
1077-2626 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Manuscript received 10 Sept. 2019; accepted 5 Feb. 2020.
Date of publication 18 Feb. 2020; date of current version 27 Mar. 2020.
Digital Object Identifier no. 10.1109/TVCG.2020.2973054

Effects of Depth Information on Visual Target Identification Task

Performance in Shared Gaze Environments
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Fig. 1. An illustration depicting a shared gaze visualization in augmented reality without and with depth information: (A) in traditional
eye tracked setups without real-time depth information, the user can tell the direction of their partner’s gaze but it is ambiguous in terms
of which object they are observing along the ray, while (B) in shared gaze setups with depth information, such ambiguities can be
resolved by truncating the ray at the target distance, e.g., provided by (C) real-time depth sensor information, where the pixel queried in
the depth map (the termination point of the ray) is highlighted in red.

Abstract—Human gaze awareness is important for social and collaborative interactions. Recent technological advances in augmented
reality (AR) displays and sensors provide us with the means to extend collaborative spaces with real-time dynamic AR indicators of
one’s gaze, for example via three-dimensional cursors or rays emanating from a partner’s head. However, such gaze cues are only
as useful as the quality of the underlying gaze estimation and the accuracy of the display mechanism. Depending on the type of the
visualization, and the characteristics of the errors, AR gaze cues could either enhance or interfere with collaborations. In this paper, we
present two human-subject studies in which we investigate the influence of angular and depth errors, target distance, and the type
of gaze visualization on participants’ performance and subjective evaluation during a collaborative task with a virtual human partner,
where participants identified targets within a dynamically walking crowd. First, our results show that there is a significant difference in
performance for the two gaze visualizations ray and cursor in conditions with simulated angular and depth errors: the ray visualization
provided significantly faster response times and fewer errors compared to the cursor visualization. Second, our results show that under
optimal conditions, among four different gaze visualization methods, a ray without depth information provides the worst performance
and is rated lowest, while a combination of a ray and cursor with depth information is rated highest. We discuss the subjective and
objective performance thresholds and provide guidelines for practitioners in this field.

Index Terms—Shared Gaze, Augmented Reality, Depth Error, Gaze Visualization, Performance Measures

1 INTRODUCTION

Recent advances in augmented reality (AR) systems and component
technologies, including tracking, processing power, and display quality,
rekindled public interest in many long-envisioned interaction tech-
niques and applications [44]. Among these, collaboration in AR was
one of the most highly cited application areas for usability studies in
AR from 2005 to 2014 [9] and has emerged as an active research topic
in recent years [22]. Compared to conventional collaboration platforms,
AR offers several benefits, including seamlessly blended real and vir-
tual content, improved physical and spatial cues, and unconstrained
view perspectives for both collocated and remote collaborators [2].

Human gaze awareness can improve performance of collaborative
tasks [36]. It can be an indicator of one’s focus of attention [24], and
plays an important role during many collaborative efforts by facili-
tating coordination [6], disambiguation [17], and joint attention [30].
Researchers have investigated the use of shared gaze information in
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collaborative systems for different applications such as search tasks,
assembly tasks, and teleconferencing [4, 13, 25, 37, 38], utilizing var-
ious visualization paradigms such as heat maps to indicate dynamic
individual and shared attention, and virtual frusta, cursors, and rays1 to
indicate head and eye gaze information [7, 35].

Such visualizations inherently rely on real-time estimates of head
pose, eye gaze, and scene information, typically obtained from head
trackers, eye trackers, and depth cameras, respectively. For example,
to represent a user’s gaze ray towards an object in the scene, it is
necessary to know the user’s head pose and gaze direction. For a less
ambiguous representation, it is further possible to leverage real-time
depth sensors such that the gaze ray terminates at the intended target.
While the tracking, depth, and display technologies necessary for such
visualizations have improved considerably over time, they will never be
free from error. Depending on the users, their tasks and environments,
and the choices of visualization paradigms, the errors will affect the
quality of the collaborations and their outcomes.

In this paper, we address the following research questions:

• RQ1: What is the impact of angular and depth gaze errors on
users’ task performance and evaluation of the collaboration?

• RQ2: What are the objective and subjective thresholds for the
magnitude of errors up to which user performance is not affected?

1In keeping with prior literature we use the term “ray” to broadly represent

both rays—3D lines with “infinite” extent that are defined by their starting point

and orientation, and ray segments—3D rays that terminate at a point in space.

• RQ3: Under optimal conditions, which gaze visualization method
results in the highest task performance and is preferred by users?

To answer these research questions, we designed a shared gaze setup
and collaborative task where participants were asked to identify a target
among a dynamic crowd using the gaze information of a (simulated)
human partner. Based on this setup, we conducted two human-subject
studies where we varied the amount and type of simulated errors in-
troduced to the shared gaze, as well as the type of gaze visualization,
and target distances. We measured each participant’s task performance
through their response time and error rate, and collected subjective feed-
back about their performance and perception of the collaborative shared
gaze interaction. We present objective and subjective error thresholds
to support practitioners in making informed decisions about the use of
adequate sensor hardware and visualization methods.

The remainder of this paper is structured as follows. Section 2
presents an overview of related work. Section 3 presents our first exper-
iment, focusing on an evaluation of two gaze visualization methods, two
target distances, and two error types with seven levels each. Section 4
describes our second experiment, comparing four gaze visualization
methods under optimal conditions for two target distances. Section 5
presents a general discussion. Section 6 concludes the paper.

2 RELATED WORK

In this section, we describe previous work that studied gaze as an
enhancement cue in collaborative AR or virtual reality (VR) setups, and
discuss error sources, including eye trackers and depth cameras, that
can influence gaze localization. We also review some of the previously
studied approaches for visualizing shared gaze.

2.1 Shared Gaze in AR and VR

In a recent survey paper by de Belen et al., provision of non-verbal cues
such as gaze and pointing cues was identified as one of the important
factors in enhancing collaboration quality in mixed reality spaces [8].
Kiyokawa et al. introduced the idea of “enhanced awareness” to im-
prove the quality of collaboration by visualizing a user’s face direction
using a ray, as users collaborating in the real world can often perceive
where the other person is looking [23]. Billinghurst and Kato developed
a mixed reality web browser that conveyed awareness of a user’s gaze
by highlighting the web page the user looked at, and assigning a gaze
icon to each page that was viewed by the other user [1]. Grasset et al.
utilized a ray to communicate one user’s gaze direction, finding it a
sufficient awareness signal in a maze navigation task [15].

In a helper/worker scenario for a puzzle assembly task, Gupta et al.
investigated the impact of sharing a worker’s gaze and a helper’s point-
ing cues, finding improved performance and communication quality
when the cues were available [16]. Masai et al. developed empathy
glasses, sharing cues such as gaze and facial expression from the worker
to the helper and augmenting the helper’s pointing cues in the worker’s
field of view for a 2D puzzle assembly task [29]. Their findings from a
pilot study suggest the benefit of shared gaze in establishing accurate
spatial referencing and a shared understanding. Piumsomboon et al.
introduced the CoVAR system for mixed space collaboration with the
capability of visualizing different awareness cues such as head ray,
gaze ray and hand gestures [35]. In a search and placement task, they
found that the inclusion of awareness cues positively affected users’ per-
formance. Piumsomboon et al. further developed Mini-Me, an avatar
facilitating mixed space remote collaboration where different awareness
cues such as gaze and hand pointing information where shared through
cursors and rays between users and supported their system’s capability
in conveying non-verbal cues for an object placement task [34].

Although past work has shown the benefits of shared cues such as
gaze in the quality of users’ collaborative experiences, there has been
little work examining the effects of different types and magnitudes of
(inevitable) gaze errors on the AR/VR tasks. Knowledge about the
effects could help developers make design choices that result in more
reliable gaze perception.

2.2 Gaze and Depth Accuracy

Researchers have identified multiple factors that could result in eye
tracking error, and proposed solutions to mitigate their influence. For
example, highly dynamic tasks might result in the movement of the cam-
era positions, environmental lighting conditions can change, users have
inherent physiological differences, and calibration and mapping results
can be sub-optimal [3, 19, 20, 32]. Feit et al. investigated the influence
of error sources such as lighting and target distance on eye tracking
accuracy and proposed approaches to optimize parameter choices for
factors such as outlier detection and target size [11]. Holmqvist et al.
emphasized on the importance of eye tracking accuracy in relation to
the task at hand, e.g., 0.5 degrees of error can be considered either
poor or ideal quality depending on the target size [19]. Norouzi et
al. investigated the effects of simulated eye tracking errors affecting
the accuracy and precision of the gaze data, finding that accuracy off-
sets can significantly hamper user performance in a collaborative AR
environment compared to low precision in a dynamic search task [31].

In previous papers, eye tracking errors were limited to the two di-
mensions corresponding to gaze direction, but correctly estimating
gaze depth (distance to target) becomes all the more important for 3D
interactions such as in AR and VR. Wang et al. proposed a computa-
tional approach, calculating the 3D gaze position from a monocular
eye tracker with high depth accuracy rates of less than 2% for a 3D
object at roughly 55 cm distance [42]. To estimate gaze depth for
eye trackers used in AR and VR, Lee et al. implemented a multi-layer
perceptron neural network with gaze normal vectors as input and eval-
uated its performance for distances of 1m to 5 m, finding an average
depth error of 0.42 m to be acceptable for applications that do not re-
quire high precision [26]. Elmadjian et al. proposed geometric and
regression-based approaches for 3D gaze estimation with the goal of
facilitating 3D gaze interaction, reaching average depth errors of 0.53 m
and 0.19 m respectively for the two approaches for distances of 0.75 m
to 2.75 m [10]. Weier et al. created a feature set of various gaze-based
measures including eye vergence to train a machine learning model
for gaze depth estimation reaching average errors of 0.5 m for targets
at a 6 m distance [43]. Mardanbegi et al. proposed an approach based
on the vestibulo-ocular reflex for estimating a target’s depth in 3D
environments and compared their approach to a method relying on
vergence [28]. Their proposed approach performed better than the
vergence-based approach by 18% in a wide-range scene covering the
three target distances of 0.5 m, 1.5 m, and 7 m.

Researchers also evaluated the depth estimates of devices such as
the Microsoft Kinect and Microsoft HoloLens. Khoshelham et al. eval-
uated the accuracy and resolution of depth data from Kinect v1 and
described elements such as lighting conditions and object surface prop-
erties as possible sources of error impacting the quality of the collected
point cloud [21]. Yang et al. evaluated the depth accuracy and reso-
lution for the Kinect v2 with a planar surface at different angles and
distances from the Kinect [45]. For their setup, they found errors of
more than 4 mm at a 4 m distance. Looking at hologram stability for the
Microsoft HoloLens, Vassallo et al. identified different activities that
can negatively affect the tracking performance of the device such as a
user walking away from the hologram and coming back, motion with
sudden acceleration, occlusion of the RGB-D cameras, and insertion
of an external object into the hologram [40]. After multiple trials for
each type of interference, they found a mean hologram displacement
of 5.83 mm for their static hologram setup. Liu et al. designed experi-
mental procedures to evaluate the HoloLens’ performance in terms of
aspects such as head localisation, spatial mapping, and environmental
reconstruction [27]. Their findings suggest an average accuracy devia-
tion of 73.8% for the spatial mapping task by calculating the distance
between the placement of a hologram and its target location at distances
of 0.5 m to 3.5 m.

2.3 Shared Gaze Visualization

In the field of human-computer interaction, mostly for 2D displays
(e.g., computer screens) researchers have studied the effects of different
gaze visualization types in shared gaze environments. In the context
of driving, Trösterer et al. discussed how the gaze information of the
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Fig. 1. An illustration depicting a shared gaze visualization in augmented reality without and with depth information: (A) in traditional
eye tracked setups without real-time depth information, the user can tell the direction of their partner’s gaze but it is ambiguous in terms
of which object they are observing along the ray, while (B) in shared gaze setups with depth information, such ambiguities can be
resolved by truncating the ray at the target distance, e.g., provided by (C) real-time depth sensor information, where the pixel queried in
the depth map (the termination point of the ray) is highlighted in red.

Abstract—Human gaze awareness is important for social and collaborative interactions. Recent technological advances in augmented
reality (AR) displays and sensors provide us with the means to extend collaborative spaces with real-time dynamic AR indicators of
one’s gaze, for example via three-dimensional cursors or rays emanating from a partner’s head. However, such gaze cues are only
as useful as the quality of the underlying gaze estimation and the accuracy of the display mechanism. Depending on the type of the
visualization, and the characteristics of the errors, AR gaze cues could either enhance or interfere with collaborations. In this paper, we
present two human-subject studies in which we investigate the influence of angular and depth errors, target distance, and the type
of gaze visualization on participants’ performance and subjective evaluation during a collaborative task with a virtual human partner,
where participants identified targets within a dynamically walking crowd. First, our results show that there is a significant difference in
performance for the two gaze visualizations ray and cursor in conditions with simulated angular and depth errors: the ray visualization
provided significantly faster response times and fewer errors compared to the cursor visualization. Second, our results show that under
optimal conditions, among four different gaze visualization methods, a ray without depth information provides the worst performance
and is rated lowest, while a combination of a ray and cursor with depth information is rated highest. We discuss the subjective and
objective performance thresholds and provide guidelines for practitioners in this field.

Index Terms—Shared Gaze, Augmented Reality, Depth Error, Gaze Visualization, Performance Measures

1 INTRODUCTION

Recent advances in augmented reality (AR) systems and component
technologies, including tracking, processing power, and display quality,
rekindled public interest in many long-envisioned interaction tech-
niques and applications [44]. Among these, collaboration in AR was
one of the most highly cited application areas for usability studies in
AR from 2005 to 2014 [9] and has emerged as an active research topic
in recent years [22]. Compared to conventional collaboration platforms,
AR offers several benefits, including seamlessly blended real and vir-
tual content, improved physical and spatial cues, and unconstrained
view perspectives for both collocated and remote collaborators [2].

Human gaze awareness can improve performance of collaborative
tasks [36]. It can be an indicator of one’s focus of attention [24], and
plays an important role during many collaborative efforts by facili-
tating coordination [6], disambiguation [17], and joint attention [30].
Researchers have investigated the use of shared gaze information in
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collaborative systems for different applications such as search tasks,
assembly tasks, and teleconferencing [4, 13, 25, 37, 38], utilizing var-
ious visualization paradigms such as heat maps to indicate dynamic
individual and shared attention, and virtual frusta, cursors, and rays1 to
indicate head and eye gaze information [7, 35].

Such visualizations inherently rely on real-time estimates of head
pose, eye gaze, and scene information, typically obtained from head
trackers, eye trackers, and depth cameras, respectively. For example,
to represent a user’s gaze ray towards an object in the scene, it is
necessary to know the user’s head pose and gaze direction. For a less
ambiguous representation, it is further possible to leverage real-time
depth sensors such that the gaze ray terminates at the intended target.
While the tracking, depth, and display technologies necessary for such
visualizations have improved considerably over time, they will never be
free from error. Depending on the users, their tasks and environments,
and the choices of visualization paradigms, the errors will affect the
quality of the collaborations and their outcomes.

In this paper, we address the following research questions:

• RQ1: What is the impact of angular and depth gaze errors on
users’ task performance and evaluation of the collaboration?

• RQ2: What are the objective and subjective thresholds for the
magnitude of errors up to which user performance is not affected?

1In keeping with prior literature we use the term “ray” to broadly represent

both rays—3D lines with “infinite” extent that are defined by their starting point

and orientation, and ray segments—3D rays that terminate at a point in space.

• RQ3: Under optimal conditions, which gaze visualization method
results in the highest task performance and is preferred by users?

To answer these research questions, we designed a shared gaze setup
and collaborative task where participants were asked to identify a target
among a dynamic crowd using the gaze information of a (simulated)
human partner. Based on this setup, we conducted two human-subject
studies where we varied the amount and type of simulated errors in-
troduced to the shared gaze, as well as the type of gaze visualization,
and target distances. We measured each participant’s task performance
through their response time and error rate, and collected subjective feed-
back about their performance and perception of the collaborative shared
gaze interaction. We present objective and subjective error thresholds
to support practitioners in making informed decisions about the use of
adequate sensor hardware and visualization methods.

The remainder of this paper is structured as follows. Section 2
presents an overview of related work. Section 3 presents our first exper-
iment, focusing on an evaluation of two gaze visualization methods, two
target distances, and two error types with seven levels each. Section 4
describes our second experiment, comparing four gaze visualization
methods under optimal conditions for two target distances. Section 5
presents a general discussion. Section 6 concludes the paper.

2 RELATED WORK

In this section, we describe previous work that studied gaze as an
enhancement cue in collaborative AR or virtual reality (VR) setups, and
discuss error sources, including eye trackers and depth cameras, that
can influence gaze localization. We also review some of the previously
studied approaches for visualizing shared gaze.

2.1 Shared Gaze in AR and VR

In a recent survey paper by de Belen et al., provision of non-verbal cues
such as gaze and pointing cues was identified as one of the important
factors in enhancing collaboration quality in mixed reality spaces [8].
Kiyokawa et al. introduced the idea of “enhanced awareness” to im-
prove the quality of collaboration by visualizing a user’s face direction
using a ray, as users collaborating in the real world can often perceive
where the other person is looking [23]. Billinghurst and Kato developed
a mixed reality web browser that conveyed awareness of a user’s gaze
by highlighting the web page the user looked at, and assigning a gaze
icon to each page that was viewed by the other user [1]. Grasset et al.
utilized a ray to communicate one user’s gaze direction, finding it a
sufficient awareness signal in a maze navigation task [15].

In a helper/worker scenario for a puzzle assembly task, Gupta et al.
investigated the impact of sharing a worker’s gaze and a helper’s point-
ing cues, finding improved performance and communication quality
when the cues were available [16]. Masai et al. developed empathy
glasses, sharing cues such as gaze and facial expression from the worker
to the helper and augmenting the helper’s pointing cues in the worker’s
field of view for a 2D puzzle assembly task [29]. Their findings from a
pilot study suggest the benefit of shared gaze in establishing accurate
spatial referencing and a shared understanding. Piumsomboon et al.
introduced the CoVAR system for mixed space collaboration with the
capability of visualizing different awareness cues such as head ray,
gaze ray and hand gestures [35]. In a search and placement task, they
found that the inclusion of awareness cues positively affected users’ per-
formance. Piumsomboon et al. further developed Mini-Me, an avatar
facilitating mixed space remote collaboration where different awareness
cues such as gaze and hand pointing information where shared through
cursors and rays between users and supported their system’s capability
in conveying non-verbal cues for an object placement task [34].

Although past work has shown the benefits of shared cues such as
gaze in the quality of users’ collaborative experiences, there has been
little work examining the effects of different types and magnitudes of
(inevitable) gaze errors on the AR/VR tasks. Knowledge about the
effects could help developers make design choices that result in more
reliable gaze perception.

2.2 Gaze and Depth Accuracy

Researchers have identified multiple factors that could result in eye
tracking error, and proposed solutions to mitigate their influence. For
example, highly dynamic tasks might result in the movement of the cam-
era positions, environmental lighting conditions can change, users have
inherent physiological differences, and calibration and mapping results
can be sub-optimal [3, 19, 20, 32]. Feit et al. investigated the influence
of error sources such as lighting and target distance on eye tracking
accuracy and proposed approaches to optimize parameter choices for
factors such as outlier detection and target size [11]. Holmqvist et al.
emphasized on the importance of eye tracking accuracy in relation to
the task at hand, e.g., 0.5 degrees of error can be considered either
poor or ideal quality depending on the target size [19]. Norouzi et
al. investigated the effects of simulated eye tracking errors affecting
the accuracy and precision of the gaze data, finding that accuracy off-
sets can significantly hamper user performance in a collaborative AR
environment compared to low precision in a dynamic search task [31].

In previous papers, eye tracking errors were limited to the two di-
mensions corresponding to gaze direction, but correctly estimating
gaze depth (distance to target) becomes all the more important for 3D
interactions such as in AR and VR. Wang et al. proposed a computa-
tional approach, calculating the 3D gaze position from a monocular
eye tracker with high depth accuracy rates of less than 2% for a 3D
object at roughly 55 cm distance [42]. To estimate gaze depth for
eye trackers used in AR and VR, Lee et al. implemented a multi-layer
perceptron neural network with gaze normal vectors as input and eval-
uated its performance for distances of 1m to 5 m, finding an average
depth error of 0.42 m to be acceptable for applications that do not re-
quire high precision [26]. Elmadjian et al. proposed geometric and
regression-based approaches for 3D gaze estimation with the goal of
facilitating 3D gaze interaction, reaching average depth errors of 0.53 m
and 0.19 m respectively for the two approaches for distances of 0.75 m
to 2.75 m [10]. Weier et al. created a feature set of various gaze-based
measures including eye vergence to train a machine learning model
for gaze depth estimation reaching average errors of 0.5 m for targets
at a 6 m distance [43]. Mardanbegi et al. proposed an approach based
on the vestibulo-ocular reflex for estimating a target’s depth in 3D
environments and compared their approach to a method relying on
vergence [28]. Their proposed approach performed better than the
vergence-based approach by 18% in a wide-range scene covering the
three target distances of 0.5 m, 1.5 m, and 7 m.

Researchers also evaluated the depth estimates of devices such as
the Microsoft Kinect and Microsoft HoloLens. Khoshelham et al. eval-
uated the accuracy and resolution of depth data from Kinect v1 and
described elements such as lighting conditions and object surface prop-
erties as possible sources of error impacting the quality of the collected
point cloud [21]. Yang et al. evaluated the depth accuracy and reso-
lution for the Kinect v2 with a planar surface at different angles and
distances from the Kinect [45]. For their setup, they found errors of
more than 4 mm at a 4 m distance. Looking at hologram stability for the
Microsoft HoloLens, Vassallo et al. identified different activities that
can negatively affect the tracking performance of the device such as a
user walking away from the hologram and coming back, motion with
sudden acceleration, occlusion of the RGB-D cameras, and insertion
of an external object into the hologram [40]. After multiple trials for
each type of interference, they found a mean hologram displacement
of 5.83 mm for their static hologram setup. Liu et al. designed experi-
mental procedures to evaluate the HoloLens’ performance in terms of
aspects such as head localisation, spatial mapping, and environmental
reconstruction [27]. Their findings suggest an average accuracy devia-
tion of 73.8% for the spatial mapping task by calculating the distance
between the placement of a hologram and its target location at distances
of 0.5 m to 3.5 m.

2.3 Shared Gaze Visualization

In the field of human-computer interaction, mostly for 2D displays
(e.g., computer screens) researchers have studied the effects of different
gaze visualization types in shared gaze environments. In the context
of driving, Trösterer et al. discussed how the gaze information of the
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passenger can be helpful to the driver in communicating upcoming
hazards and studied two types of gaze visualizations where in one
the target is overlaid with a dot, while the other approach relies on a
horizontal strip of LEDs where the corresponding LED would light up
depending on the position of the passenger’s gaze [39]. They found
that the LED approach did not communicate a sufficient amount of
information to the driver during a navigation task. To facilitate a
visual search task between remote collaborators, D’Angelo and Gergle
experimented with three types of gaze visualizations, (a) a heatmap
approach that encapsulates where each person looked at in a range of
time, (b) shared area where a circle would appear when collaborators
looked at the same area at the same time, and (c) a path approach where
a trail of gaze information would appear from the past three seconds [7].
Their findings suggest that gaze visualization affects certain factors
such as task performance, and the amount of time required for one
person to help their partner. Zhang et al. studied the influence of
the shared gaze visualization type on the performance of collocated
collaborators [46]. Their four approaches were (a) cursor, (b) trajectory,
(c) highlight, and (d) spotlight. In their study, participants found the
highlight and spotlight approaches to be less distracting.

Shared gaze environments in the AR/VR domain mostly rely on
either a ray or a 3D cursor visualization to communicate a user’s gaze
point or the direction of their gaze (Section 2.1), and to our knowledge
the influence of the type of gaze visualization has not been studied.
Piumsomboon et al. is one of the few examples were two different
visualization techniques of a ray and a frustum were introduced in their
CoVAR mixed space collaborative platform [35]. Further investigation
is warranted to understand the influence of errors in different shared
gaze visualizations for collaborative AR environments.

3 EXPERIMENT I

We conducted two human-subjects studies, which were performed
sequentially back to back with the same participants. In this section, we
describe the first study assessing the influence of error type, error level,
target distance, and gaze visualization in a shared gaze AR environment.

3.1 Participants

23 participants (5 female, 18 male, age M = 24.60, SD = 8.74) were
recruited for this study. All the participants were students or employ-
ees of our university, and had normal or corrected vision and normal
hearing. Using a 7-point Likert scale with 1 = Not familiar/Novice
and 7 = Very Familiar/Expert, we assessed the participants’ familiar-
ity with AR (M = 5.04, SD = 1.77), VR (M = 5.65, SD = 1.52), virtual
humans (M = 4.43, SD = 2.17), and their computer expertise (M = 6.04,
SD = 0.92). The institutional review board of our university had ap-
proved the protocol for our human-subject study.

3.2 Material

The study scenario involved a crowd of simulated humans (virtual
humans, VHs), which participants could see through a Microsoft
HoloLens—an optical see-through AR head-mounted display (HMD)—
in a shared AR space. Additionally, a simulated virtual partner was
positioned adjacent to the area where the participants stood. Partici-
pants were tasked with identifying the VH target that the virtual partner
was looking at among a dynamic crowd of walking VHs in front of
them by calling out the number that was floating above the targets head
(Figure 2). The virtual scene was implemented using the Unity game
engine (version 2018.2.21). We conducted the experiment in an open
4.6 m× 10.4 m space in our laboratory. For ease of control over the
study conditions, a client-server networked approach was implemented
so that the client program on a HoloLens, which the participants wore,
was connected to the server program on a laptop PC that the exper-
imenter used to control the sequences of the study. This setup also
allowed the experimenter to see exactly what the participants were
seeing on the HoloLens. For the server laptop we used an Intel Core
i7-7820HK CPU @ 2.9 GHz, 16Gb RAM, NVIDIA GeForce 1070,
running Windows 10 Pro.

Fig. 2. Illustration of the four visualization methods: (A) truncated gaze
ray that halts on an intersection with an object, (B) gaze ray that passes
through all objects in the scene, (C) cursor (e.g., used by the HoloLens)
that appears at the point of intersection between the gaze vector and
object in the scene, and (D) combination of ray and cursor visualizations.

3.2.1 Shared Gaze Information

To ensure that each participant experienced the same shared gaze stimuli
in the same experimental conditions, we utilized a virtual partner with
simulated gaze information instead of a real human. Figure 3 shows the
virtual partner, displayed as a 3D virtual character next to a participant.
The virtual partner was visible to participants through the HoloLens
and was programmed to stand facing forward a meter away to the left of
the participants. The virtual partner’s gaze information was calculated

Fig. 3. Screenshot showing the participant next to the virtual human
partner during the target identification task.

based on pre-recorded gaze data and visualized either in the form of a
truncated gaze ray or a gaze cursor, which are common forms of gaze
visualization used in AR/VR environments (see Figure 2 A and C).

We chose to use pre-recorded gaze data as our method of simulating
the virtual partner’s gaze after realizing that several heuristic-based
approaches resulted in unrealistic gaze behavior in AR. To record the
gaze data, a lab member was seated at a distance of one meter away from
a stationary target point being displayed on a computer monitor, and
fixated at the point for 30 seconds. Upon finishing the gaze recording
we found that the angular accuracy error of the recorded data was 0.55°
and the precision error was 0.08°. This data was then analyzed to find
the average gaze position observed (with the given accuracy error), and
was then normalized around the found position to yield data with no
accuracy error.

We played back the recorded gaze data from the perspective of the
virtual partner in Unity on the HoloLens. The gaze data described the
virtual partner’s gaze towards three points on the target VH’s body in

Target

Depth-Based Error

+3 Error (-105 cm)
+2 Error (-70 cm)
+1 Error (-35 cm)
0 Error (0 cm)

-1 Error (35 cm)
-2 Error (70 cm)
-3 Error (105 cm)

Angular Error

-3 Degree Error
-2 Degree Error
-1 Degree Error
0 Degree Error

+3 Degree Error
+2 Degree Error
+1 Degree Error

Z

X Target

Participant ParticipantPartnerPartner

Fig. 4. Illustration depicting a top-down view of depth and angular errors
in gaze data as they relate to the shared gaze scenario.

the dynamic virtual crowd: one on their head, one on their chest, and
one near their waist (Figure 3). For the saccadic gaze movement, we
implemented the gaze behavior randomly moving between the three
points, every 750 ms, with a 50% chance of choosing the point on the
head and equal chances of 25% of choosing either of the other two
points on the target VH’s body. We could also achieve smooth pursuit
behavior by allowing the gaze to follow these points on the different
VHs in the crowd.

3.2.2 Dynamic Virtual Crowd

We used eight VH characters (4 female, 4 male) from the Unity Asset
Store and Mixamo for our dynamic crowd. The VHs were animated to
pace between predefined points in our experimental space, covering a
distance of six meters perpendicular to the participant’s view direction.
The VHs were 0.7 m apart from each other, with the closest one being
1.75 m away from the participant’s position. 3D numbers (from 0
to 7) were placed on top of each VH’s head and followed the VH’s
movement while always being correctly oriented towards the participant
(Figure 3). The placements of the VHs along the forward direction and
their walking speed were randomized for every trial in the study. The
walking speed was randomly chosen from the range of 0.6 m/s to 1 m/s
with increments of 0.05 m/s as it is close to average speed of walking
humans [12].

3.2.3 Simulated Gaze Error

As discussed in Section 1, we considered two different types of errors
that result from using a combination of depth sensors and eye trackers
in a shared gaze AR scenario. Figure 4 illustrates each error type in
comparison to a no-error example. Below, we describe each error, its
possible source, and how it was implemented for our study. In an actual
(non-simulated) shared gaze scenario, the gaze data is continuously
streaming from the depth sensor and the eye trackers, which may occur
at different frequencies, such that the final gaze visualization can be
influenced by the interaction between those two types of errors. For our
purposes, however, we assume that the target depth is calculated after
receiving a gaze direction that includes any amount of error introduced
by the eye tracker. In this manner, when a gaze point ‘falls off’ the VH
target due to a high degree of angular error, the depth value is read from
a pixel outside of the silhouette of that VH in the depth map (compare
Figure 1 and angular error in Figure 4).

Angular Accuracy: We simulated typical angular errors in eye
tracker performance via an angular offset that we added to the correct
gaze direction. To implement this error, a gaze vector between the
virtual partner and the target VH was calculated without any accuracy
error, while applying the recorded gaze data. Following this calcula-
tion, the vector was rotated in horizontal direction either leftward or
rightward of the target by a variable number between 0° and 3° at 1°
intervals to achieve an angular accuracy offset along the horizontal
axis. The gaze visualization (truncated ray or cursor) was then rendered
using the direction of this rotated vector.

While physical eye tracking systems introduce errors in both the
horizontal and vertical directions, here we are introducing them solely
to the horizontal direction. For the purposes of our study scenario, we
decided to pursue the most significant types of accuracy error that could

occur for the given scenario consisting of horizontally-pacing VHs. In
our scenario, vertical accuracy error is less significant than horizontal
accuracy error in that vertical error is often still calculated to be drawn
on target (albeit at a different point on the target’s body). Such vertical
errors lead to targets that are easier for users to identify than if the error
occurs in the horizontal direction.

Depth Accuracy: We simulated depth errors as an offset that we
added to the actual depth of the target that the gaze vector intersected
with. Such errors commonly originate in inaccuracies in the depth
maps provided by a depth sensor, e.g., in the HoloLens, but can also
originate in an eye tracker’s estimated focus distance (based on eye
convergence). This error is implemented by using the direction of
the virtual partner’s gaze and a depth map produced by a secondary
camera in the Unity environment at the virtual partner’s point of view
to calculate the depth of the gaze point along the gaze vector. If this
vector intersects any VH in the scene, then the endpoint is calculated
at the depth of the first object along this vector. Alternatively, if the
vector does not intersect with any VH in the scene, then we chose to
set it to a fixed distance and upper limit of ten meters, representing the
back wall in our laboratory. The endpoints of the gaze visualizations
(ray or cursor) were then at one of seven levels relative to the correct
depth, symmetrically, at each three positive and negative steps of
35 cm. For the positive levels, the endpoint had a depth error that
positioned the endpoint between the participant and the target VH at
increasing distances from the target for higher error levels. At zero, no
error was present in the depth direction and the endpoint appeared at
the collision point with the target VH. At negative levels, the endpoint
had a depth error that positioned the endpoint behind the target, at
increasing distances for higher error levels.

When choosing the angular and depth error ranges described above,
we looked at the literature summarized in Section 2 in addition to
the nominal performance reported by manufacturers for commercial
head-worn eye trackers, such as from Tobii and Pupil Labs, as well
as commercial depth sensors, such as the StereoLabs ZED and the
internal HoloLens tracking system. To make sure that participants were
able to perceive differences in the ranges of angular and depth errors,
we set our maximum errors to be above the ranges reported in the
above-mentioned sources.

3.2.4 Shared Gaze Visualization

We implemented two types of shared gaze visualizations for the study.
The first type is a truncated ray that is drawn from the virtual partner’s
head toward a target that is being observed, where its end point is
always set to the depth of the first object it intersects with (Figure 2
A). In case of no such intersection, as mentioned above, we set an
upper limit of ten meters on the ray length, which is far enough to be
behind all other VHs in the scene and matches the distance between the
participant and the back wall of the laboratory.

The second visualization type is a cursor, where the placement of
the cursor is similarly set to the depth of the first object that the gaze
vector intersects with, or is set to the same upper limit distance of ten
meters when no such intersection occurs (Figure 2 C).

3.3 Methods

3.3.1 Experimental Design

We chose a 2×7×2×2 within-subjects design considering that indi-
vidual differences can influence participants’ task performance. Our
independent variables are as follows:

• Error Type (×2), tested independently, which were either: (a)
x-error: Angular eye tracking error in the horizontal (x) direction,
and (b) z-error: Depth tracking error in the forward (z) direction.

• Error Level (×7), which were: (a) x-error: Seven
levels in {−3°,−2°,−1°,0°,1°,2°,3°}, with zero indicat-
ing no error, positive numbers indicating error to the
right, and negative numbers indicating error to the left,
and (b) z-error: We defined a range of seven levels
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passenger can be helpful to the driver in communicating upcoming
hazards and studied two types of gaze visualizations where in one
the target is overlaid with a dot, while the other approach relies on a
horizontal strip of LEDs where the corresponding LED would light up
depending on the position of the passenger’s gaze [39]. They found
that the LED approach did not communicate a sufficient amount of
information to the driver during a navigation task. To facilitate a
visual search task between remote collaborators, D’Angelo and Gergle
experimented with three types of gaze visualizations, (a) a heatmap
approach that encapsulates where each person looked at in a range of
time, (b) shared area where a circle would appear when collaborators
looked at the same area at the same time, and (c) a path approach where
a trail of gaze information would appear from the past three seconds [7].
Their findings suggest that gaze visualization affects certain factors
such as task performance, and the amount of time required for one
person to help their partner. Zhang et al. studied the influence of
the shared gaze visualization type on the performance of collocated
collaborators [46]. Their four approaches were (a) cursor, (b) trajectory,
(c) highlight, and (d) spotlight. In their study, participants found the
highlight and spotlight approaches to be less distracting.

Shared gaze environments in the AR/VR domain mostly rely on
either a ray or a 3D cursor visualization to communicate a user’s gaze
point or the direction of their gaze (Section 2.1), and to our knowledge
the influence of the type of gaze visualization has not been studied.
Piumsomboon et al. is one of the few examples were two different
visualization techniques of a ray and a frustum were introduced in their
CoVAR mixed space collaborative platform [35]. Further investigation
is warranted to understand the influence of errors in different shared
gaze visualizations for collaborative AR environments.

3 EXPERIMENT I

We conducted two human-subjects studies, which were performed
sequentially back to back with the same participants. In this section, we
describe the first study assessing the influence of error type, error level,
target distance, and gaze visualization in a shared gaze AR environment.

3.1 Participants

23 participants (5 female, 18 male, age M = 24.60, SD = 8.74) were
recruited for this study. All the participants were students or employ-
ees of our university, and had normal or corrected vision and normal
hearing. Using a 7-point Likert scale with 1 = Not familiar/Novice
and 7 = Very Familiar/Expert, we assessed the participants’ familiar-
ity with AR (M = 5.04, SD = 1.77), VR (M = 5.65, SD = 1.52), virtual
humans (M = 4.43, SD = 2.17), and their computer expertise (M = 6.04,
SD = 0.92). The institutional review board of our university had ap-
proved the protocol for our human-subject study.

3.2 Material

The study scenario involved a crowd of simulated humans (virtual
humans, VHs), which participants could see through a Microsoft
HoloLens—an optical see-through AR head-mounted display (HMD)—
in a shared AR space. Additionally, a simulated virtual partner was
positioned adjacent to the area where the participants stood. Partici-
pants were tasked with identifying the VH target that the virtual partner
was looking at among a dynamic crowd of walking VHs in front of
them by calling out the number that was floating above the targets head
(Figure 2). The virtual scene was implemented using the Unity game
engine (version 2018.2.21). We conducted the experiment in an open
4.6 m× 10.4 m space in our laboratory. For ease of control over the
study conditions, a client-server networked approach was implemented
so that the client program on a HoloLens, which the participants wore,
was connected to the server program on a laptop PC that the exper-
imenter used to control the sequences of the study. This setup also
allowed the experimenter to see exactly what the participants were
seeing on the HoloLens. For the server laptop we used an Intel Core
i7-7820HK CPU @ 2.9 GHz, 16Gb RAM, NVIDIA GeForce 1070,
running Windows 10 Pro.

Fig. 2. Illustration of the four visualization methods: (A) truncated gaze
ray that halts on an intersection with an object, (B) gaze ray that passes
through all objects in the scene, (C) cursor (e.g., used by the HoloLens)
that appears at the point of intersection between the gaze vector and
object in the scene, and (D) combination of ray and cursor visualizations.

3.2.1 Shared Gaze Information

To ensure that each participant experienced the same shared gaze stimuli
in the same experimental conditions, we utilized a virtual partner with
simulated gaze information instead of a real human. Figure 3 shows the
virtual partner, displayed as a 3D virtual character next to a participant.
The virtual partner was visible to participants through the HoloLens
and was programmed to stand facing forward a meter away to the left of
the participants. The virtual partner’s gaze information was calculated

Fig. 3. Screenshot showing the participant next to the virtual human
partner during the target identification task.

based on pre-recorded gaze data and visualized either in the form of a
truncated gaze ray or a gaze cursor, which are common forms of gaze
visualization used in AR/VR environments (see Figure 2 A and C).

We chose to use pre-recorded gaze data as our method of simulating
the virtual partner’s gaze after realizing that several heuristic-based
approaches resulted in unrealistic gaze behavior in AR. To record the
gaze data, a lab member was seated at a distance of one meter away from
a stationary target point being displayed on a computer monitor, and
fixated at the point for 30 seconds. Upon finishing the gaze recording
we found that the angular accuracy error of the recorded data was 0.55°
and the precision error was 0.08°. This data was then analyzed to find
the average gaze position observed (with the given accuracy error), and
was then normalized around the found position to yield data with no
accuracy error.

We played back the recorded gaze data from the perspective of the
virtual partner in Unity on the HoloLens. The gaze data described the
virtual partner’s gaze towards three points on the target VH’s body in
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Fig. 4. Illustration depicting a top-down view of depth and angular errors
in gaze data as they relate to the shared gaze scenario.

the dynamic virtual crowd: one on their head, one on their chest, and
one near their waist (Figure 3). For the saccadic gaze movement, we
implemented the gaze behavior randomly moving between the three
points, every 750 ms, with a 50% chance of choosing the point on the
head and equal chances of 25% of choosing either of the other two
points on the target VH’s body. We could also achieve smooth pursuit
behavior by allowing the gaze to follow these points on the different
VHs in the crowd.

3.2.2 Dynamic Virtual Crowd

We used eight VH characters (4 female, 4 male) from the Unity Asset
Store and Mixamo for our dynamic crowd. The VHs were animated to
pace between predefined points in our experimental space, covering a
distance of six meters perpendicular to the participant’s view direction.
The VHs were 0.7 m apart from each other, with the closest one being
1.75 m away from the participant’s position. 3D numbers (from 0
to 7) were placed on top of each VH’s head and followed the VH’s
movement while always being correctly oriented towards the participant
(Figure 3). The placements of the VHs along the forward direction and
their walking speed were randomized for every trial in the study. The
walking speed was randomly chosen from the range of 0.6 m/s to 1 m/s
with increments of 0.05 m/s as it is close to average speed of walking
humans [12].

3.2.3 Simulated Gaze Error

As discussed in Section 1, we considered two different types of errors
that result from using a combination of depth sensors and eye trackers
in a shared gaze AR scenario. Figure 4 illustrates each error type in
comparison to a no-error example. Below, we describe each error, its
possible source, and how it was implemented for our study. In an actual
(non-simulated) shared gaze scenario, the gaze data is continuously
streaming from the depth sensor and the eye trackers, which may occur
at different frequencies, such that the final gaze visualization can be
influenced by the interaction between those two types of errors. For our
purposes, however, we assume that the target depth is calculated after
receiving a gaze direction that includes any amount of error introduced
by the eye tracker. In this manner, when a gaze point ‘falls off’ the VH
target due to a high degree of angular error, the depth value is read from
a pixel outside of the silhouette of that VH in the depth map (compare
Figure 1 and angular error in Figure 4).

Angular Accuracy: We simulated typical angular errors in eye
tracker performance via an angular offset that we added to the correct
gaze direction. To implement this error, a gaze vector between the
virtual partner and the target VH was calculated without any accuracy
error, while applying the recorded gaze data. Following this calcula-
tion, the vector was rotated in horizontal direction either leftward or
rightward of the target by a variable number between 0° and 3° at 1°
intervals to achieve an angular accuracy offset along the horizontal
axis. The gaze visualization (truncated ray or cursor) was then rendered
using the direction of this rotated vector.

While physical eye tracking systems introduce errors in both the
horizontal and vertical directions, here we are introducing them solely
to the horizontal direction. For the purposes of our study scenario, we
decided to pursue the most significant types of accuracy error that could

occur for the given scenario consisting of horizontally-pacing VHs. In
our scenario, vertical accuracy error is less significant than horizontal
accuracy error in that vertical error is often still calculated to be drawn
on target (albeit at a different point on the target’s body). Such vertical
errors lead to targets that are easier for users to identify than if the error
occurs in the horizontal direction.

Depth Accuracy: We simulated depth errors as an offset that we
added to the actual depth of the target that the gaze vector intersected
with. Such errors commonly originate in inaccuracies in the depth
maps provided by a depth sensor, e.g., in the HoloLens, but can also
originate in an eye tracker’s estimated focus distance (based on eye
convergence). This error is implemented by using the direction of
the virtual partner’s gaze and a depth map produced by a secondary
camera in the Unity environment at the virtual partner’s point of view
to calculate the depth of the gaze point along the gaze vector. If this
vector intersects any VH in the scene, then the endpoint is calculated
at the depth of the first object along this vector. Alternatively, if the
vector does not intersect with any VH in the scene, then we chose to
set it to a fixed distance and upper limit of ten meters, representing the
back wall in our laboratory. The endpoints of the gaze visualizations
(ray or cursor) were then at one of seven levels relative to the correct
depth, symmetrically, at each three positive and negative steps of
35 cm. For the positive levels, the endpoint had a depth error that
positioned the endpoint between the participant and the target VH at
increasing distances from the target for higher error levels. At zero, no
error was present in the depth direction and the endpoint appeared at
the collision point with the target VH. At negative levels, the endpoint
had a depth error that positioned the endpoint behind the target, at
increasing distances for higher error levels.

When choosing the angular and depth error ranges described above,
we looked at the literature summarized in Section 2 in addition to
the nominal performance reported by manufacturers for commercial
head-worn eye trackers, such as from Tobii and Pupil Labs, as well
as commercial depth sensors, such as the StereoLabs ZED and the
internal HoloLens tracking system. To make sure that participants were
able to perceive differences in the ranges of angular and depth errors,
we set our maximum errors to be above the ranges reported in the
above-mentioned sources.

3.2.4 Shared Gaze Visualization

We implemented two types of shared gaze visualizations for the study.
The first type is a truncated ray that is drawn from the virtual partner’s
head toward a target that is being observed, where its end point is
always set to the depth of the first object it intersects with (Figure 2
A). In case of no such intersection, as mentioned above, we set an
upper limit of ten meters on the ray length, which is far enough to be
behind all other VHs in the scene and matches the distance between the
participant and the back wall of the laboratory.

The second visualization type is a cursor, where the placement of
the cursor is similarly set to the depth of the first object that the gaze
vector intersects with, or is set to the same upper limit distance of ten
meters when no such intersection occurs (Figure 2 C).

3.3 Methods

3.3.1 Experimental Design

We chose a 2×7×2×2 within-subjects design considering that indi-
vidual differences can influence participants’ task performance. Our
independent variables are as follows:

• Error Type (×2), tested independently, which were either: (a)
x-error: Angular eye tracking error in the horizontal (x) direction,
and (b) z-error: Depth tracking error in the forward (z) direction.

• Error Level (×7), which were: (a) x-error: Seven
levels in {−3°,−2°,−1°,0°,1°,2°,3°}, with zero indicat-
ing no error, positive numbers indicating error to the
right, and negative numbers indicating error to the left,
and (b) z-error: We defined a range of seven levels
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in {−105cm,−70cm,−35cm,0cm,35cm,70cm,105cm}, with
zero indicating no error, negative numbers indicating errors be-
hind the target, and positive numbers indicating errors in front.

• Target Depth (×2), which were: Close: Target VH was set at
3.15 m from the virtual partner. Far: Target VH was set at 5.25 m
from the virtual partner.

• Gaze Visualization Type (×2), which were: Truncated Ray:
The end point of the ray was set to the target’s depth and would
be truncated at a new depth if intersected by an obstacle closer
to the virtual partner. Cursor: The cursor was set to the target’s
depth and would translate to a new depth if the gaze vector was
intersected by an obstacle closer to the virtual partner.

This study design results in a total of 56 trials per participant. The
trials were divided into four blocks where within each block the error
and visualization type remained constant and the error levels and target
distance were varied resulting in 14 trials per block. The order with
which participants were exposed to the four blocks and the 14 trials
within them were randomized to account for learning effects.

3.3.2 Procedure

At the beginning, the participants provided their informed consent, and
filled out a questionnaire about their familiarity with related technology.
The experimenter then reviewed the procedure with the participants,
guided them into position for the start of the experiment and instructed
them on how to don the HoloLens. Participants took part in five practice
trials to get familiarized with the system in which they were tasked
with identifying which VH in the crowd was being observed by the
VH partner. Participants were to identify this target by observing
the partner’s gaze within a time frame of up to 60 seconds to make
a selection. Once they identified a target, they were instructed to
verbally indicate the number that floated above its head, which was
then recorded by the experimenter (Figure 3). The error blocks were
presented in randomized order as described in Section 3.3.1. After
the end of each block, participants were asked to remove the HMD
and fill out questionnaires regarding their experience. Afterward, the
participants moved on to Experiment II that is explained in Section 4.

3.3.3 Measures

In this section, we describe the objective and subjective measures used
to assess participants’ task performance and to collect their subjective
evaluations with regards to the different error types and gaze visualiza-
tions.

Objective Measures: We used response time as the amount of
time taken by each participant to identify the target, and accuracy rate
as accuracy of participants’ responses for each trial to assess partici-
pants’ task performance throughout the study, where participants were
asked to keep both speed and accuracy in mind as target identification
factors for each trial.

Subjective Measures: We used the questionnaires described be-
low to assess participants’ perception of the error types, gaze visualiza-
tions, and subjective performance for each condition block.

• Performance Evaluation (PE): The questions described in Ta-
ble 1 were used to assess participants’ confidence in their responses,
and their subjective threshold level for the type of error.

• Task Load: The short version of the NASA-TLX question-
naire [18] was used to assess the task load.

• Usability: The System Usability Scale (SUS) questionnaire [5]
was used to assess the usability aspects of the shared gaze system.

Table 1. Questions assessing participants’ performance evaluation.

Performance Evaluation Questions

PE1 How confident were you on the correctness of your choices in this

section of the experiment? (7-point Likert Scale)

PE2 What is the maximum amount of error that you think you could

tolerate when using such a system? (numeric response)

3.3.4 Hypotheses

Based on pilot testings and the previous literature, we formulated the
following hypotheses:

• H1: For both error types, an increase in error levels will result in
an increased response time and decreased accuracy rate.

• H2: For higher error levels, the cursor visualization will increase
participants’ response time and decrease their accuracy rate when
compared with the truncated ray visualization.

• H3: For blocks where the gaze is visualized as a truncated ray,
participants will exhibit higher confidence in their responses, report
a higher usability score, experience lower task load, and have a
higher tolerance for error.

• H4: For blocks where simulated z-error is introduced, participants
will exhibit higher confidence in their responses, report a higher
usability score, and experience lower amounts of task load than the
conditions where simulated x-error is introduced.

• H5: Participants’ performance will decrease for targets at the far
distance compared to targets at the close distance.

3.4 Results

In this section, we report our results for Experiment I. We excluded two
of our participants from the analysis due to technical issues.

3.4.1 Objective Measures

We used repeated measures ANOVAs, and paired samples t-tests for
the analysis of our results at the 5% significance level with Bonferroni
correction. Shapiro-Wilk tests and Q-Q plots were used to test for nor-
mality. For cases where sphericity was not assumed through Mauchly’s
test, Greenhous-Geisser results were reported accordingly.

Response Time (X-Error): Figure 5 (a) shows the response times
for the x-error levels at the two target depths for both visualization
types. We found a significant main effect of gaze visualization type
on response time, F(1,20) = 13.20, p = 0.002, η2

p = 0.39, indicating
higher response times for the cursor than the ray visualization. We also
found a significant main effect of error level, F(3.27,65.40) = 34.06,

p< 0.001, η2
p = 0.63. Pairwise comparisons showed a significant in-

crease in response time for error levels with a magnitude above ±1 (all
p< 0.05). We further observed a non-significant trend for a main effect
of target depth on response time, F(1,20) = 4.12, p = 0.06, η2

p = 0.17.

Accuracy Rate (X-Error): Figure 5 (b) shows the results for the
accuracy rates. We found a significant main effect of error level on
accuracy rate, F(6,120) = 11.69, p< 0.001, η2

p = 0.36. Post-hoc tests
indicated that the accuracy rate decreased as the error levels increased
(all p< 0.05). We did not find significant main effects for gaze visual-
ization type, F(1,20) = 2.37, p = 0.13, η2

p = 0.10, and target depth,

F(1,20) = 0.74, p = 0.39, η2
p = 0.03, on accuracy rate.

Response Time (Z-Error): Figure 5 (c) shows the response times
for the z-error levels at the two target depths for both visualization
types. We found a significant main effect of gaze visualization type
on response time, F(1,20) = 76.00, p< 0.001, η2

p = 0.79, indicating
higher response times for the cursor than the ray visualization. We also
found a significant main effect of error level, F(3.16,63.27) = 17.95,

p< 0.001, η2
p = 0.47. Post-hoc tests showed that the response time
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Fig. 5. Comparison of (a) x-error response time, (b) x-error accuracy rate, (c) z-error response time, and (d) z-error accuracy rate for different error
levels, gaze visualizations, and target depths.

increased as the error levels increased (all p< 0.05). We found no main
effect for target depth, F(1,20) = 6.10, p = 0.44, η2

p = 0.03.
In order to test for asymmetrical effects of positive and negative

z-errors, we divided our results into groups for errors behind and in
front of the target (zero error) and compared the means between the
two sides using a paired t-test. We did not find a significant difference,
t(1) = 1.17, p = 0.25, in terms of the side of the error. We looked
more deeply into the interesting outlier at the error level of -35 cm and
conducted a repeated measures ANOVA between the visualization types
and target distances. Our results suggest that the cursor visualization for
far targets significantly increased participants’ response time compared
to the other conditions, followed by cursor visualization for close
targets, with similar significant effects (all p< 0.05).

Accuracy Rate (Z-Error): Figure 5 (d) shows the results for the
accuracy rates. We found a significant main effect of visualization
type on accuracy rate, F(1,20) = 5.65, p = 0.02, η2

p = 0.21, indicating
lower accuracy for the cursor than the ray visualization. We found no
significant main effects for target depth, F(1,20) = 1.64, p = 0.21,

η2
p = 0.07, and error level, F(6,120) = 1.77, p = 0.10, η2

p = 0.08.
As for response time, we divided our results into errors behind and

in front of the target and compared the means between the two sides
using a paired t-test. We did not find a significant difference, t =−0.62,
p = 0.54, in the side of the error. For the error level of -35 cm, a
repeated measures ANOVA between the visualization types and target
distances showed no significant difference between the accuracy rates.

3.4.2 Subjective Measures

We used non-parametric statistical tests for the analysis of our data.

Subjective Performance: Figure 6 (a) shows participants’ confi-
dence scores (PE1 from Table 1). We found significant differences be-
tween z-errors with ray visualization and the other three blocks, which
are z-errors with cursor visualization, W = 0.00, Z =−2.91, p = 0.005,
x-errors with ray visualization, W = 6.00, Z = −3.09, p = 0.002, and

x-errors with cursor visualization, W = 14.00, Z =−2.83, p = 0.005.
This indicates that participants had more confidence in their answers
when the ray visualization was used and z-errors were applied.

For PE2 (Table 1), we compared participants’ maximum tolerated
error for the blocks with x-errors and z-errors separately. Figures 6 (b)
and (c) show the estimated error thresholds and tolerance regions for
the experimental blocks. We found a significant difference between
x-errors with ray visualization and x-errors with cursor visualization,
W = 14.00, Z =−2.00, p = 0.04, and a significant difference between
z-errors with ray visualization and z-errors with cursor visualization,
W = 57.00, Z =−2.03, p = 0.04, suggesting that error thresholds were
higher when gaze was visualized as a ray than as a cursor.

Task Load: Figure 6 (d) shows the task load scores for the experi-
mental blocks. We found significant differences between ray visualiza-
tion with z-errors and cursor visualization with z-errors, W = 157.00,
Z =−3.14, p = 0.002, and x-errors, W = 217.00, Z =−3.53, p< 0.001.
For x-errors, the ray and cursor visualizations were also significantly
different, W = 158.00, Z =−2.53, p = 0.01. Moreover, we observed a
trend between x-errors and z-errors with ray visualization, W = 143.00,
Z =−1.93, p= 0.053. These results suggest that participants estimated
the ray visualization as less challenging than the cursor visualization
and the z-error blocks induced less task load.

Usability: Figure 6 (e) shows the usability scores for the exper-
imental blocks. We found significant differences between x-errors
with cursor visualization and z-errors with ray visualization, W = 5.00,
Z =−3.73, p< 0.001, x-errors with cursor visualization and x-errors
with ray visualization, W = 40.00, Z =−2.21, p = 0.27, and x-errors
and z-errors both with ray visualizations, W = 14.00, Z = −3.27,
p = 0.001. We did not find significant differences for the remaining
comparisons. These results suggest an increased usability of the ray
visualization compared to the cursor visualization and also the z-errors
being estimated as easier compared to the x-errors.
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in {−105cm,−70cm,−35cm,0cm,35cm,70cm,105cm}, with
zero indicating no error, negative numbers indicating errors be-
hind the target, and positive numbers indicating errors in front.

• Target Depth (×2), which were: Close: Target VH was set at
3.15 m from the virtual partner. Far: Target VH was set at 5.25 m
from the virtual partner.

• Gaze Visualization Type (×2), which were: Truncated Ray:
The end point of the ray was set to the target’s depth and would
be truncated at a new depth if intersected by an obstacle closer
to the virtual partner. Cursor: The cursor was set to the target’s
depth and would translate to a new depth if the gaze vector was
intersected by an obstacle closer to the virtual partner.

This study design results in a total of 56 trials per participant. The
trials were divided into four blocks where within each block the error
and visualization type remained constant and the error levels and target
distance were varied resulting in 14 trials per block. The order with
which participants were exposed to the four blocks and the 14 trials
within them were randomized to account for learning effects.

3.3.2 Procedure

At the beginning, the participants provided their informed consent, and
filled out a questionnaire about their familiarity with related technology.
The experimenter then reviewed the procedure with the participants,
guided them into position for the start of the experiment and instructed
them on how to don the HoloLens. Participants took part in five practice
trials to get familiarized with the system in which they were tasked
with identifying which VH in the crowd was being observed by the
VH partner. Participants were to identify this target by observing
the partner’s gaze within a time frame of up to 60 seconds to make
a selection. Once they identified a target, they were instructed to
verbally indicate the number that floated above its head, which was
then recorded by the experimenter (Figure 3). The error blocks were
presented in randomized order as described in Section 3.3.1. After
the end of each block, participants were asked to remove the HMD
and fill out questionnaires regarding their experience. Afterward, the
participants moved on to Experiment II that is explained in Section 4.

3.3.3 Measures

In this section, we describe the objective and subjective measures used
to assess participants’ task performance and to collect their subjective
evaluations with regards to the different error types and gaze visualiza-
tions.

Objective Measures: We used response time as the amount of
time taken by each participant to identify the target, and accuracy rate
as accuracy of participants’ responses for each trial to assess partici-
pants’ task performance throughout the study, where participants were
asked to keep both speed and accuracy in mind as target identification
factors for each trial.

Subjective Measures: We used the questionnaires described be-
low to assess participants’ perception of the error types, gaze visualiza-
tions, and subjective performance for each condition block.

• Performance Evaluation (PE): The questions described in Ta-
ble 1 were used to assess participants’ confidence in their responses,
and their subjective threshold level for the type of error.

• Task Load: The short version of the NASA-TLX question-
naire [18] was used to assess the task load.

• Usability: The System Usability Scale (SUS) questionnaire [5]
was used to assess the usability aspects of the shared gaze system.

Table 1. Questions assessing participants’ performance evaluation.

Performance Evaluation Questions

PE1 How confident were you on the correctness of your choices in this

section of the experiment? (7-point Likert Scale)

PE2 What is the maximum amount of error that you think you could

tolerate when using such a system? (numeric response)

3.3.4 Hypotheses

Based on pilot testings and the previous literature, we formulated the
following hypotheses:

• H1: For both error types, an increase in error levels will result in
an increased response time and decreased accuracy rate.

• H2: For higher error levels, the cursor visualization will increase
participants’ response time and decrease their accuracy rate when
compared with the truncated ray visualization.

• H3: For blocks where the gaze is visualized as a truncated ray,
participants will exhibit higher confidence in their responses, report
a higher usability score, experience lower task load, and have a
higher tolerance for error.

• H4: For blocks where simulated z-error is introduced, participants
will exhibit higher confidence in their responses, report a higher
usability score, and experience lower amounts of task load than the
conditions where simulated x-error is introduced.

• H5: Participants’ performance will decrease for targets at the far
distance compared to targets at the close distance.

3.4 Results

In this section, we report our results for Experiment I. We excluded two
of our participants from the analysis due to technical issues.

3.4.1 Objective Measures

We used repeated measures ANOVAs, and paired samples t-tests for
the analysis of our results at the 5% significance level with Bonferroni
correction. Shapiro-Wilk tests and Q-Q plots were used to test for nor-
mality. For cases where sphericity was not assumed through Mauchly’s
test, Greenhous-Geisser results were reported accordingly.

Response Time (X-Error): Figure 5 (a) shows the response times
for the x-error levels at the two target depths for both visualization
types. We found a significant main effect of gaze visualization type
on response time, F(1,20) = 13.20, p = 0.002, η2

p = 0.39, indicating
higher response times for the cursor than the ray visualization. We also
found a significant main effect of error level, F(3.27,65.40) = 34.06,

p< 0.001, η2
p = 0.63. Pairwise comparisons showed a significant in-

crease in response time for error levels with a magnitude above ±1 (all
p< 0.05). We further observed a non-significant trend for a main effect
of target depth on response time, F(1,20) = 4.12, p = 0.06, η2

p = 0.17.

Accuracy Rate (X-Error): Figure 5 (b) shows the results for the
accuracy rates. We found a significant main effect of error level on
accuracy rate, F(6,120) = 11.69, p< 0.001, η2

p = 0.36. Post-hoc tests
indicated that the accuracy rate decreased as the error levels increased
(all p< 0.05). We did not find significant main effects for gaze visual-
ization type, F(1,20) = 2.37, p = 0.13, η2

p = 0.10, and target depth,

F(1,20) = 0.74, p = 0.39, η2
p = 0.03, on accuracy rate.

Response Time (Z-Error): Figure 5 (c) shows the response times
for the z-error levels at the two target depths for both visualization
types. We found a significant main effect of gaze visualization type
on response time, F(1,20) = 76.00, p< 0.001, η2

p = 0.79, indicating
higher response times for the cursor than the ray visualization. We also
found a significant main effect of error level, F(3.16,63.27) = 17.95,

p< 0.001, η2
p = 0.47. Post-hoc tests showed that the response time

Subjective Threshold (Ray)
Subjective Threshold (Cursor)

(a) Response Time (x-error)

Subjective Threshold (Ray)
Subjective Threshold (Cursor)

(b) Accuracy Rate (x-error)

Subjective Threshold (Cursor)
Subjective Threshold (Ray)

(c) Response Time (z-error)

Subjective Threshold (Cursor)
Subjective Threshold (Ray)

(d) Accuracy Rate (z-error)

Fig. 5. Comparison of (a) x-error response time, (b) x-error accuracy rate, (c) z-error response time, and (d) z-error accuracy rate for different error
levels, gaze visualizations, and target depths.

increased as the error levels increased (all p< 0.05). We found no main
effect for target depth, F(1,20) = 6.10, p = 0.44, η2

p = 0.03.
In order to test for asymmetrical effects of positive and negative

z-errors, we divided our results into groups for errors behind and in
front of the target (zero error) and compared the means between the
two sides using a paired t-test. We did not find a significant difference,
t(1) = 1.17, p = 0.25, in terms of the side of the error. We looked
more deeply into the interesting outlier at the error level of -35 cm and
conducted a repeated measures ANOVA between the visualization types
and target distances. Our results suggest that the cursor visualization for
far targets significantly increased participants’ response time compared
to the other conditions, followed by cursor visualization for close
targets, with similar significant effects (all p< 0.05).

Accuracy Rate (Z-Error): Figure 5 (d) shows the results for the
accuracy rates. We found a significant main effect of visualization
type on accuracy rate, F(1,20) = 5.65, p = 0.02, η2

p = 0.21, indicating
lower accuracy for the cursor than the ray visualization. We found no
significant main effects for target depth, F(1,20) = 1.64, p = 0.21,

η2
p = 0.07, and error level, F(6,120) = 1.77, p = 0.10, η2

p = 0.08.
As for response time, we divided our results into errors behind and

in front of the target and compared the means between the two sides
using a paired t-test. We did not find a significant difference, t =−0.62,
p = 0.54, in the side of the error. For the error level of -35 cm, a
repeated measures ANOVA between the visualization types and target
distances showed no significant difference between the accuracy rates.

3.4.2 Subjective Measures

We used non-parametric statistical tests for the analysis of our data.

Subjective Performance: Figure 6 (a) shows participants’ confi-
dence scores (PE1 from Table 1). We found significant differences be-
tween z-errors with ray visualization and the other three blocks, which
are z-errors with cursor visualization, W = 0.00, Z =−2.91, p = 0.005,
x-errors with ray visualization, W = 6.00, Z = −3.09, p = 0.002, and

x-errors with cursor visualization, W = 14.00, Z =−2.83, p = 0.005.
This indicates that participants had more confidence in their answers
when the ray visualization was used and z-errors were applied.

For PE2 (Table 1), we compared participants’ maximum tolerated
error for the blocks with x-errors and z-errors separately. Figures 6 (b)
and (c) show the estimated error thresholds and tolerance regions for
the experimental blocks. We found a significant difference between
x-errors with ray visualization and x-errors with cursor visualization,
W = 14.00, Z =−2.00, p = 0.04, and a significant difference between
z-errors with ray visualization and z-errors with cursor visualization,
W = 57.00, Z =−2.03, p = 0.04, suggesting that error thresholds were
higher when gaze was visualized as a ray than as a cursor.

Task Load: Figure 6 (d) shows the task load scores for the experi-
mental blocks. We found significant differences between ray visualiza-
tion with z-errors and cursor visualization with z-errors, W = 157.00,
Z =−3.14, p = 0.002, and x-errors, W = 217.00, Z =−3.53, p< 0.001.
For x-errors, the ray and cursor visualizations were also significantly
different, W = 158.00, Z =−2.53, p = 0.01. Moreover, we observed a
trend between x-errors and z-errors with ray visualization, W = 143.00,
Z =−1.93, p= 0.053. These results suggest that participants estimated
the ray visualization as less challenging than the cursor visualization
and the z-error blocks induced less task load.

Usability: Figure 6 (e) shows the usability scores for the exper-
imental blocks. We found significant differences between x-errors
with cursor visualization and z-errors with ray visualization, W = 5.00,
Z =−3.73, p< 0.001, x-errors with cursor visualization and x-errors
with ray visualization, W = 40.00, Z =−2.21, p = 0.27, and x-errors
and z-errors both with ray visualizations, W = 14.00, Z = −3.27,
p = 0.001. We did not find significant differences for the remaining
comparisons. These results suggest an increased usability of the ray
visualization compared to the cursor visualization and also the z-errors
being estimated as easier compared to the x-errors.
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Fig. 6. Subjective comparisons of (a) confidence, (b) x-error tolerance, (c) z-error tolerance, (d) task load, and (e) usability in Experiment I.

3.5 Discussion

In Experiment I, we found significant effects of visualization type
and error level on participants’ objective performance and subjective
evaluations. In this section, we discuss our findings in more detail.

3.5.1 Influence of Error Type and Error Level on Task Perfor-
mance and Subjective Evaluation

Responding to our research questions RQ1 and RQ2, we found signifi-
cant effects of error levels on participants’ performance for both error
types, although this effect is more limited to the highest error level (i.e.,
+105) in the case of the z-error and more symmetric in the case of the
x-error (Figures 5 a-d). These drops in performance affected both re-
sponse time and accuracy rate in the case of x-errors but only response
time in the case of z-errors. This may be explained by the fact that for
z-errors the gaze is always oriented towards the target, providing the
appropriate directional information, while this information is not main-
tained for x-errors, as the gaze orients to the sides of the target, resulting
in a higher chance for error. This, in part, confirms our Hypothesis H1.
For the context of our task and the utilized visualization types, we were
able to observe a significant decrease in performance when the x-error
levels were outside of the -1 to +1 degree range. Although, it is harder
to define a clear boundary for z-error conditions, we can deduce that
depth errors farther than +105 or those very close and behind the target
will negatively affect users’ performance.

For the case of z-errors with the ray visualization, our participants
exhibited more confidence in their responses and experienced less task
load compared to the experimental blocks involving other visualization
modes and x-errors. These results partly confirm our Hypotheses H3
and H4, which can be explained by the correct directional information
provided by the z-errors.

3.5.2 Influence of Gaze Visualization on Task Performance and
Subjective Evaluation

When we compare the effects of the two types of gaze visualization on
the participants’ performance, we can see a clear trend (Figure 5) in sup-
port of our Hypothesis H2. For both error types, the ray visualization
type led to both significantly decreased response time and increased
accuracy when compared to the cursor visualization. We believe that
this is due to the directional information that can be gathered from
observing the (truncated) ray that cannot be gained from the cursor
alone. The inclusion of the directional information leads participants’
eyes from the virtual partner’s head toward the target, which is helpful
both when an x-error causes the ray to ‘fall off’ the target, and when a
z-error causes the endpoint of the (truncated) ray to stop short of the
target. With respect to x-errors, on a target miss, the participant can
then see which target is consistently closest to the ray and make their
selection based on that information, which would be unavailable in the
case of a cursor visualization. With respect to z-errors, if there is a
positive error then the truncated ray acts as a pointer, pointing toward
the target, and if there is a negative error, the truncated ray passes
through the target as opposed to being displayed hidden behind the
target as it would for the cursor visualization.

The ray visualization is further supported by the subjective analy-
sis of the participants’ confidence in their selections, task load, and
usability scores, which all suggest better scores when using the ray
visualization as opposed to the cursor visualization, which supports our
Hypothesis H3.

3.5.3 Influence of Target Depth on Task Performance and Sub-
jective Evaluation

We hypothesized in H5 that an increased distance to the target would
result in decreased performance by the user. However, no significant
effects were found to support this claim. When examining the results
on Figure 5, we see that the performance between close and far targets
was comparable when using the ray, but when using the cursor, we see
several differences between the target depths. In particular, Figures 5 (a)
and (b) show that the performance when using the cursor visualization
at the far target distance was worse at two degrees of positive error than
it was for close target distances. One may think this was caused by the
cursor ‘falling off’ the far target at positive two degrees, and extending
to the theoretical infinity at ten meters, however if this were the case
we would likely see the same effect occur on the negative two degree
error level, but this could not be observed.

4 EXPERIMENT II

In this section, we describe our second human-subject study that we
conducted to evaluate four types of gaze visualizations under optimal
conditions, i.e., in an error-free shared gaze environment.

4.1 Participants

The same participants described in Experiment I (Section 3.1) took part
in Experiment II.

4.2 Material

The same devices, physical space, shared gaze information (see Sec-
tion 3.2.1), and dynamic virtual crowd (see Section 3.2.2) described in
Experiment I were used in Experiment II.

Shared Gaze Visualization: Apart from the truncated ray and
cursor visualization types described in Section 3.2.4, we implemented
two additional types of gaze visualization shown in Figures 2 (b) and
(d). The first type is the ray + cursor where the end point of the ray
is visualized as a cursor and the length of the ray is set to the target’s
depth. If the ray + cursor intersects with an obstacle, the length of the
ray + cursor will get adjusted to match the depth of the obstacle. The
second type is the ray where the length of the ray is always constant
and set to to the theoretical infinity which was set to ten meters away
from the ray’s starting position and only takes into account the target’s
direction but not its depth.

4.3 Methods

4.3.1 Experimental Design

We chose a 4× 2 within-subject design to account for the possible
individual differences affecting participants’ task performance. Our
independent variables were as follows:

• Visualization Type (×4) which were:

Truncated Ray: The end point of the ray (i.e., ray’s length) was
set to the target’s depth and would get truncated at a new depth if
intersected by another obstacle.

Cursor: The cursor was set to the target’s depth and would get
truncated at a new depth if intersected by another obstacle.

Ray + Cursor: The end point of the ray visualized by the cursor
was set to the target’s depth and would get termianted at a new
depth if intersected by another obstacle.

Infinite Ray: The end point of the ray was set to be at the the-
oretical infinity, ten meters away from its starting point without
truncated at other obstacles.

• Target Depth (×2), which were: Close: Target was set at 3.15
meters from the virtual partner. Far: Target was set at 5.25 meters
from the virtual partner.

In Experiment II, for each visualization type, each depth of target was
tested twice resulting in a total of 16 trials. The trials were divided into
four blocks based on each visualization type. The order with which
participants were exposed to the four blocks and the four trials within
them was randomized to account for learning effects.

4.3.2 Procedure

Participants were guided to the start position and asked to don the
HMD. Then, the experimenter started one of the blocks for Experiment
II in a randomized order. During each block, the participant was tasked
with identifying four targets at two varying depth levels (note that no
error was added to the gaze information as it was in Experiment I). At
the end of each block, the participants were asked to fill out usability
and cognitive load questionnaires. This procedure was repeated three
more times. Then, the participants were asked to answer a demograph-
ics questionnaire, were interviewed for any additional feedback, and
received a compensation for their participation in the study.

4.3.3 Measures

For Experiment II, we used the first performance evaluation question
(see Table 1) used in Experiment I. We also measured participants’
preference with regards to gaze visualization type, by asking them to
order the types from their most to least preferred type.

4.3.4 Hypotheses:

Based on pilot testings we present the following hypothesis for the
context of our experimental task:

• H1: Participants will perform better in the ray + cursor and trun-
cated ray visualization types more than cursor and infinite ray,
as the former provide both the direction of the target and also
terminate at the target.

• H2: Participants will prefer the ray + cursor and truncated ray
visualizations more than cursor and ray as the former provide both
the direction of the target and also terminate at the target.

• H3: Participants will attribute a higher preference score to the
ray + cursor visualization and exhibit a higher confidence in its
performance compared with the other visualization types.

4.4 Results

In this section, we report our findings for Experiment II. We excluded
two participants from the analysis due to technical issues.

4.4.1 Objective Measures

We used repeated measures ANOVAs for the analysis of our results
at the 5% significance level with Bonferroni correction. Shapiro-Wilk
tests at the 5% significance level and Q-Q plots were used to test
for normality. For cases where sphericity was not assumed through
Mauchly’s test, Greenhous-Geisser results were reported accordingly.

Response Time: Figure 7 (a) shows the participants’ response
times for the four visualizations at the two target distances. We found a
significant main effect of visualization type, F(3,60) = 6.70, p = 0.001,

η2
p = 0.25, and a significant interaction between visualization type and

target depth, F(2.23,44.70) = 4.36, p = 0.016, η2
p = 0.17, on response

time. No significant main effect was found for target depth on response
time, F(1,20) = 0.11, p = 0.73, η2

p = 0.01.
Post-hoc tests indicate a significant difference between response

time for close and far targets when ray + cursor and cursor visualiza-
tions were used. Also, ray visualization showed a significantly higher
response time for close targets compared to ray + cursor and cursor,
and for far targets when compared with truncated ray (all p< 0.05).

Accuracy Rate: We found no significant differences for accuracy
rate. In fact, all participants had exactly 100% accuracy rate in the
error-free environment for all visualization types.

4.4.2 Subjective Measures

We used non-parametric statistical tests for our analysis.

Subjective Performance: Figure 7 (b) shows the confidence
scores (PE1 from Table 1) for the four visualizations at the two target
distances. We found significant differences between ray + cursor visu-
alizations and the other three blocks truncated ray visualization, W =
0.00, Z =−2.64, p = 0.008, cursor visualization, W = 3.5, Z =−2.12,
p = 0.03, and infinite ray visualization, W = 31.5, Z =−2.12, p = 0.034.
This suggests that participants had more confidence in their answers
when the gaze was visualized through ray + cursor.

Preference: Figure 7 (c) shows participants’ gaze visualization
preference based on the above scoring system. We asked our partici-
pants to order the four visualization types from least preferred to most
preferred. We assigned scores from 1 to 4 to their ranking choices,
where 1 indicated the least preferred and 4 the most preferred. We
found that the ray + cursor visualization was significantly different
from truncated ray, W = 45.5, Z =−2.71, p = 0.007, cursor, W = 13.5,
Z = −3.59, p< 0.001, and infinite ray visualizations, W = 201.00,
Z =−3.01, p = 0.003, suggesting participants’ inclination towards the
ray + cursor visualization. We also found a significant difference be-
tween cursor and truncated ray visualizations, W = 201.00, Z =−3.09,
p = 0.002, indicating a higher preference towards truncated ray.

4.5 Discussion

The results of Experiment II indicate that the shared gaze visualization
approach has both subjective and objective impacts on the user.

4.5.1 Influence of Gaze Visualization Type on Task Perfor-
mance

The results of Experiment II support Hypothesis H1 in that partic-
ipants performed better in their shared gaze task when utilizing the
ray + cursor visualization type, than they do when using the other types.
This suggests that the combination of the directional information from
the truncated ray visualization and the depth information provided by
the cursor, are better than either of the two visualization methods on
their own. This is interesting, as truncated ray and the ray + cursor
visualizations both include a directional component defined by the body
of the ray and a depth component defined by the termination point of the
ray body. The only difference between the two is that the ray + cursor
type adds an additional 3D object at the termination point of the ray,
which suggests that the 3D object itself influences the performance of
the user. It is possible that the apparent size changes of this object with
respect to depth can influence user performance by allowing them to
better judge the distance between the object and other nearby VHs than
they otherwise could using the truncated ray alone.

4.5.2 Influence of Gaze Visualization on Preference and Sub-
jective Evaluation

Our results also support Hypothesis H2 since the ray + cursor visual-
ization type affected the objective performance of the participants in
Experiment II, it is no surprise that it also had significant impacts on the
participants’ subjective preference of visualization type. Ray + cursor
was found to be the most preferred visualization method of the tested
four techniques, which is likely due to its unique combination of visual
cues that were discussed in the previous paragraph.

The combination of visual cues found in the ray + cursor visual-
ization type has further impacts on the confidence of the user when
compared with the other visualizations. This follows the logic described
in the previous paragraph, as it would be expected that having access
to the most amount of information and visual cues would lead to the
most amount of confidence in the performance of the user.

We additionally found that truncated ray was significantly preferred
over the cursor visualization type. We believe this is because directional
information has a larger impact on user preference than the inclusion of
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Fig. 6. Subjective comparisons of (a) confidence, (b) x-error tolerance, (c) z-error tolerance, (d) task load, and (e) usability in Experiment I.

3.5 Discussion

In Experiment I, we found significant effects of visualization type
and error level on participants’ objective performance and subjective
evaluations. In this section, we discuss our findings in more detail.

3.5.1 Influence of Error Type and Error Level on Task Perfor-
mance and Subjective Evaluation

Responding to our research questions RQ1 and RQ2, we found signifi-
cant effects of error levels on participants’ performance for both error
types, although this effect is more limited to the highest error level (i.e.,
+105) in the case of the z-error and more symmetric in the case of the
x-error (Figures 5 a-d). These drops in performance affected both re-
sponse time and accuracy rate in the case of x-errors but only response
time in the case of z-errors. This may be explained by the fact that for
z-errors the gaze is always oriented towards the target, providing the
appropriate directional information, while this information is not main-
tained for x-errors, as the gaze orients to the sides of the target, resulting
in a higher chance for error. This, in part, confirms our Hypothesis H1.
For the context of our task and the utilized visualization types, we were
able to observe a significant decrease in performance when the x-error
levels were outside of the -1 to +1 degree range. Although, it is harder
to define a clear boundary for z-error conditions, we can deduce that
depth errors farther than +105 or those very close and behind the target
will negatively affect users’ performance.

For the case of z-errors with the ray visualization, our participants
exhibited more confidence in their responses and experienced less task
load compared to the experimental blocks involving other visualization
modes and x-errors. These results partly confirm our Hypotheses H3
and H4, which can be explained by the correct directional information
provided by the z-errors.

3.5.2 Influence of Gaze Visualization on Task Performance and
Subjective Evaluation

When we compare the effects of the two types of gaze visualization on
the participants’ performance, we can see a clear trend (Figure 5) in sup-
port of our Hypothesis H2. For both error types, the ray visualization
type led to both significantly decreased response time and increased
accuracy when compared to the cursor visualization. We believe that
this is due to the directional information that can be gathered from
observing the (truncated) ray that cannot be gained from the cursor
alone. The inclusion of the directional information leads participants’
eyes from the virtual partner’s head toward the target, which is helpful
both when an x-error causes the ray to ‘fall off’ the target, and when a
z-error causes the endpoint of the (truncated) ray to stop short of the
target. With respect to x-errors, on a target miss, the participant can
then see which target is consistently closest to the ray and make their
selection based on that information, which would be unavailable in the
case of a cursor visualization. With respect to z-errors, if there is a
positive error then the truncated ray acts as a pointer, pointing toward
the target, and if there is a negative error, the truncated ray passes
through the target as opposed to being displayed hidden behind the
target as it would for the cursor visualization.

The ray visualization is further supported by the subjective analy-
sis of the participants’ confidence in their selections, task load, and
usability scores, which all suggest better scores when using the ray
visualization as opposed to the cursor visualization, which supports our
Hypothesis H3.

3.5.3 Influence of Target Depth on Task Performance and Sub-
jective Evaluation

We hypothesized in H5 that an increased distance to the target would
result in decreased performance by the user. However, no significant
effects were found to support this claim. When examining the results
on Figure 5, we see that the performance between close and far targets
was comparable when using the ray, but when using the cursor, we see
several differences between the target depths. In particular, Figures 5 (a)
and (b) show that the performance when using the cursor visualization
at the far target distance was worse at two degrees of positive error than
it was for close target distances. One may think this was caused by the
cursor ‘falling off’ the far target at positive two degrees, and extending
to the theoretical infinity at ten meters, however if this were the case
we would likely see the same effect occur on the negative two degree
error level, but this could not be observed.

4 EXPERIMENT II

In this section, we describe our second human-subject study that we
conducted to evaluate four types of gaze visualizations under optimal
conditions, i.e., in an error-free shared gaze environment.

4.1 Participants

The same participants described in Experiment I (Section 3.1) took part
in Experiment II.

4.2 Material

The same devices, physical space, shared gaze information (see Sec-
tion 3.2.1), and dynamic virtual crowd (see Section 3.2.2) described in
Experiment I were used in Experiment II.

Shared Gaze Visualization: Apart from the truncated ray and
cursor visualization types described in Section 3.2.4, we implemented
two additional types of gaze visualization shown in Figures 2 (b) and
(d). The first type is the ray + cursor where the end point of the ray
is visualized as a cursor and the length of the ray is set to the target’s
depth. If the ray + cursor intersects with an obstacle, the length of the
ray + cursor will get adjusted to match the depth of the obstacle. The
second type is the ray where the length of the ray is always constant
and set to to the theoretical infinity which was set to ten meters away
from the ray’s starting position and only takes into account the target’s
direction but not its depth.

4.3 Methods

4.3.1 Experimental Design

We chose a 4× 2 within-subject design to account for the possible
individual differences affecting participants’ task performance. Our
independent variables were as follows:

• Visualization Type (×4) which were:

Truncated Ray: The end point of the ray (i.e., ray’s length) was
set to the target’s depth and would get truncated at a new depth if
intersected by another obstacle.

Cursor: The cursor was set to the target’s depth and would get
truncated at a new depth if intersected by another obstacle.

Ray + Cursor: The end point of the ray visualized by the cursor
was set to the target’s depth and would get termianted at a new
depth if intersected by another obstacle.

Infinite Ray: The end point of the ray was set to be at the the-
oretical infinity, ten meters away from its starting point without
truncated at other obstacles.

• Target Depth (×2), which were: Close: Target was set at 3.15
meters from the virtual partner. Far: Target was set at 5.25 meters
from the virtual partner.

In Experiment II, for each visualization type, each depth of target was
tested twice resulting in a total of 16 trials. The trials were divided into
four blocks based on each visualization type. The order with which
participants were exposed to the four blocks and the four trials within
them was randomized to account for learning effects.

4.3.2 Procedure

Participants were guided to the start position and asked to don the
HMD. Then, the experimenter started one of the blocks for Experiment
II in a randomized order. During each block, the participant was tasked
with identifying four targets at two varying depth levels (note that no
error was added to the gaze information as it was in Experiment I). At
the end of each block, the participants were asked to fill out usability
and cognitive load questionnaires. This procedure was repeated three
more times. Then, the participants were asked to answer a demograph-
ics questionnaire, were interviewed for any additional feedback, and
received a compensation for their participation in the study.

4.3.3 Measures

For Experiment II, we used the first performance evaluation question
(see Table 1) used in Experiment I. We also measured participants’
preference with regards to gaze visualization type, by asking them to
order the types from their most to least preferred type.

4.3.4 Hypotheses:

Based on pilot testings we present the following hypothesis for the
context of our experimental task:

• H1: Participants will perform better in the ray + cursor and trun-
cated ray visualization types more than cursor and infinite ray,
as the former provide both the direction of the target and also
terminate at the target.

• H2: Participants will prefer the ray + cursor and truncated ray
visualizations more than cursor and ray as the former provide both
the direction of the target and also terminate at the target.

• H3: Participants will attribute a higher preference score to the
ray + cursor visualization and exhibit a higher confidence in its
performance compared with the other visualization types.

4.4 Results

In this section, we report our findings for Experiment II. We excluded
two participants from the analysis due to technical issues.

4.4.1 Objective Measures

We used repeated measures ANOVAs for the analysis of our results
at the 5% significance level with Bonferroni correction. Shapiro-Wilk
tests at the 5% significance level and Q-Q plots were used to test
for normality. For cases where sphericity was not assumed through
Mauchly’s test, Greenhous-Geisser results were reported accordingly.

Response Time: Figure 7 (a) shows the participants’ response
times for the four visualizations at the two target distances. We found a
significant main effect of visualization type, F(3,60) = 6.70, p = 0.001,

η2
p = 0.25, and a significant interaction between visualization type and

target depth, F(2.23,44.70) = 4.36, p = 0.016, η2
p = 0.17, on response

time. No significant main effect was found for target depth on response
time, F(1,20) = 0.11, p = 0.73, η2

p = 0.01.
Post-hoc tests indicate a significant difference between response

time for close and far targets when ray + cursor and cursor visualiza-
tions were used. Also, ray visualization showed a significantly higher
response time for close targets compared to ray + cursor and cursor,
and for far targets when compared with truncated ray (all p< 0.05).

Accuracy Rate: We found no significant differences for accuracy
rate. In fact, all participants had exactly 100% accuracy rate in the
error-free environment for all visualization types.

4.4.2 Subjective Measures

We used non-parametric statistical tests for our analysis.

Subjective Performance: Figure 7 (b) shows the confidence
scores (PE1 from Table 1) for the four visualizations at the two target
distances. We found significant differences between ray + cursor visu-
alizations and the other three blocks truncated ray visualization, W =
0.00, Z =−2.64, p = 0.008, cursor visualization, W = 3.5, Z =−2.12,
p = 0.03, and infinite ray visualization, W = 31.5, Z =−2.12, p = 0.034.
This suggests that participants had more confidence in their answers
when the gaze was visualized through ray + cursor.

Preference: Figure 7 (c) shows participants’ gaze visualization
preference based on the above scoring system. We asked our partici-
pants to order the four visualization types from least preferred to most
preferred. We assigned scores from 1 to 4 to their ranking choices,
where 1 indicated the least preferred and 4 the most preferred. We
found that the ray + cursor visualization was significantly different
from truncated ray, W = 45.5, Z =−2.71, p = 0.007, cursor, W = 13.5,
Z = −3.59, p< 0.001, and infinite ray visualizations, W = 201.00,
Z =−3.01, p = 0.003, suggesting participants’ inclination towards the
ray + cursor visualization. We also found a significant difference be-
tween cursor and truncated ray visualizations, W = 201.00, Z =−3.09,
p = 0.002, indicating a higher preference towards truncated ray.

4.5 Discussion

The results of Experiment II indicate that the shared gaze visualization
approach has both subjective and objective impacts on the user.

4.5.1 Influence of Gaze Visualization Type on Task Perfor-
mance

The results of Experiment II support Hypothesis H1 in that partic-
ipants performed better in their shared gaze task when utilizing the
ray + cursor visualization type, than they do when using the other types.
This suggests that the combination of the directional information from
the truncated ray visualization and the depth information provided by
the cursor, are better than either of the two visualization methods on
their own. This is interesting, as truncated ray and the ray + cursor
visualizations both include a directional component defined by the body
of the ray and a depth component defined by the termination point of the
ray body. The only difference between the two is that the ray + cursor
type adds an additional 3D object at the termination point of the ray,
which suggests that the 3D object itself influences the performance of
the user. It is possible that the apparent size changes of this object with
respect to depth can influence user performance by allowing them to
better judge the distance between the object and other nearby VHs than
they otherwise could using the truncated ray alone.

4.5.2 Influence of Gaze Visualization on Preference and Sub-
jective Evaluation

Our results also support Hypothesis H2 since the ray + cursor visual-
ization type affected the objective performance of the participants in
Experiment II, it is no surprise that it also had significant impacts on the
participants’ subjective preference of visualization type. Ray + cursor
was found to be the most preferred visualization method of the tested
four techniques, which is likely due to its unique combination of visual
cues that were discussed in the previous paragraph.

The combination of visual cues found in the ray + cursor visual-
ization type has further impacts on the confidence of the user when
compared with the other visualizations. This follows the logic described
in the previous paragraph, as it would be expected that having access
to the most amount of information and visual cues would lead to the
most amount of confidence in the performance of the user.

We additionally found that truncated ray was significantly preferred
over the cursor visualization type. We believe this is because directional
information has a larger impact on user preference than the inclusion of
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Fig. 7. Comparison of (a) response times at the two target distances, (b) confidence scores, and (c) user preference for the four visualization types.

the 3D fixation object, since the cursor provides depth information and
a 3D fixation object, but lacks the directional information inherent in
the truncated ray, whereas the truncated ray provides directional and
depth information but lacks the 3D fixation object.

5 GENERAL DISCUSSION

As discussed in Sections 3.5 and 4.5, the results of our two experiments
suggest that horizontal errors, depth-based errors, and the visualization
types applied to shared gaze information all have significant objective
and subjective impacts on the user. As usage of AR HMDs increases
and the demand for shared gaze applications rises, these factors will
need to be carefully examined by future developers.

5.1 Visualization Methods

The participants of both studies significantly preferred and performed
better when observing shared gaze information using a combination of
both truncated ray and cursor visualization types. This is not surprising,
as this gaze visualization type combines two separate forms of informa-
tion for the user to observe when making decisions in the shared gaze
environment. The truncated ray gives directional information, leading
the user from the virtual partner’s head to the target, while the cursor
provides a 3D object at the endpoint of the ray. This combination yields
better results than either of the two techniques alone, and because of
this, future gaze visualization techniques should continue to explore
this and other similar visualizations that provide simultaneous direction
and depth information while giving users a 3D object to fixate on. Also,
as shared gaze in AR can facilitate various applications, it would be
beneficial to investigate other visualizations not investigated in this
work, such as arrows, cones, and spotlights, as well as the effect of the
gaze ray’s color based on the context of the task.

5.2 Error Thresholds

As discussed above, users experienced the best performance in Experi-
ment I when using the truncated ray visualization type, while the results
of Experiment II suggest that the ray + cursor visualization type may
yield a performance that is equal to or better than that of truncated ray
alone. While the ray + cursor visualization was not tested with error
levels in this work, its subjective benefits suggest that future work in
shared gaze scenarios should make use of this visualization method.

While user performance in angular error conditions decreased sym-
metrically at higher error levels, the same cannot be said for depth-based
errors when using the truncated ray visualization type. The data gath-
ered from Experiment I suggests that positive depth errors increase
in difficulty more quickly than negative depth errors, likely because
of negative depth errors passing through the target before termination
while positive errors stop short. This is an interesting observation in
that if positive depth errors are expected, a negative offset could be
potentially introduced to gaze data without negatively impacting the
performance of the user. Future shared gaze systems may adjust for
depth errors and x-errors in accuracy automatically or manually with
input from a user by visualizing one’s own gaze ray. In the case of
moving targets, x-errors in accuracy could potentially be adjusted for
by comparing the speed of the user’s gaze to the speed of nearby objects
on the depth sensor, and then adjusting an angular offset so that the
gaze indicator would be aligned with the target object. This approach

is very similar to smooth pursuit based calibration methods [14, 33, 41].
For stationary targets, users could potentially account for x-errors in
accuracy if they are able to see their own gaze ray by shifting their
gaze so that the gaze indicator falls into the correct position. This
offset between the user’s actual gaze point and the position of the gaze
indicator in either stationary or dynamic circumstances could then be
used for self-calibration purposes.

5.3 Limitations

Both studies presented here involve the same scenario for the shared
gaze environment, and as such, our findings must be interpreted with
this specific scenario in mind. It is possible that by changing the
position of the participant, or by changing the movement behavior of
the virtual crowd, that the outcomes of the study may be different than
what was gathered by our work. For example, if viewing the scene from
another angle other than the front, it is possible that users may tolerate
less or more error than what we observed for this particular scenario.

6 CONCLUSION

In this paper we presented a human-subject study investigating the
influence of error type, error level, gaze visualization method and tar-
get depth on users’ performance and subjective evaluation during a
collaborative search task where participants used the gaze informa-
tion of a virtual human partner to identify targets among a dynamic
crowd. Our findings suggest that levels of angular and depth errors
above certain thresholds decrease users’ performance. Also, for envi-
ronments susceptible to error, a truncated ray visualization results in
a higher performance and less cognitive load for the user. Separately,
we investigated the effects of shared gaze visualization, in a similar but
error-free environment, finding that the addition of a 3D cursor to the
end point of the truncated ray enhances users’ performance for close
targets, increases their confidence, and achieved the highest preference
ranking compared to the other visualization methods.

In the future, we plan to investigate the influence of error in search
tasks in static scenes under collaborative circumstances, to improve our
understanding of the behavioral differences in dynamic scenes, and of
search tasks in general. Also, we plan to investigate and compare how
shared gaze influences the quality of collaboration in VR/AR when two
real human users are taking part in the task.
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Fig. 7. Comparison of (a) response times at the two target distances, (b) confidence scores, and (c) user preference for the four visualization types.

the 3D fixation object, since the cursor provides depth information and
a 3D fixation object, but lacks the directional information inherent in
the truncated ray, whereas the truncated ray provides directional and
depth information but lacks the 3D fixation object.

5 GENERAL DISCUSSION

As discussed in Sections 3.5 and 4.5, the results of our two experiments
suggest that horizontal errors, depth-based errors, and the visualization
types applied to shared gaze information all have significant objective
and subjective impacts on the user. As usage of AR HMDs increases
and the demand for shared gaze applications rises, these factors will
need to be carefully examined by future developers.

5.1 Visualization Methods

The participants of both studies significantly preferred and performed
better when observing shared gaze information using a combination of
both truncated ray and cursor visualization types. This is not surprising,
as this gaze visualization type combines two separate forms of informa-
tion for the user to observe when making decisions in the shared gaze
environment. The truncated ray gives directional information, leading
the user from the virtual partner’s head to the target, while the cursor
provides a 3D object at the endpoint of the ray. This combination yields
better results than either of the two techniques alone, and because of
this, future gaze visualization techniques should continue to explore
this and other similar visualizations that provide simultaneous direction
and depth information while giving users a 3D object to fixate on. Also,
as shared gaze in AR can facilitate various applications, it would be
beneficial to investigate other visualizations not investigated in this
work, such as arrows, cones, and spotlights, as well as the effect of the
gaze ray’s color based on the context of the task.

5.2 Error Thresholds

As discussed above, users experienced the best performance in Experi-
ment I when using the truncated ray visualization type, while the results
of Experiment II suggest that the ray + cursor visualization type may
yield a performance that is equal to or better than that of truncated ray
alone. While the ray + cursor visualization was not tested with error
levels in this work, its subjective benefits suggest that future work in
shared gaze scenarios should make use of this visualization method.

While user performance in angular error conditions decreased sym-
metrically at higher error levels, the same cannot be said for depth-based
errors when using the truncated ray visualization type. The data gath-
ered from Experiment I suggests that positive depth errors increase
in difficulty more quickly than negative depth errors, likely because
of negative depth errors passing through the target before termination
while positive errors stop short. This is an interesting observation in
that if positive depth errors are expected, a negative offset could be
potentially introduced to gaze data without negatively impacting the
performance of the user. Future shared gaze systems may adjust for
depth errors and x-errors in accuracy automatically or manually with
input from a user by visualizing one’s own gaze ray. In the case of
moving targets, x-errors in accuracy could potentially be adjusted for
by comparing the speed of the user’s gaze to the speed of nearby objects
on the depth sensor, and then adjusting an angular offset so that the
gaze indicator would be aligned with the target object. This approach

is very similar to smooth pursuit based calibration methods [14, 33, 41].
For stationary targets, users could potentially account for x-errors in
accuracy if they are able to see their own gaze ray by shifting their
gaze so that the gaze indicator falls into the correct position. This
offset between the user’s actual gaze point and the position of the gaze
indicator in either stationary or dynamic circumstances could then be
used for self-calibration purposes.

5.3 Limitations

Both studies presented here involve the same scenario for the shared
gaze environment, and as such, our findings must be interpreted with
this specific scenario in mind. It is possible that by changing the
position of the participant, or by changing the movement behavior of
the virtual crowd, that the outcomes of the study may be different than
what was gathered by our work. For example, if viewing the scene from
another angle other than the front, it is possible that users may tolerate
less or more error than what we observed for this particular scenario.

6 CONCLUSION

In this paper we presented a human-subject study investigating the
influence of error type, error level, gaze visualization method and tar-
get depth on users’ performance and subjective evaluation during a
collaborative search task where participants used the gaze informa-
tion of a virtual human partner to identify targets among a dynamic
crowd. Our findings suggest that levels of angular and depth errors
above certain thresholds decrease users’ performance. Also, for envi-
ronments susceptible to error, a truncated ray visualization results in
a higher performance and less cognitive load for the user. Separately,
we investigated the effects of shared gaze visualization, in a similar but
error-free environment, finding that the addition of a 3D cursor to the
end point of the truncated ray enhances users’ performance for close
targets, increases their confidence, and achieved the highest preference
ranking compared to the other visualization methods.

In the future, we plan to investigate the influence of error in search
tasks in static scenes under collaborative circumstances, to improve our
understanding of the behavioral differences in dynamic scenes, and of
search tasks in general. Also, we plan to investigate and compare how
shared gaze influences the quality of collaboration in VR/AR when two
real human users are taking part in the task.
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