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ABSTRACT
Augmented reality (AR) technologies provide a shared platform for
users to collaborate in a physical context involving both real and
virtual content. To enhance the quality of interaction between AR
users, researchers have proposed augmenting users’ interpersonal
space with embodied cues such as their gaze direction. While bene-
ficial in achieving improved interpersonal spatial communication,
such shared gaze environments suffer from multiple types of errors
related to eye tracking and networking, that can reduce objective
performance and subjective experience.

In this paper, we conducted a human-subject study to understand
the impact of accuracy, precision, latency, and dropout based errors
on users’ performance when using shared gaze cues to identify a
target among a crowd of people. We simulated varying amounts of
errors and the target distances and measured participants’ objective
performance through their response time and error rate, and their
subjective experience and cognitive load through questionnaires.
We found some significant differences suggesting that the simulated
error levels had stronger effects on participants’ performance than
target distance with accuracy and latency having a high impact on
participants’ error rate. We also observed that participants assessed
their own performance as lower than it objectively was, and we
discuss implications for practical shared gaze applications.

CCS CONCEPTS
•Human-centered computing→Empirical studies in visual-
ization; • Computing methodologies → Mixed / augmented
reality.
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1 INTRODUCTION
Over the last several years, great strides have been made to im-
prove sensor and display technologies in the fields of augmented
reality (AR) and virtual reality (VR) [16]. These advances, such as
with respect to head-mounted displays (HMDs) and eye trackers,
have provided new opportunities for applications in fields such
as training, simulation, therapy, and medicine. For many of these,
collaboration between multiple users is an important aspect of the
experience. In real life, people use both verbal and nonverbal cues
to communicate information to the person they are interacting
with.

In order to understand and improve collaborative experiences
using AR/VR technologies, researchers have evaluated the impact
of different embodied and behavioral cues on users’ efforts and
performance [18, 26, 27]. Researchers have also investigated how
certain embodied cues could be augmented to improve their effi-
ciency in interpersonal communication. A prime example of such
augmented cues are shared gaze environments [26]. Eye gaze is an
important cue for spatial interaction and collaboration among hu-
mans as it lets us know what another person is looking at, which is
often in line with their focus of attention [20]. Gaze cues further
inform us about a person’s mental processes, eye contact, and gaze
avoidance. Joint gaze occurs when multiple people are looking at
the same object when it is the focus of discussion [17].

Advances in AR requires a better understanding of its interaction
space [32], such as AR technologies’ potential to augment such eye
gaze cues in interpersonal communication, e.g., by providing a gaze
ray from the user’s head to the object in the environment that they
are looking at. Different methods have been proposed to share gaze
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rays, cones, or focus points between users [18, 27, 33]. Some of these
approaches require information about the geometry of the physical
environment, while the most basic and generalizable approaches
are mainly based on rays that indicate the direction of gaze but do
not terminate at any object.

All shared gaze environments have to track users’ gaze direc-
tion with an eye tracker, e.g., integrated into an HMD, and that
they have to transmit that information others for subsequent ren-
dering in their AR view, e.g., via a wireless network. The quality
of shared information and the errors involved in this process are
highly important to quantify and understand for practitioners in
shared spaces [7, 28, 33].

In this paper, we present a human-subject study aimed at under-
standing the importance and influence of four types of errors in AR
shared gaze environments on users’ performance and perception.
We focused on accuracy and precision related to the eye tracker as
well as latency and dropout related to the network. We created a
scenario where a participant had to collaborate with a simulated
partner to identify a target among a crowd of humans. Inspired
by related work [18, 27, 33], we augmented the participant’s view
with a gaze ray that indicated which person their simulated part-
ner was looking at. We measured participants’ performance using
response time and error rate. Our findings suggest that participants
performed surprisingly well, better than they believed themselves
when we asked them to judge their performance, even when the
simulated error levels were high, with accuracy and latency having
the highest impact on participants’ error rates.

With this work, we aim to contribute to the research community
by providing answers to the research questions below:

• RQ1 How do different types of error affect users’ collabora-
tive performance in AR shared gaze environments?

• RQ2What are the thresholds for the amounts of error intro-
duced without affecting users’ performance?

• RQ3 How different are users’ subjective and objective as-
sessment of the experience and what is their subjective per-
ception of an acceptable amount of error for the task at
hand?

This paper is structured as follows. Section 2 discusses related
work. Section 3 describes the experiment. Section 4 describes our
results and Section 5 discusses our findings. Section 6 concludes
the paper and discusses future opportunities for research.

2 RELATEDWORK
In this section, we present related work on collaborative shared
spaces, shared gaze cues, and errors impacting user experience and
performance.

2.1 Sharing Gaze in AR/VR
In an early work by Kiyokawa et al., a mixed-space collaborative
platform was introduced that included an awareness enhancing
technique to improve the quality of collaboration between the two
users [18]. This was achieved by visualizing a gaze ray initialized
from between the user’s eyes, finding that participants rated their
task to be easier with the gaze ray when one participant had to
guide the other in finding stationary targets. Similarly, Bauer et al.
investigated the effects of a “reality augmenting telepointer” used

for expert-worker scenarios for mobile workers. Using their sys-
tem, the expert’s pointer was displayed to the user [2]. They found
that with the inclusion of the pointer, similar speech behaviors
were observed as in face-to-face conversations. Piumsomboon et
al. introduced a system called COVAR that could facilitate collab-
oration between AR and VR users and is able to share their head
frustum related to their field of view, head-ray, gaze-ray, and hand
gestures of users with each other to improve the collaborative ex-
perience [27]. Their results emphasize the positive impact of these
cues on aspects such as performance and subjective preference.
Brennan et al. compared different combinations of gaze and voice
cues where remote users took part in a search task finding that
sharing gaze information alone resulted in faster search times than
gaze and voice conditions [3]. In a helper-worker scenario, Gupta
et al. looked at effects of sharing the worker’s gaze with the helper
and the helper’s pointer with the worker. Their results indicate
positive impacts of having both cues on performance and quality of
the experience [11]. With such findings emphasizing the benefits
of shared gaze, Zhang et al. investigated the impact of the meth-
ods used to visualize the gaze (i.e., highlight, spotlight, trajectory,
and cursor) on users’ performance and cognitive load [33]. Their
findings suggest that users perceived the highlight and spotlight
mode as less distracting compared to other modes such as cursor
and trajectory. Although past research have had valuable contribu-
tions in understanding the influence of sharing gaze in AR/VR for
collaborative purposes, to our knowledge, the influence of different
types of errors inherent to shared gaze experiences have not been
studied. Knowing these influences exist in single user experiences,
a better understanding is required for shared experiences.

2.2 Gaze Tracking Performance
As the quality of the data reported by eye trackers is dependent
on various factors, understanding the causes and effects of these
issues on user performance is important for practical applications.
Holmqvist et al. discussed basic examples of different types of
errors in eye tracking environments that are caused by limitations
of current-state eye trackers (e.g., accuracy and precision), and how
these can cause misinterpretations in different measures such as
dwell time [13]. They discussed factors that can affect the quality of
the data such as the experimental task and eye tracking algorithms.
Other researchers also provided explanations for sources of eye
tracking errors such as variations in pupil size [6], eye color as well
as calibration instructions and methods [23].

Some researchers proposed methods to compensate for these
errors. For instance, Cerrolaza et al. proposed calibration techniques
to compensate for the impact of user movement on the devices’
accuracy [5]. For less expensive commercial off-the-shelf (COTS)
eye trackers, Ooms et al. proposed steps to improve their data
quality [24]. Hornoff et al. proposed using the disparity between
the true position of implicit fixation points and the reported value
from the eye tracker as a way to measure the robustness of the
reported data [14]. Barz et al. proposed a computational approach
that wouldmodel and predict gaze estimation errors in real time and
could be used in applications to identify high error regions during
user interaction and modify the elements such as increasing the size
of the objects [1]. While varying factors such as lighting and eye



Effects of Shared Gaze Parameters on Visual Target Identification Task Performance in Augmented Reality SUI ’19, October 19–20, 2019, New Orleans, LA, USA

tracker type, Feit et al. found large differences in eye tracking data
quality and proposed new design choices such as target placement
and size adjustments to compensate for these variabilities [8].

With most of past work’s focus on assessing the gaze tracking
errors, identifying contributing factors and solutions reducing their
impact, further investigation of these errors inmore dynamic shared
AR/VR setups can be beneficial.

2.3 Network Sharing Performance
Network performance in terms of transmission latency and dropout
is an important factor that shapes user performance in shared
AR/VR experiences. A large body of literature showed that latency
has a negative effect on user performance, but most of that research
focused on tracker or rendering latency between a person’s own
physical movements and the computer-generated feedback [7, 15,
19, 21, 25, 28]. In contrast, effects of network latency and dropout
in shared AR/VR environments have less immediate cause-effect
relationships.

We are not aware of previous research investigating latency and
dropout in shared gaze environments, but related work in AR/VR
and general communication focused on aspects of collaborative
environments [10, 29]. Recently, Toothman and Neff investigated
different network errors in an embodied multi-user VR setup, in-
cluding latency and dropout and their effects on social presence [30].
Their results showed practical thresholds such as that a latency of
300ms and dropout with freezing frames for 100–350 ms for 67%
of the time had a negative impact on users’ experience and perfor-
mance. dropout (or frame dropping) has been further researched
by Pavlovych et al., who identified a threshold of 10% frame drops,
after which it had a negative effect on participants’ tracking task
performance on a computer [25]. Geelhoed et al. showed that the
conversation flow in a telepresence system was reduced by added
network latency, recommending a limit of 100–600ms for round
trip time latency, but they also found that basic conversations with-
out time sensitive tasks were not that affected by latency and could
go up to 2000ms of latency [10]. Other research showed that net-
work latency might further lead to misinterpretations of users’
dispositions during interactions [29].

Further investigation of different error types for collaborative
purposes can provide a better understanding of their implications
on users’ collaborative performance and experience.

3 EXPERIMENT
In this section, we present the experiment that we conducted to
assess the impact of different types of errors that are inherent to
collaborative shared gaze environments in AR.

3.1 Participants
We recruited 21 participants (7 female, 14 male, age 19–36, average
23.28) from the graduate and undergraduate population of our
university. The protocol for our experiment was approved by the
institutional review board (IRB) of our university. All participants
indicated normal hearing and normal/corrected vision. Before the
experiment, we asked our participants to use a 7-point Likert scale
(1 = novice/unfamiliar, 7 = expert/familiar) to rate their familiarity

with AR (average 4.7), VR (average 5.19), virtual humans (average
3.9), and overall computer expertise (average 5.52).

3.2 Material
We conducted the experiment in an open 4.6m× 10.4m space in
our laboratory. We used two computers with Intel Xeon 2.4GHz
processors comprising 16 cores, 32GB of main memory and two
Nvidia Geforce GTX 980 Ti graphics cards for the stimulus control
and for participants to answer questionnaires. We used the Unity
graphics engine version 2018.2.11f1 for rendering, and a Microsoft
HoloLens for the presentation of the visual stimulus.

3.2.1 Shared Gaze Stimuli. To provide repeatable controlled shared
gaze stimuli, we decided to use a simulated virtual human partner
in this study. Therefore, we placed a 3D virtual human character
(see Figure 1) at a distance of one meter on the left side to the
participants, which was visible to them on the HoloLens. During
the experiment, the simulated partner stood with an idle animation,
facing in the same forward direction as the participants. A 20-meter
gaze ray was presented in AR that originated in the partner’s eye
location and went forward into the environment. The gaze ray was
programmed to be rendered on top of the real or virtual entities
in the environment to be more in line with practical shared gaze
setups and to not give away or misrepresent a target through depth
cues resulting from an intersection with a target at any moment.
We would like to point out that such gaze rays are mainly used
when one does not have access to a high-precision real-time recon-
struction of the geometry of a physical environment, as discussed
in Section 1.

We tested different gaze simulation algorithms but noticed that
these were largely not able to create realistic gaze behavior in AR.
In order to create a natural gaze behavior for the simulated partner,
we recorded the eye behavior of one of the experimenters looking
at a stationary target located at a distance of one meter away. We
used the Pupil Labs1 software to capture the recording and assess
its accuracy (0.55 deg) and precision (0.08 deg). This recorded data
was then analyzed to find the average gaze position observed (with
the accuracy error), and was then normalized around this position
to yield data with no accuracy error.

This recorded gaze data was played back in Unity and oriented to
simulate saccades and smooth pursuit movements to follow target
points on the moving target humans in the environment. Each of
them had three points of interest, one on their head, one on their
chest, and one near their waist (see Figure 1).

The script that controlled the gaze behavior would target one of
these points at random every 750ms, with a fifty-percent probability
of choosing the head as the target and a twenty five percent chance
of choosing either of the other two points. This behavior made
the virtual partner’s gaze seem as though it was identifying the
target human by recognizing their face, while scanning the target
for concealed weapons. The simulated gaze followed the targets
when they were moving.

1https://pupil-labs.com/

https://pupil-labs.com/
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Figure 1: Annotated screenshot showing a participant wear-
ing a HoloLens with the simulated virtual partner on their
left side, looking at a target in a crowd of virtual humans.
The virtual target humans are differentiated by the floating
numbers above their head.

3.2.2 Gaze Target Crowd. Our setup consisted of nine simulated
virtual human targets shown in Figure 1. The 3D models and ani-
mations were acquired through the Unity Asset Store2 or Mixamo3.
The virtual humans (4 female, 5 male) were placed 0.7 meters apart
from each other in depth. Walking animations were added to each
model so they could pace back and forth between two predefined
points on the left and right sides from the participants with a total
distance of 6 meters. Each virtual human was presented with a float-
ing number over their head to make it easier for the participants
when reporting the gaze target. The walking speed for the virtual
humans was chosen from the range 0.8 ± 0.2 m/s, which is close to
average human walking speed [9]. The order of the virtual humans
in depth and their walking speed were randomized between trials
in the study.

3.2.3 Gaze Error Implementation. As discussed in Section 1, we
considered four different types of error that are common to eye
trackers and shared gaze AR experiences. Figure 2 illustrates each
error type in comparison to a no-error example. Below, we describe
each error, its possible source and how it was implemented.

Accuracy: Persistent angular offset between the true eye gaze
direction and the direction of the drawn gaze ray. To implement this
error, the gaze ray for no accuracy error was calculated based on
the simulated virtual partner’s gaze direction and the recorded gaze
data. This ray was then rotated towards the rightward horizontal
axis of the target by a variable number between 0 and 5 degrees at
1 degree intervals to achieve an accuracy offset along the horizontal
axis. It is important to note that while a physical eye tracking
system would introduce errors in both the x and y directions, we
opted to simulate the most extreme type of accuracy error that
could occur for the study scenario, which was a horizontal shift
away from the target. Due to the nature of our study scenario, a
vertical offset would still appear on the target’s body or slightly
above the target’s head, which would make the target easier to
identify than if the shift had occurred in the horizontal direction
alone. Additionally, a combination of these two directions would
2https://assetstore.unity.com/
3https://www.mixamo.com/#/

only limit the horizontal offset away from the target, and would
also result in a target that is easier to identify than if the shift had
occurred in solely the horizontal direction.

Precision: Dynamic angular differences between an eye tracker’s
reported eye gaze direction and the true direction to the gaze target.
To implement this error, we calculated the gaze ray position based
on the simulated virtual partner’s gaze direction, then offset this
position by an amount based on the recorded gaze data which was
multiplied by a variable scale factor between 0 and 2.5 degrees at
0.5 degree intervals. This calculation would yield a gaze behavior
that was centered on the target with increased variations around
the target point as the scale factor increased.

Latency: End-to-end delay in the presentation of the gaze ray
from the simulated partner’s eyes. Here, our focus is on the latency
introduced by the complex setup of a collaborative AR shared gaze
system, which includes latency from the eye tracker, a wireless
network, a rendering system, and a display. To realize this error, we
computed the position of the target virtual human at a simulated
temporal offset up to 1000ms into the past. This past position
was then set as the target for the simulated gaze ray. This was
achieved by creating a dictionary that paired vector positions with
timestamps for each virtual human in the scene. This dictionary
could be searched to find a virtual human’s past position based on
the time difference between the current time and the amount of
latency in milliseconds that was simulated.

Dropout: Here we define dropout as the probability of dropped
or lost frames due to networking or eye tracking issues (e.g., eye
tracker not being able to detect the pupil). To implement this error,
for every gaze ray that was rendered we measured the chance of
the next ray being dropped based on predefined values that are
introduced in Section 3.3.1. As an example, if the predefined value
was set to 90%, then there was a 90% chance that the next frame
was dropped resulting in an inconsistent gaze ray.

To choose ecologically valid error ranges, we looked at the liter-
ature described in Section 2 and included the nominal performance
reported by manufacturers for commercial head-worn eye trackers
such as from Tobii4 and Pupil Labs. To make sure that participants
were able to perceive at least the maxima of all types of errors, we
chose the maxima of our error ranges as slightly larger than the
range of values reported in the mentioned sources.

3.3 Methods
3.3.1 Study Design. We chose a 4×6×3within-subjects design for
our experiment. This choice was made to account for the impact
of individual differences on task performance. Our independent
variables were:

• Error Type and Error Level (4 × 6 factors):
– Accuracy: 6 levels of accuracy error were introduced to
the gaze ray from 0 deg to 5 deg with increments of 1 deg.

– Precision: 6 levels of precision error were introduced
to the gaze ray from 0 deg to 2.5 deg with increments of
0.5 deg.

4https://www.tobii.com/

https://assetstore.unity.com/
https://www.mixamo.com/#/
https://www.tobii.com/
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No Error
(Points centered 
around target)

Accuracy Error
(Points shift to the 

right of the target, as 
a group)

Precision Error
(Points shift outward 

from target)

Dropout Error
(Some points are 

missing)

Latency Error
(Points centered 

around past position 
of target)

Figure 2: Illustration of the different error types simulated in the shared gaze interface in comparison to a no-error example.

– Latency: 6 levels of latency error were introduced to the
gaze ray from 0ms to 1000ms with increments of 200ms.

– Dropout: 6 levels of dropout error were introduced to the
gaze ray starting at 0% and going from 10% to 90% with
increments of 20%.

• Target Distance (3 factors):
– Close: The target was pacing back and forth at a distance
of 3 meters.

– Medium: The target was pacing back and forth at a dis-
tance of 5.1 meters.

– Far: The target was pacing back and forth at a distance of
7.2 meters.

These combinations of independent variables resulted in a total
of 72 trials. For the experiment, we randomized the participants’
exposure to each error type resulting in four combinations, and
within each error type, we randomized their exposure to the error
levels for different target distances, resulting in 18 combinations.

3.3.2 Procedure. After giving their informed consent, participants
were asked to take a seat and answer a pre-questionnaire to rate
their familiarity with AR, VR, computers, and virtual humans and
to assess their hearing and vision. After this, they were asked to
read a document about their task in the experiment and then the
experimenter reviewed the written document with them.

Participants were guided to stand on the white cross marked
on the floor a meter apart from the simulated AR collaboration
partner and don the HoloLens. They were informed that they could
move their head freely but that they should remain standing on
that spot. Participants were asked to use the information from the
partner’s gaze ray to identify a potential suspect among the gaze
target crowd in front of them.

Two distinct beep sounds were used to mark the start and end
of each trial and participants were told that they should say their
answers out loud by naming the number on top of the identified
target human in the crowd. Participants were informed that they
have a maximum of 60 seconds to make a decision for each trial
but that they have to answer as quickly and confidently as possible.
Upon reaching the 55th second in each trial, the virtual background
turned red to indicate that the end of the trial was close and partic-
ipants were asked to indicate their best guess.

After going over the procedure, participants took part in five
practice trials. We then asked them if they think they need more
practice. If their answer was yes, they took part in five more practice
trials. Among our participants, only one asked for the extra five
practice trials and we checked the response times for the 72 main

trials for that participant to ensure that the extra five practice trials
had not given them an advantage over the others.

After each block of 18 trials (i.e., one error type with six error lev-
els and three target distances) they were asked to doff the HoloLens
and answer a post-questionnaire. For each participant, this pro-
cess was performed four times in randomized order within and
between the blocks. After finishing the last block, participants were
asked to answer further questionnaires. Then, they took part in a
short debriefing session to discuss their experience. They received
monetary compensation for their participation in the study.

3.3.3 Measures. In this section, we present the objective and sub-
jective measures used to assess participants’ performance and per-
ception of each error type.

Objective Measures. As participants were asked to identify the
potential gaze target as quickly and confidently as they can, we
used these criteria to separately assess their performance in the
form of response time and error rate. We would like to point out
that although different models for speed-accuracy trade-offs have
been introduced in the human-computer interaction literature, we
are not aware of any validated model that could be applied to our
specific stimulus-response case, such that we had to treat these
measures separately:

• Response Time:We recorded the amount of time taken for
each participant to indicate a gaze target for each trial.

• Error Rate:We recorded if participants identified the cor-
rect gaze target for each trial.

Subjective Measures. We measured the subjective perception of
our participants about the various error types and levels, and how
their performance and general experience was impacted. The sub-
jective measures used were:

• Subjective Performance: For each block associated with a
certain error type, three questions were used to assess partici-
pants’ confidence in their answers (7-point Likert scale), their
subjective performance (numeric response), and their subjec-
tive judgment of what constitutes an acceptable amount of
error for the task at hand (numeric response). Table 1 shows
these questions.

• Subjective Experience: To understand the impact of our
independent variables on how participants experienced each
error type, we included questions from the NASA TLX cog-
nitive load (CL) questionnaire [12], System Usability Scale
(SUS) questionnaire [4], and a question asking about the
realism of the gaze behavior. A 7-point Likert scale was used
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Table 1: The subjective Performance questionnaire.

ID Question
SP1 How confident were you on the correctness of your

choices in this section of the experiment?
SP2 What percentage of the targets do you think you identi-

fied correctly from 0% to a 100%?
SP3 What do you think is an acceptable error margin for the

system, based on your assessment of your performance?

Table 2: The subjective Experience questionnaire.

ID Question
CL1 How mentally demanding was the task?
CL2 How hard did you have to work to accomplish your

level of performance?
CL3 How insecure, discouraged, irritated, stressed, or an-

noyed were you?
SUS1 I thought the system was easy to use.
SE1 I felt the gaze behavior of my partner was realistic.

Table 3: The adjusted Trust in Technology questionnaire.

ID Question
TT1 The shared gaze system is a very reliable piece of soft-

ware.
TT2 The shared gaze system has the features required for

my task.
TT3 I am totally comfortable working with the shared gaze

system.
TT4 I believe that most technologies are effective at what

they are designed to do.
TT5 I usually trust a technology until it gives me a reason

not to trust it.

for all the questions in this questionnaire. Table 2 shows the
questions used for this questionnaire.

• Trust in Technology: To assess participants’ overall trust
in technology and the shared gaze interface, we included
several questions from Mcknight et al.’s Trust in Technology
questionnaire [22]. A 7-point Likert scale was used for all
items and they were adjusted to match our interface. This
questionnaire, shown in Table 3, was presented to the par-
ticipants after they completed all four blocks.

3.3.4 Hypotheses. Based on the literature (see Section 2) and a
hypothesis-generating pilot study with five participants (different
from our study population, who generally made conservative es-
timates on their own performance), we formalized the following
hypotheses:

• H1: Participants’ response time and error rate will in-
crease as the error levels increase within each error type.

• H2: Participants’ response time and error rate will in-
crease as the target distance increases within each error type.

• H3: Based on the inherent nature of accuracy and latency
errors that provide a constant spatial and temporal offset,
compared to precision and dropout errors, participants will:
a Give lower SP1 scores for the former error types and indi-
cate less confidence in their answers,

b Give higher scores for CL1, CL2, CL3 for the former error
types and indicate higher cognitive load,

c Give a lower SUS1 score for the former error types, assess-
ing them as more difficult to use.

• H4: Participants’ subjective estimate of the percentage of
correctly identified targets answered through SP2 will be
lower than their actual performance.

4 RESULTS
In this section we present the objective and subjective results for
our experimental conditions. For the analysis of our results, we
removed the data of one of our participants as it failed our sanity
checks; we noticed that several responses were for targets that were
located in completely opposite places compared to the actual target.

4.1 Objective Measures
We analyzed the results for the objective performance measures
with repeated-measures ANOVAs and Tukey multiple comparisons
with Bonferroni correction at the 5% significance level. We con-
firmed the normality with Shapiro-Wilk tests at the 5% level and
QQ plots. Degrees of freedom were corrected using Greenhouse-
Geisser estimates of sphericity when Mauchly’s test indicated that
the assumption of sphericity had been violated.

4.1.1 Accuracy.

Response Time. For accuracy, we found a significant main effect
of error level, F (3.21, 61.09) = 13.02, p< 0.001, η2p = 0.4, no sig-
nificant main effect of target distance, F (2, 38) = 1.43, p = 0.25,
η2p = 0.07, and a significant interaction between the two factors,
F (4.98, 94.71) = 2.63, p = 0.02, η2p = 0.12. Figure 3(a) shows the
aggregated response time for the simulated accuracy error levels at
different target distances.

Error Rate. For accuracy, we found a significant main effect of er-
ror level, F (2.99, 56.84) = 4.91, p = 0.004, η2p = 0.2. We did not find
a significant main effect of target distance, F (2, 38) = 0.41, p = 0.66,
η2p = 0.02, suggesting that the tested target distances did not have
a noticeable impact on participants’ accuracy of responses. Fig-
ure 3(b) shows the aggregated error rate for the simulated accuracy
error levels at different target distances.

4.1.2 Precision.

Response Time. For precision, we did not find a significant effect
of error level, F (2.79, 53.141) = 1.04, p = 0.37, η2p = 0.05, and target
distance, F (1.61, 30.73) = 2.08, p = 0.15, η2p = 0.09, on participants’
response time, suggesting that the tested target distances and error
levels did not noticeably add to the difficulty of the target identifi-
cation task for this type of error. Figure 3(c) shows the aggregated
response time for the simulated precision error levels at different
target distances.
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Figure 3: Performance results related to eye tracking errors: The top row (a,b) shows results for accuracy and the bottom row
(c,d) for precision. The left column (a,c) shows results for response time and the right column (b,d) for error rate.

Error Rate. For precision, we did not find a significant effect of
error level, F (5, 95) = 0.91, p = 0.47, η2p = 0.04, and target distance,
F (2, 38) = 0.37, p = 0.68, η2p = 0.01, on participants’ error rate,
again suggesting that the tested target distances and error levels did
not noticeably add to the difficulty of the target identification task
for this type of error. Figure 3(d) shows the aggregated error rate
for the simulated precision error levels at different target distances.

4.1.3 Latency.

Response Time. For latency, we found a significant main effect of
error level, F (5, 95) = 16.12, p< 0.001, η2p = 0.45. We did not find
a significant main effect of target distance, F (1.61, 30.64) = 1.27,
p = 0.27, η2p = 0.06, suggesting that the tested target distances did
not noticeably add to the difficulty of the target identification task.
Figure 4(a) shows the aggregated response time for the simulated
latency error levels at different target distances.

Error Rate. For latency, we found a significant main effect of
error level, F (2.96, 56.32) = 14.23, p< 0.001, η2p = 0.42. We also
found a significant main effect of target distance, F (2, 38) = 5.18,
p = 0.01, η2p = 0.21. Figure 4(b) shows the aggregated error rate for
the simulated latency error levels at different target distances.

4.1.4 Dropout.

Response Time. For dropout, we found a significant main effect
of error level, F (3.41, 64.80) = 26.26, p< 0.001, η2p = 0.58, no
significant main effect of target distance, F (1.61, 30.74) = 0.61,
p = 0.51, η2p = 0.03, and a significant interaction between the two
factors, F (7.81, 148.56) = 2.68, p = 0.009, η2p = 0.12. Figure 4(c)
shows the aggregated response time for the simulated dropout
error levels at different target distances.

Error Rate. For dropout, we did not find a significant main effect
of error level, F (2.59, 49.28) = 0.74, p = 0.51, η2p = 0.03, or target
distance, F (1.39, 26.55) = 1.30, p = 0.27, η2p = 0.06, on participants’
error rate, which suggests that the tested target distances and error
levels did not noticeably impact participants’ responses. Figure 4(d)
shows the aggregated error rate for the simulated dropout error
levels at different target distances.

4.2 Subjective Measures
For the subjective questionnaire responses with an ordinal data type,
we used non-parametric statistical tests to analyze the responses.
We used Wilcoxon signed-ranks tests for the related samples.

4.2.1 Subjective Performance. We analyzed the results for the Per-
formance questionnaire (Table 1) with respect to questions SP1, SP2,
and SP3. See Table 4.
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Figure 4: Performance results related to network errors: The top row (a,b) shows results for latency and the bottom row (c,d)
for dropout. The left column (a,c) shows results for response time and the right column (b,d) for error rate.

For SP1, we did not find a significant difference among the error
types when assessing participants’ confidence in their responses,
and the similar results for the different error types suggest that
they did not have a noticeable impact on self-assessments of their
performance.

However, for SP2, we found significant differences between par-
ticipants’ subjective assessment of performance and their actual
performance for accuracy, F (1, 19) = 8.07, p = 0.01, η2p = 0.29,
precision, F (1, 19) = 20.05, p< 0.001, η2p = 0.51, and dropout,
F (1, 19) = 29.16, p< 0.001, η2p = 0.6. We observed a trend for la-
tency, F (1, 19) = 3.23, p = 0.08, η2p = 0.14. These results are shown
in Figure 5 and suggest that participants subjectively self-judged
their performance as worse than what it actually was.

For SP3, we further looked at participants’ subjective judgment
of what they think constitutes the threshold for an acceptable
amount of error. We identified a subjective accuracy threshold,
M = 2.35 deg, SD = 1.37 deg, precision threshold, M = 1.36 deg,
SD = 0.64 deg, latency threshold, M = 265.9ms, SD = 267.7ms,
and dropout threshold,M = 23.35%, SD = 17.49%. We added these
subjective thresholds as vertical red lines to the objective measures
shown in Figures 3 and 4. It is interesting to observe that these
subjective thresholds seem to be in line with a drop in objective
performance for accuracy and latency, while they do not seem to
match changes in performance for precision and dropout.
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Figure 5: Comparison of participants’ subjective estimates
of their performance and their objective performance in
terms of correctly identified targets during the experiment
for (a) accuracy, (b) precision, (c) latency, and (d) dropout. Sta-
tistical significance: *** (p<0.001), ** (p<0.01), * (p<0.05).
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Table 4: Subjective responses for the Performance and Expe-
rience questionnaires. We report the means (standard devia-
tions) for the four error conditions.

ID Accuracy Precision Latency Dropout
SP1 5.30 (1.38) 5.55 (1.57) 5.10 (1.37) 5.00 (1.29)
SP2 77 (20.93) 83.40 (16.94) 78.00 (16.17) 77.10 (14.43)
SP3 2.35 (1.37) 1.36 (0.64) 265.9 (267.7) 23.35 (17.49)

CL1–3 3.78 (1.34) 3.00 (1.27) 4.01 (1.25) 3.60 (1.05)
SUS1 4.55 (1.46) 5.05 (1.66) 4.35 (1.53) 4.55 (1.50)
SE1 3.33 (1.46) 4.38 (2.03) 4.00 (1.89) 3.76 (1.75)

4.2.2 Subjective Experience. We analyzed the results for the Experi-
ence questionnaire (Table 2) with respect to cognitive load questions
CL1, CL2, and CL3, as well as ease of use question SUS1, and realism
question SE1. See Table 4.

To measure the cognitive load related to each error type, we com-
puted the mean value of CL1, CL2, and CL3. We found significant
differences between precision and accuracy,W = 126, Z = 3.01,
p = 0.003, between precision and latency,W = 124, Z = 2.9, p =
0.004, and between precision and dropout,W = 162, Z = 2.13, p =
0.03, indicating that the levels of precision error were less mentally
demanding. We did not find significant differences for the other
comparisons.

For SUS1, we did not find significant differences among the
different error types, with overall similar results indicated for ease
of use.

For SE1, looking at realism of gaze behavior, we found significant
differences between precision and accuracy,W = 13, Z = 2.99, p =
0.003, and a trend between accuracy and latency,W = 31, Z = 1.68,
p = 0.09.

4.2.3 Trust in Technology. The adapted Trust in Technology ques-
tionnaire (Table 3) was completed by participants at the end of the
experiment. We analyzed the results with respect to questions TT1,
TT2, and TT3 focused on participants’ perception of the shared
gaze interface and questions TT4 and TT5 measuring participants’
general view of technology. We calculated the mean values of the
questions in each group for TT1–3 (M = 4.78, SD = 1.09) and TT4–5
(M = 4.50, SD = 1.07).

We found a significant Pearson correlation between questions
focusing on the shared gaze interface and technology, r = 0.701,
p = 0.001. This suggests that participants who have a more trusting
outlook towards technology rated the shared gaze interface as better
even though 60 out of the 72 trials included some amount of error.

4.3 Qualitative Feedback
We conducted short interviews after the experiment to get a better
understanding of our participants’ impressions of the experience.
Most of our participants indicated some level of discomfort associ-
ated with wearing the HoloLens for the duration of the experiment.
Eleven of our participants reported experiencing slight or moder-
ate amounts of eye strain. Only two of our participants reported
experiencing slight amounts of headache or dizziness.

We asked our participants whether or not they observed differ-
ences in the gaze behavior of their simulated virtual partner within

each block and between any two blocks to gauge how perceptible
the simulated differences in error types were. Only three of our
participants mentioned that the gaze behaviors within each block
were similar and seemed to follow a consistent model. Apart from
one participant who mentioned that the gaze behavior seemed sim-
ilar comparing any two blocks, six participants noted that some
blocks had similarities with each other. Interestingly, one of our
participants mentioned the impact of the limited field of view of
the HoloLens and that they tried to compensate for it by leaning
slightly backwards while standing in place.

Some participants remarked on the fact that the gaze rays did not
terminate at the body of the target human, which would provide
useful depth cues for practical shared gaze environments. As dis-
cussed in Section 1, we expected this feedback, but such approaches
would require accurate real-time information about dynamic scene
geometry, which is highly challenging for practical applications,
and not considered in the scope of this paper.

Most participants further indicated that they made judgments
based on a visual comparison between the movement patterns of
the target humans and those of the gaze ray, and that it helped them
in completing the task. It would be more challenging to identify
a stationary target among a group of stationary objects. That is,
unless one’s simulated partner is moving as well, which could
provide similar cues as in this study, and would be interesting for
future research.

5 DISCUSSION
In this experiment, we observed different effects on participants’
performance for error types when error level and target distance
were varied. We also noticed the relatively high performance of
many of our participants even though the subjective estimates of
their performance were lower. Last but not least, we identified
subjective thresholds for tolerable error levels. In this section, we
discuss our findings and their implications for practitioners.

5.1 Effects of Error Type on Performance and
Subjective Response

To answer our initial research question RQ1, based on the differ-
ences in the nature of each error, we predicted that accuracy and
latency errors can impact participants’ performance more nega-
tively. Indeed, this can be observed in Figure 5. In the case of our
task, the temporal and spatial offset introduced through accuracy
and latency errors led to more misinterpretations than precision
and dropout errors. This offset posed a bigger potential for the
gaze ray to be on the wrong human for a longer duration of time,
causing temporary misinterpretations similar to Holmqvist et al.’s
example for accuracy errors [13]. This required participants to rely
more on the movement patterns of the human targets and spend
more time on target identification.

We observed that our participants subjectively assessed their
performance to be worse than their actual performance, supporting
our Hypothesis H4 and suggesting a response to part of our re-
search question RQ3, which is similar to Waltemate et al.’s findings
on how participants had a tendency to rather perceive themselves
as the cause of error in a visual movement task rather than an
introduced system error [31]. We also observed a lower score for
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cognitive load for precision compared to other error types, partly
supporting our Hypothesis H3b. Surprisingly, we did not find a
difference for SP1 (i.e., confidence in answers) and SUS1 (i.e., ease
of use), thus not supporting our Hypotheses H3a and H3c. We
think that the novelty of the interaction, some perceived similarity
among blocks, and participants’ generally lower self-assessment of
performance might have caused them to give similar confidence
scores for the different error types, although it is important to note
that for all error types the mean confidence was higher than 5 on a
scale of 1 to 7.

5.2 Effects of Error Level on Performance and
Subjective Error Estimation

We found multiple effects indicating a relative increase in response
time and a decrease in error rate for simulated error levels for
different error types, partly confirming our Hypothesis H1. To
answer our second research question RQ2, we collected subjective
estimates of what participants indicated as tolerable thresholds for
error levels. Their responses indicate that for our task, thresholds
of 2.35 deg for accuracy, 1.36 deg for precision, 265.9ms for latency,
and 23.35% for dropout were acceptable.

We compared these subjective thresholds to the objective per-
formance for accuracy and latency and found that they indeed
seem to be indicating an objective drop in performance, which is
supported by our statistical analysis. For less demanding situations,
we would go as far as to say that thresholds of 3.5 deg for accuracy
and 600ms for latency are acceptable before the performance drops
more drastically. Practitioners may select an appropriate level of
performance based on their constraints with respect to the temporal
demands and severity of errors of the task at hand, and invest in
corresponding eye trackers and network solutions.

In contrast, the subjective thresholds do not seem to match no-
ticeable changes in performance for precision and dropout. For
dropout, we observed most of the significant differences in per-
formance around the highest error value in the tested range (i.e.,
90% chance of frame drops). We did not observe a change in perfor-
mance for precision throughout the tested range, suggesting that
our tested values were not large enough to cause any disruptions
in our participants’ performance. We would like to point out that
we chose these ranges based on reported error levels in the litera-
ture and by eye tracker manufacturers (Section 3.2), and that it is
encouraging for shared gaze applications if these levels are already
tolerable.

5.3 Effects of Target Distance on Performance
In contrast to what we had hypothesized in H2, there were only a
few instances of error types and error levels where we observed a
significant decrease in performance for some target distances, and
this was not always for the farthest targets. Although there were
instances where we saw a significant decrease in performance as
the targets were further back such as for accuracy errors, we also
observed the opposite effect for some latency and dropout error
levels where the response time and error rate was higher for targets
at the close and medium distances. We think that this can partly
be explained by the limitations in the field of view of the HoloLens
HMD used for the experiment. It was more difficult for participants

to see the AR gaze ray and the human targets at a close distance
since they could easily move out of the augmented field of view.

5.4 Limitations
To fully control for behavioral factors among participants and the
trials, in this experiment we chose to use a simulated virtual human
partner. Although we did not measure for social presence and co-
presence among collaborators, we understand that the social impact
of the partner could have been different if a real person was chosen
instead or if the virtual human partner initiated a conversation with
the participants during the experiment. As a separate experiment,
it would be interesting to investigate how the different partners
(i.e., real or virtual) and level of interaction with that partner might
influence the overall collaborative experience although we expect
that the perception of gaze should remain the same for the different
partners.

Separately, we chose the same viewing direction for both the
participants and the simulated partner, who were standing at a rela-
tively close distance to each other (i.e., one meter). It is important to
note that the participants’ position relative to the virtual human col-
laborator, as well as the participants’ distances to the targets likely
have a significant impact on participants’ performance and their
overall experience. While not investigated here, future work should
evaluate the role that such factors play in remote collaboration
experiences.

6 CONCLUSION AND FUTUREWORK
In this paper, we investigated the effects of error type, error level,
and target distance in an AR shared gaze interface on participants’
objective performance and subjective responses through a con-
trolled human-subject study. We designed an experimental scenario
inspired by a practical use case of two police officers scanning a
crowd of people for a potential threat. In our study, participants
were asked to collaborate with a simulated virtual partner and lever-
age their AR gaze ray to identify a target human among a crowd.
We introduced different errors that could impact the data quality
presented to the participants either caused by an eye tracker or
the network used and measured participants’ performance through
their response time and error rate in identifying the targets and
assessed their subjective experience.

We identified thresholds for acceptable amounts of error. Our
findings suggest that eye tracker accuracy and network latency
experienced in current-state shared gaze setups have a noticeable
effect on users’ performance. In contrast, the tested common ranges
of errors for precision and lag were largely acceptable, indicating
that these are not a major performance concern for practitioners.
We further observed that the field of view of current-state ARHMDs
can affect participants’ performance with regards to different target
distances, and we plan to explore this factor in future work. We
also plan to investigate the impact of other visualization techniques,
with or without available dynamic scene geometry information, for
the gaze cues and how they compare to the gaze ray used in this
experiment.
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