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ABSTRACT 

In general, conventional computer vision techniques suffer from 

an inability to detect hidden surface contacts due to line-of-sight 

visibility problems. Rather than fitting models to scene objects 

and estimating inter-object gaps, our approach is to leverage the 

fact that light passing between and reflecting off the surfaces can 

offer valuable information as it alters the appearance of nearby 

surfaces. For a proof of concept demonstration, we employed a 

machine learning approach to classifying adjacent surface imagery 

to estimate hidden surface distances and contact locations in a 

controlled setting under ambient lighting conditions. Our proof-

of-concept results demonstrate relatively high accuracy for the 

estimation of gap size and the detection of contact between hidden 

surfaces. We envision such measures could someday provide 

complementary information to be combined with traditional 

visible-surface methods, to obtain more precise and robust 

estimates of hidden surface relationships.  
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1. INTRODUCTION 
We define contact detection as the process of determination that 

distance between two surfaces has effectively become zero. In 

many applications including user interface, safety and security 

systems it is crucial to detect physical contact between objects. In 

some applications it is feasible to instrument objects with 

electrical signals, to directly detect when the object comes in 

contact with the sensing area. Such interactive displays typically 

utilize capacitive, resistance, and surface wave sensors for touch 

sensing. Examples of applications include human-machine 

interfaces such as touch tablets, smart phones, and even car door 

lock systems [1]-[7]. Robotics and industrial automation are 

another application area where contact detection is a fundamental 

aspect of physical manipulations [8]-[11].  

However, in some applications it is not possible nor desirable to 

instrument the surfaces. In such cases contact detection can be 

thought of as a special case of gap estimation, where gap is 

defined as the distance between two surfaces of interest. One can 

continually sense and estimate the size of the gap between 

surfaces, e.g., using RGB or RGB-D (depth) sensors, and declare 

contact when the gap falls below a threshold. An accurate and 

robust method for the real time characterization of un-

instrumented surface relationships could someday enable a range 

of applications such as human-computer interaction in future 

workspaces, human-machine safety in industrial settings (e.g 

contact avoidance between moving robotic components or 

manufactured objects), and the detection of hidden breaches of 

sterile fields in medical procedures. In particular, undetected 

contact with a contaminated object during a sterile medical 

procedure can introduce a healthcare-associated infection (HAI).  

From consumer-level human-computer interaction to medical care, 

there exist a large number of circumstances where make robust, 

reliable, precise, and accurate assessments of the distances 

between the objects impractical or impossible.  

Gap estimation is difficult when the gap is not directly observable. 

Such conditions arise for example when there is no direct view of 

the object surfaces or the gap, or the views are occluded by 

objects in the scene, including the objects of interest themselves 

(self-occlusion). In situations where the relationship between the 

sensors and the gap of interest remains relatively constant, the 

sensors can likely be positioned to directly observe the gaps 

formed between surfaces. In such circumstances, an instantaneous 

discontinuity in color or depth in a gap region could indicate a 

new contact between the surfaces.  

Here we present the idea and some preliminary proof-of-concept 

results for a novel vision-based approach for relatively direct 

(non-inference based) measures of inter-surface distances and 

contact for surfaces that are hidden (e.g., occluded) with respect to 

conventional line-of-sight optical sensing. As opposed to directly 

observing or sensing the dynamic objects themselves, our idea is 

to look for evidence of the hidden surface relationships by 

observing the environmental effects of signals (e.g., ambient light) 

that propagate between and reflect off the hidden surfaces, spilling 

into observable areas of the environment. In some sense this is 

similar to the transit approach astronomers use to find planets 

because distant planets are not directly visible they look for 

evidence of the planet in the illumination patterns of nearby stars. 

We remark that recently Bouman et. al[12] leveraged the subtle 

spatio-temporal radiance variations that arise on the ground at the 

base of a wall’s edge to construct a one-dimensional video of the 

hidden scene behind the wall. More specifically they could 

identify the number and location of people in a hidden scene. 

They assume the observation plane(ground) is planar and 

Lambertian, the visible and hidden scene are modelled as light 
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emitted from a large celestial sphere, and the people in the hidden 

scene are modelled as cylinder.  

In our proof-of-concept experiments we use machine learning 

(SVM) to classify the visible environmental effects of these 

observable emerging light signals as a function of the physical gap 

size, one could estimate the gap size from such observations. Here 

we present the basic idea, specific methods, and results from 

controlled experiments. In the future we expect adjacent surface 

observations will offer complementary information that can be 

combined with other conventional methods to obtain more precise 

contact detection and gap estimation, in particular under 

conditions where gaps are not directly observable.  

The remainder of this article is organized as follows. We present 

an overview of the model representation in Section II. Our 

experimental results are described in Section III. Finally, we 

present some conclusions and future work in Section IV.  

2.  EXPERIMENTAL METHOD 
The purpose of this section is to demonstrate the effect of 

presence of and object on the adjacent surfaces. We use a regular 

camera to capture images from the scene, however, depth or touch 

information can not be obtained using a single camera. The key 

idea is that rather than relying on direct observations of an object, 

surface, or gap, we observe the visible surfaces adjacent to the 

object. In particular, as one object approaches another object, and 

the hidden gap shrinks or grows, the light scatter on the adjacent 

surfaces also changes. This change in the adjacent surface lighting 

can provide additional information about the geometric 

relationship between the two objects. By visualizing the 

information in the surroundings of the surfaces adjacent to the 

object of interest we illustrate how presence of the object in the 

scene can affect its surroundings. Figure 1 presents a conceptual 

illustration of the idea. 

 
Figure 1. Seeing around the object. 

2.1 Light Scatter Visualization 
To illustrate the effects of gap-induced illumination on the 

adjacent surfaces and provide some intuition for how 

measurement of the effect can contribute to the sensing of the gap, 

we set up a simple experiment. We illuminated a simple 

environment with a regular incandescent light bulb placed above a 

table and imaged the scene with a flat hand positioned at three 

different heights. As shown in Figure 2, light scattering off the 

underside of the hand is visible on the table and glass surfaces. 

Note that we subtracted a static background image from each 

dynamic image, according to the following equation:  

|I(x, y, h) − I(x, y)|, h = 0, 4, 8 

where I(x, y, h) and I(x, y) represent scene including hand at 

height h inches and scene without presence of hand, respectively. 

To offer a better sense of the hand’s position, we made sure the 

finger tips were visible in the images. We remark that for the 

purpose of a better visualization we applied a threshold to pixel 

values to remove noise, but we did not used thresholding to train 

the model. As shown in the images, as the gap shrinks the 

adjacent scattered light changes accordingly.  

 

(a) 

 

(b)   (c)  (d) 

Figure 2. (a) the environment without presence of hand. (b, c 

and d) The palm of the hand is placed at the height of 6, 3, and 

0 inches. 

2.2 Contact Detection and Gap Estimation 

Classification 
To exploit the adjacent light scatter phenomena, we form vision-

based measurements of the surrounding scene and train a support 

vector machine (SVM) using manually labelled images, to classify 

the conditions as corresponding to different gap sizes or contact 

conditions. SVM performs classification by finding the 

hyperplane that maximizes the margin between the two classes. 

The vectors that define the hyperplane are called support vectors. 

In other words, given labelled d-dimensional training data 

*          +  and     *    +  be the class label of   , The 

decision boundary should classify all points correctly s.t 

  ( 
     )         , and it can be found by solving the 

following constrained optimization problem:  

         
 

 
   

overall      and     subject to    ( 
     )         .  

The data preprocessing step consists of converting each image to 

grayscale, background subtraction, eliminating the fixed 

rectilinear region that contains the hand, then down sampling and 
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normalizing the imagery. We do not extract any sort of features 

from the images. We use the preprocessed images as direct input 

data to the SVM.  

3. PROOF-OF-CONCEPT EXPERIMENTS 
In this section we present quantitative results from three different 

experiments including (a) hidden contact detection, (b) estimation 

of the hidden gap between an object and a table, and (c) and 

hidden contact detection and localization. The experimental set up 

consists of a single ordinary camera placed next to a table, 

viewing a surface from a height of one meter above the table, and 

a regular incandescent light bulb placed near the table. To avoid 

utilizing the information about the object itself, in every image we 

mask out (remove) a fixed-dimension rectilinear region that would 

otherwise include the object. The result is a set of masked images 

that appear virtually identical—they contain the scattered adjacent 

lighting, but it is imperceptible. We use machine learning to 

extract the imperceptible adjacent light patterns from these 

masked images, and to classify the gap size and contact state of 

the hidden surfaces.  

3.1 Contact Detection 
The goal of this experiment is to develop a model to classify 

contact and none contact conditions. For this purpose, we set up a 

binary classification problem. We place an object at the height of 

6 inches from the table surface and while the object is moving up, 

down, left and right with different orientation we collect 60 

images by capturing one per second. The object is continuously 

approaching the surface until the distance between the object and 

surface reaches 2 inches. These are labelled as non-contact 

situations. For the contact conditions, while the object is moving 

around at the distance of less than 2 inches including touching the 

surface, 30 images are captured. The procedure is repeated for 

different hand shapes including, palm, fist, vertical palm, and 

vertical fist. As a result, the data set contains 360 images which 

240 images represent none contact and the remaining denote 

contact conditions. Figure 3 shows the fist and palm of the hand 

for both contact and none contact conditions. The translucent 

white region on the right in each image is intended to show the 

fixed-dimension region that was removed from the camera image 

before processing by the SVM, while also showing what was in 

that region before removal. In other word we hid the hand by 

completely omitting the right half of the training and test images.  

After training the model, 10-fold cross validation and f1-score 

were used to evaluate the model performance. The results are 

shown in table I where Label 0 and 1 represent contact and non-

contact events, respectively. Table I reveals that although the 

objects were completely removed from the images and different 

hand shapes were used in the experiment, the model could 

effectively classify contact versus non-contact conditions with the 

accuracy of almost 98 percent for each class. The obtained result 

is compelling and the accuracy as high as 98 percent demonstrates 

that our method provides precise information for the purpose of 

contact detection.  

Table I. The Mean and Standard Deviation(STD) of the 

classification accuracy for contact(0) and non-contact(1) 

situations. 

Contact/Non-Contact  Mean  STD  

0  97.99  0.02  

1 98.93 0.01 

 
(a)          (b) 

   
(c)         (d) 

 
(e)         (f) 

 
(g)         (h) 

Figure3: (a), (b), (c), and (d) represent non-contact situations, 

and (e), (f), (g), and (h) indicate contact situations for palm of 

the hand, fist, vertical palm, and vertical fist, respectively. The 

translucent white area indicates the portion removed from the 

images given to the SVM. 

3.2 Gap Estimation 
In this experiment we measure the distance between two surfaces 

of interest. We place an object at the height of 6 inches from the 

surface and capture 30 images while the object is moving to the 

left and right with different orientations. We repeat this procedure 

with two-inch reductions in the gap until the object reaches the 

surface. We also repeat this for different objects, including four 

different hand shapes. Our final data set contains 480 images, 

each labelled with the object distance to the surface.  

The results are shown in Table II. It turns out that the changes in 

the light scattering on the table surface accounts for the shrinking 

gap. This means that the light is dispersed on the adjacent surfaces 

to the object as it hits the object which causes subtle variations 

that can not be detected with the human eyes. However, SVM 

could successfully extract the subtle patterns in the scattered light 

and estimate the gap accordingly with the accuracy ranging from 
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95 to 98 percent. This high accuracy indicates our method 

performs well on the task of gap estimation.  

Table II. The Mean and Standard Deviation(STD) of the 

classification accuracy at different gap sizes. Labels 0, 1, 2, 3 

indicates gap sizes 0, 2, 4, and 6 inches, respectively. 

Labels  0  1 2 3 

Mean 96.93 98.32 96.96 95.18 

STD 0.02 0.01 0.02 0.02 

3.3 Contact Detection and Localization 
In this experiment we detect and localize contact. For this purpose, 

we drew a 6 × 6-inch square on the table surface and divide the 

square into nine equally-sized sub-squares containing the numbers 

1 through 9. For each sub square while the pointing finger is 

touching the surface and moving around, we capture 30 images. 

We repeat the same procedure for all the sub squares and label the 

images accordingly. Moreover, 60 images are captured as the 

fingertip is moving above the entire square at the height of 1 inch. 

As a consequence, we have a multi-class classification. The 

results shown in Table III demonstrate the effectiveness of our 

method in terms of both contact detection and localization. The 

experiment was performed on a laptop equipped with Intel 2.66 

GHz Core 2 Duo CPU and 4G of RAM, and took only 0.014 

seconds to classify an image, lending support for real-time on-line 

applications. Our method achieved a low standard deviation, and a 

high classification accuracy of roughly 98 percent for almost all 

classes.  

problem where labels 1–9 represent the contact zones and label 10 

indicates no-contact situations. Figure 4 shows two contact and 

one no-contact situations.  

 

(a)     (b)     (c) 

Figure 4: (a), (b) represent fingertip touching sub squares 

number 1 and 8, respectively. (c) denotes a non-contact 

situation. The translucent white area indicates the portion 

removed from the images given to the SVM. 

TABLE III: The mean and standard deviation (STD) 

classification accuracy for different contact zones (labels 1-9) 

and no-contact conditions (label 10). 

lab

els  
1  2  3  4  5  6  7  8  9  10  

Me

an  

98.

67  

98.

95  

98.

18  

98.

46  

98.

67  

98.

67  

92.

73  

98.

82  

87.

62  

99.

20  

ST

D  

0.0

3  

0.0

2  

0.0

3  

0.0

3  

0.0

3  

0.0

2  
0.1  

0.0

2  
0.1  

0.0

1  

4. Discussion and Future Work 
We have presented proof-of-concept experiments for a novel 

vision-based method for contact detection and gap estimation. 

Common approaches such as camera-based computer vision and 

acoustic ranging are thwarted by line-of-sight issues including 

partial and full occlusions of the surfaces of interest, often by the 

objects themselves (self-occlusion). Unlike the existing 

approaches we do not rely on models for the objects of interest. 

Instead we observe the surfaces adjacent to the object for evidence 

of the hidden surface relationships. Our proof-of-concept 

experiment employed a single commercial off-the-shelf web 

camera and machine learning methods to detect subtle patterns in 

the light scattering on the adjacent surfaces. The results 

demonstrate the potential of our approach, encouraging further 

investigation and consideration of possible uses in a variety of 

applications.  

One of the primary challenges in our method is that while the light 

signals could provide useful information about a gap, they will 

also be affected by other scene geometry and objects—any 

changes in lightning or other geometry could affect the SNR. In 

the future we aim to overcome the limitations and further explore 

solutions for conditions where the camera view and light source 

are not static. For example, a similar approach to [13] can be used 

to make the method robust in dynamic scenes. They used a 

standard 2D camera, and a laser pointer to detect motion and track 

a moving object hidden around a corner or behind a wall even in 

unknown rooms. Indeed, to obtain a measured image containing 

only light from the laser, they took the difference of images 

captured with and without laser illumination. Additionally, they 

subtracted a measurement image containing light reflected by the 

background that was smooth and well approximated by a linear 

function.  

Furthermore, we aim to identify methods for possibly increasing 

the signal-to-noise ratio (SNR) and create additive or destructive 

patterns by combining two or more sources of propagating signals 

including time division, color/spectral multiplexing, and pseudo-

random spread spectrum approaches.  

In addition, the other approach we will take is to train the system 

with massive amount of data to facilitate more advanced methods 

(e.g., deep learning). To generate desired amount of data we will 

leverage the precise continuous measurement systems including 

magnetic or optical sensors on the objects with models of the 

objects and configures the space with precision imagery of the 

gaps. Similar to the light signals, it is possible the spectral 

properties of audio passing through hidden gaps will depend on 

the surface and other nearby materials. Therefore, as an alternative 

to light signals it is promising to leverage pseudo-random signals 

with relatively wide band spectral characteristics [14] and to learn 

the spectral profiles that correspond to various gap sizes, in effect 

measuring the dynamic acoustic impulse response function 

associated with the surfaces. However, in this case, another 

challenge arises from poor source and sensor choices and/or 

positions that should be taken into consideration.  

In general, we consider our approach as a complement to visible 

surface approaches to provide more precise and robust estimates 

of hidden geometric relationships  
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