray

technique in order to provide clues as to what object the user
is observing along the gaze ray [25].

We hope that this section will serve as a reference for
future work involving shared gaze augmented reality systems
by outlining one potential approach in which a prototype
system can be implemented.

6.1 Material

Our prototype platform made use of Microsoft HoloLens
HMDs with a Pupil Labs binocular eye tracking add-on.” We
used Pupil Labs’ hmd-eyes® to calibrate the eye trackers for
each user and gain access to 2D and 3D gaze information. The
nominal accuracy of the eye trackers reported by the Pupil
Labs manufacturer are below 1 deg and 1.5-2.5 deg for the
2D and 3D calibration modes, respectively. We used the 2D
approach for calibrating our eye trackers. The eye tracker was
tethered to an MSI backpack computer with the following
specifications: Intel Core i7-7820HK 2.9 GHz CPU, 16 GB
RAM, Nvidia GTX 1070 graphics card, Windows 10 Pro.
Figure 8 shows the annotated working prototype.

To create a shared experience between users, we used a
combination of the Unity game engine and the Photon Unity
Networking (PUN) asset.” The PUN package allows for easy
network communication between HoloLens devices through
Exit Game’s Photon Cloud servers. HoloLens clients con-
nect to one of three private “rooms” through the Photon Cloud
server, where they can then send and receive information with
each other. While we did not measure the end-to-end latency
of our prototype system under varying conditions, when
using the Photon servers with two simultaneous users, the
approximate network latency excluding any system latency

> https://pupil-labs.com/products/vr-ar/.
© https://github.com/pupil-labs/hmd-eyes.

7 https://www.photonengine.com/pun.
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Fig.9 Screenshots of a the gaze cursor visualization mode showing a user looking at a door handle and b the gaze path visualization mode showing

a user looking from the plant to the mannequin

introduced by the eye tracking hardware and 3D rendering
in Unity was measured to be 32 ms.

The setup of the shared coordinate system for the proto-
type involved starting the application from the same position
and orientation on each connected HMD instead of utilizing
assets such as the holotoolkit’s world anchor, which require
the application to be deployed to the HoloLens as opposed
to running in holographic remoting. While such a method
is certainly not ideal for a fully realised implementation,
this method allowed for rapid development of prototyping
of ideas.

The spatial mapping Unity component was used to allow
Unity to access the environment mapping capabilities of the
HoloLens, which populated Unity’s virtual scene with invisi-
ble meshes that represented the user’s environment in relation
to the user’s position. The gaze direction measured by the
eye trackers was projected from the user’s head position as a
Unity ray cast, and the collision point between this ray and
the invisible spatial mesh was recorded. This collision point
represented the current gaze position of the user, and was sent
across the Photon network to be displayed to another user,
allowing for real-time sharing of gaze information between
users.

6.2 Prototype capabilities

We implemented a gaze ray visualization mode for the pro-
totype, shown in Fig. 8. The color of this gaze ray was easily
customized, and is shown in red in the figure. For this type
of visualization, the endpoint of the gaze ray was positioned
in real time at the user’s identified gaze point in the environ-
ment, which was computed as the intersection between the
gaze ray with the spatial map as described above. From there,
the Unity line renderer component was used to draw a line
segment between the user’s head position and their identi-
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fied gaze position. This type of gaze visualization gave users
access to information about gaze direction and the location of
its point of intersection with the environment, which allowed
users to identify where other users’ attention was focused.

Additionally, we implemented two other gaze visual-
ization modes: gaze cursor and gaze path. For the gaze
cursor visualization (shown in Fig. 9a), instead of a line
segment connecting a user’s head position to their gaze
position, solely a circular cursor was drawn at the gaze
position without any connecting line segment. This intu-
itive visualization is similar to using a mouse on a 2D
display, however it heavily relies on the depth informa-
tion gathered from the HoloLens’ spatial mapping of the
environment, and lacks the directional information that is
inherent to the gaze ray visualization mode. This gaze cur-
sor visualization was evaluated along with potential depth
based errors that can occur from the depth mapping capa-
bilities of the HoloLens in work by Erickson and Norouzi
et al. [9] where it was found that depth errors can also
have significant impacts on user performance in shared gaze
identification tasks, and that users tend to perform worse
with cursor-based visualizations than they do when using
gaze ray visualizations due to the lack of the directional
cues.

For the gaze path visualization (shown in Fig. 9b), the
cursor described above was combined with a Unity line
renderer component, so that as the user’s gaze position
changed, a line was drawn in real time that represented
the path of their gaze movement. The gaze position for
the most recent n seconds of gaze information is dis-
played and continuously updated, and the width of the
path shrinks over time so that the widest part of the path
would be at the user’s current gaze position and the small-
est part of the path would be where the user was looking 5s
ago.
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6.3 Demonstration

We demonstrated our shared gaze prototype at a bi-annual
exhibition involving defense researchers and contractors. In
our showcased setup, one of the authors wore the eye-tracked
HMD and the backpack computer in a room-sized environ-
ment. Visitors’ could don another HMD and were able to see
the experimenter’s focus of attention through the different
gaze visualizations.

The visitors’ feedback was generally very positive, indi-
cating that such shared gaze information can reduce the
amount of time spent on conveying positional information
to other teammates, reducing the need for hand signals
and verbal descriptions of identified target positions, which,
depending on the environment, can be difficult to commu-
nicate efficiently. With the shared gaze system, a point of
interest can be shared in real time, allowing for a reduced
reaction time from teammates. Our discussions further indi-
cated a practical demand for using gaze information to
indicate targets far beyond the distances tested in Sect. 3,
such as at more than a hundred meters in outdoor envi-
ronments. State-of-the-art eye trackers are currently not
sufficiently accurate and precise to pinpoint a target at such
distances, limiting their usefulness for such application sce-
narios.

We further received feedback about the benefits of the gaze
path feature in addition to the gaze cursor, as this visualization
has the added benefit of being able to instantaneously share
information about a moving target among team members.
By seeing the shared gaze path, other teammates can quickly
learn where the target of interest was recently, in addition to
in what direction it is currently moving and its relative speed.

We believe that these applications of shared gaze systems
warrant further investigation into the intricacies of such sys-
tems and how they can benefit society.

6.4 Prototype limitations

The prototype system relies on gathering environmen-
tal information using Unity spatial mapping components,
which uses the environmental mapping capabilities of the
HoloLens. There are several parameters that can be adjusted
when working with this type of component, including the
rate at which Unity gathers environment information from
the HoloLens, and the number of updates to perform prior to
deleting portions of the 3D mesh that have since changed or
moved. By varying these values, the correspondence between
the generated mesh and the environment is greatly affected as
well as the ability of this generated mesh to include dynamic
objects.

For the purposes of our prototype, we settled with param-
eter values that captures static environment information well,
but generates artifacts from dynamic objects. Future imple-
mentations of shared gaze systems may need to make use
of additional depth information to eliminate these difficul-
ties, however the depth information gathered from sensors
on the HoloLens or other devices is also subject to vari-
ous types of errors, as examined by Erickson and Norouzi
et al. [9]. Because of this, future work should be carried
out to investigate techniques that can mitigate and reduce
the effects of these type of errors while the capabilities of
the eye tracking and depth sensing hardware continue to
improve.

7 Conclusion and future work

In this paper, we investigated the effects of error type, error
level, and target distance in an AR shared gaze interface on
participants’ objective performance and subjective responses
through a controlled human-subject study. We designed an
experimental scenario inspired by a practical use case of two
police officers scanning a crowd of people for a potential
threat. In our study, participants were asked to collaborate
with a simulated virtual partner and leverage their AR gaze
ray to identify a target human among a crowd. We introduced
different errors that could impact the data quality presented to
the participants either caused by an eye tracker or the network
used and measured participants’ performance through their
response time and error rate in identifying the targets and
assessed their subjective experience. We further investigated
the current feasibility and methods of implementing a real-
time shared gaze system by designing and demonstrating a
prototype system.

We identified thresholds for acceptable amounts of error,
and our findings suggest that eye tracker accuracy and net-
work latency experienced in current-state shared gaze setups
have a noticeable effect on users’ performance. In contrast,
the tested common ranges of errors for precision and lag
were largely acceptable, indicating that these are not a major
performance concern for practitioners. We further observed
that the field of view of current-state AR HMDs can affect
participants’ performance with regards to different target dis-
tances, and we plan to explore this factor in future work. We
also plan to investigate the impact of other visualization tech-
niques, with or without available dynamic scene geometry
information, for the gaze cues and how they compare to the
gaze ray used in this experiment.
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