Student Nursing Assessment of Discrete Neurology Symptoms using an Interactive Physical Virtual Head

Laura Gonzalez PhD, ARNP, CNE, CHSE
Salam Daher
Greg Welch PhD
Jason Hochreiter

June 15-18, 2016

Gaylord Texan Resort Grapevine, TX

ANCC

Continuing Nursing Education

INACSL is an accredited ANCC provider.

DISCLOSURES

- Conflict of Interest
 - Laura Gonzalez VP of Programs, INACSL, reports no conflict of interest
 - —Greg Welch- Supported in part by the Office of Naval Research, ONR Award# Nooo14-14-1-0248 (Dr. Peter Squire, PM).
 - -Salam Daher- reports no conflict of interest
 - -Jason Hochreiter- Reports no conflict of interest

DISCLOSURES

- –Julia Greenawalt (INACSL Conference Administrator & Nurse Planner) reports no conflict of interest
- Leann Horsley (INACSL Lead Nurse Planner) reports no conflict of interest
- Successful Completion
 - -Attend 90% of session
 - -Complete online evaluation

OBJECTIVES

- Upon completion of this presentation, participants will be able to:
- 1. Understand Physical-Virtual simulation
- Appreciate instances where PVS is useful for detecting subtle physical changes
- 3. Explore potential strategies and implications for this technology

Background

 Healthcare educators typically rely on role players and physical mannequins (e.g., Meti-Man, SimMan₃G) for education and simulation.

Background

- Role players and mannequins can be very powerful, but they cannot display neurologic symptomatology such as facial asymmetry, muscle coordination and lid lag.
- Some options (* hybrids) include videos of real (stroke) patients next to a mannequin, and found this technique increased learner self-confidence.

Background

 Researchers at IST/CS developed the physicalvirtual head, a system that integrates interactive virtual (computer graphics) imagery and audio of patients into a touch sensitive head-shaped physical object

Physical Virtual Head aka Vera Real

Aim

- Short term: Elicit feedback from nursing students on the technology.
- Long term: Compare nurses' ability to assess neurologic symptomatology when interacting with a physical-virtual head with automatic touch sensing (PVHT) vs. a mannequin with nearby virtual imagery on a flat screen.

Presence

 One of the goals of the study is to explore the concept of "presence which is defined as a psychological state characterized by one self to be enveloped by, included in and interacting with an environment"

Witmer & Singer

Student Engagement

Touch points

- 9 students from health assessment fall 2015 engaged with technology during neurology assessment class (sem 1)
- 5 students from MS1 (sem 2)
- 9 students from MS2 experienced both conditions (sem 3)

Physical Virtual Head

Methodology

Second phase:

 Between-subjects pilot experiment involving midlevel nursing students that were randomly assigned to the mannequin with nearby virtual imagery on a flat screen (MV) condition or the physical-virtual head with automatic touch sensing (PVHT) condition.

Methodology

Before Experiment

Each subject was:

Asked about their previous experience and expectations regarding virtual humans' realism

Exposed to a brief introduction of the capabilities of MV/PVHT simulator

Not told about the patients 'condition.

During Experiment

- Each subject was:
 - Presented with the same scenario presenting neurologic symptomatology and acted out by virtual imagery shown either on a nearby flat display (MV) or integrated into the head (PVHT)
 - Subjects were recorded and observed for recognition of facial asymmetry, response to touch, diagnostic questions asked, and speech evaluation.

After the Experiment

- Each subject was:
 - Asked Questions regarding their experience, interaction, perception of realism, and expectations.

- In general students liked the realism and interaction ability, "as if she were a real person"
- Agreement that this was useful for teaching sessions.
- Facial expressions were much more realistic than previous simulators and the voice matched the clinical presentation.

- "Facial expressions are so important when putting together the whole clinical picture" making sure the verbal and non-verbal cues lined up to provide accurate care.
- "It is easier to work with and much more realistic than any of the [other] mannequins".

- When asked what would you have done differently if that was a real patient, one subject said "nothing" while another said that she would have called the physician more quickly,
- other subjects said they would have done more tests on the rest of the body.

 Lastly, students expressed that it would be much more beneficial if the PVHead could be a whole body system since most conditions are rarely isolated to the head

Findings (MV)

- Nurses thought that the addition of the "TV" was a "great bonus" and that would be very helpful.
- The subjects indicated that the face on the monitor and its ability to express right-sided sagging, non-reactivity of the right pupil, the inability of the right eyebrow to raise, and the right side of the face to smile were all very realistic.

Findings (MV)

- The patient was perceived as responding in a timely manner, but not communicating freely
- When asked what would you have done differently if that was a real patient, most of the subjects mentioned they would have called a doctor or a charge nurse for a real patient.
- One subject reasoned that because it was a simulated patient she perceived the condition as not urgent.

Next steps

- To explore the concept of presence and copresence. At this time there is not enough data to tease out whether one modality was better than the other
- Continue to work with CS/IST to modify and identify ways to bring into classroom

REFERENCES

- Garside, M. J.; Rudd, M. P. & Price, C. I. Stroke and TIA assessment training: a new simulationbased approach to teaching acute stroke assessment. Simulation In Healthcare: Journal Of The Society For Simulation In Healthcare 2012; 7: 117 - 122
- Hochreiter J, Daher S, Nagendran A, Gonzalez L, Welch G. Touch sensing on non-parametric rear-projection surfaces: A physical-virtual head for hands-on healthcare training. *Proceedings of IEEE Virtual Reality* 2015; 69–74.

ACKNOWLEDGMENTS

- Barbara Lee, Myungho Lee, Kangsoo Kim, and Ryan Schubert for help running the study.
- Eric Imperiale for the virtual patient computer graphics model
- Katie Ingraham for the patient's voice

Stands For Opportunity