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Abstract
Hua Yang: Differential Tracking through Sampling and Linearizing the

Local Appearance Manifold.
(Under the direction of Greg Welch.)

Recovering motion information from input camera image sequences is a classic problem of

computer vision. Conventional approaches estimate motion from either dense optical flow or

sparse feature correspondences identified across successive image frames. Among other things,

performance depends on the accuracy of the feature detection, which can be problematic in

scenes that exhibit view-dependent geometric or photometric behaviors such as occlusion, semi-

transparancy, specularity and curved reflections. Beyond feature measurements, researchers

have also developed approaches that directly utilize appearance (intensity) measurements.

Such appearance-based approaches eliminate the need for feature extraction and avoid the

difficulty of identifying correspondences. However the simplicity of on-line processing of im-

age features is usually traded for complexity in off-line modeling of the appearance function.

Because the appearance function is typically very nonlinear, learning it usually requires an

impractically large number of training samples.

I will present a novel appearance-based framework that can be used to estimate rigid

motion in a manner that is computationally simple and does not require global modeling of

the appearance function. The basic idea is as follows. An n-pixel image can be considered

as a point in an n-dimensional appearance space. When an object in the scene or the camera

moves, the image point moves along a low-dimensional appearance manifold. While globally

nonlinear, the appearance manifold can be locally linearized using a small number of nearby

image samples. This linear approximation of the local appearance manifold defines a mapping

between the images and the underlying motion parameters, allowing the motion estimation to

be formulated as solving a linear system.

I will address three key issues related to motion estimation: how to acquire local appearance

samples, how to derive a local linear approximation given appearance samples, and whether the

linear approximation is sufficiently close to the real local appearance manifold. In addition I
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will present a novel approach to motion segmentation that utilizes the same appearance-based

framework to classify individual image pixels into groups associated with different underlying

rigid motions.
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Chapter 1

Introduction

1.1 Motion estimation

Images from cameras, or more generally measurements from visual sensors, carry a

variety of information about the real world. The goal of computer vision is to develop

theories and techniques to extract information from these visual inputs. This thesis

concerns the recovery of motion information from image sequences, a classic computer

vision problem known as motion estimation or tracking.

In computer vision, the kinematics of an object or a camera are usually represented as

a state vector. As the object or the camera moves, the parameters of the kinematic vector

change respectively. Tracking or motion estimation is then the process of analyzing

the observed image sequence to compute the change of the target state vector from

the reference frame to current frame. In practice, a motion estimation system usually

employs a motion model to describe how the image should change with respect to the

possible motions of the target. For instance, when the target object is planar or its

motion is mostly restricted within a plane, a 2D motion model is usually used to compute

an affine transformation or a homography. For a 3D rigid object or a camera, its

kinematics can be represented as a 6D pose vector (3D orientation and 3D position)

and the motion estimation is defined as the process of recovering the change of the



pose parameters. In more complicated cases, an articulated or deformable object can

be represented as connected parts or meshes, and its motion is defined by the changes

of the poses of the parts or the positions of the nodes. The discussion in this thesis

will be focused on the recovery of 3D rigid motion. Throughout the thesis, the words

motion estimation and tracking will refer to the process of estimating the change of pose

parameters of cameras and objects.

1.2 Tracking as solving a reverse mapping

An image is a projection of a 3D scene onto a 2D plane, it is a function of the scene and

its 3D pose with respect to the camera. As an object and/or the camera move (change

their poses), the image changes over time. We can see that there exist two mappings:

one relates the image to the pose, the other relates the change of the image to the motion

(see Figure 1.1). If we consider the imaging process as a forward mapping from the pose

to the image, tracking can be viewed as the process of solving one of the above two

reverse mappings. Specifically, we can extract the difference between current image and

the reference image, then map it to the target motion. Or if a global mapping between

the image and the pose is feasible, we can estimate poses from images and subtract them

to acquire the motion.

Figure 1.1 shows that motion estimation can be formulated as establishing a 2D-

to-3D (images to poses or image differences to motions) mapping. Since the image is

determined by both the scene and the pose, computing the reverse mapping requires

decoupling the scene from the forward imaging function. The decoupling can be achieved

by acquiring some invariant representation or model of the scene.

A scene model can be an explicit one that is given as a prior. In the context of

model-based tracking, an offline model is usually used to provide a geometric and/or

photometric representation of the scene. This offline model can be exact or generic.
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Figure 1.1: Motion estimation as solving a reverse mapping. The imaging process can
be considered as a forward mapping from the pose to the image. Motion estimation can
be solved by finding a reverse mapping. The top and bottom dashed lines represent the
mapping between the image and pose. The middle dashed line indicates the mapping
between the change of the image and the change of the pose. Since an image is a function
of both the scene and the pose, the image and the pose or the image difference and the
motion are related using a scene model.

It can be as simple as a collection of 3D artificial markers or, in a more complicated

form, a graphics model with surface geometry and texture. While the models can come

in different forms, they are usually target specific. So to track motions in a scene of

moderate complexity, one usually needs to build a large number of object models, a task

that is usually tedious if not infeasible. Thus model-based tracking methods are usually

limited to handle individual objects in a constrained environment.

A scene model can also be implicit, computed online. For instance, the 3D struc-

ture of a rigid scene can be recovered simultaneously during tracking using the so-called

Structure from Motion (SFM) approach. The basic idea is that, under certain cam-

era projection model, the relative motion between the scene and the camera, and the

positions of the 3D scene points, are constrained by the 2D correspondences of the

projected scene points across multiple views. When correspondences are identified cor-

rectly and the rigidity of the scene holds, the motion and the 3D scene model can be

recovered. However, the real world can be complicated. Some common phenomenons

3



like occlusion, semi-transparency and specularity challenge the point matching process.

Moreover, SFM methods assumes rigidity of the 3D scene. This assumption can be

violated in effect when the scene is observed through reflection or refraction of a curved

surface.

The mapping between images and poses can also be learned from training data.

Learning based tracking methods usually consist of two stages: the off line learning

stage and the on line tracking stage. During the training stage, sample images taken

at known poses are used to learn a parametric representation of the scene. Tracking is

then formulated as the process of searching in this parametric space. The advantage of

learning based approaches is that once a global scene model is learned the online tracking

can be achieved very efficiently. However, the mapping between the image measurements

and the pose parameters is usually highly nonlinear. A global learning process usually

requires a large number of training samples, all taken at known poses. This labor

intensive process greatly reduces the practical usage of learning based approaches.

In summary, motion estimation has been actively studied and various approaches

have been developed. The state of the art algorithms have been successfully applied

to real image sequences. However, motion estimation in a complex environment is still

a challenging problem. The real world often exhibits complicated geometric or photo-

metric behaviors such as occlusion, semitransparancy, specularity and curved reflections.

Existing methods usually fail in such cases due to one or more of the following difficulties:

• modeling the sophisticated geometric and photometric behaviors,

• identify 2D correspondences when the scene appearance is view-dependent, and

• acquiring enough training samples to learn a global scene model.

In this thesis, I will introduce a motion estimation approach that addresses the challeng-

ing problem of tracking in scenes with complicated geometric and photometric behav-

iors. This novel framework is based on sampling and linearizing the local appearance

manifold.
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1.3 Tracking through sampling and linearizing the

local appearance manifold

A 2D image can be considered as a point in a high dimensional appearance space (see

Chapter 3). When an object in the scene or the camera moves, the image point moves

along a certain manifold called the appearance manifold. We can see that there exists

a mapping from the pose space to the appearance manifold. Moreover, for a non-

degenerate scene, this mapping is invertible and tracking can be archived by learning

the appearance manifold. An ideal solution is to learn it globally. However, this is

usually impractical. The appearance manifold is typically highly nonlinear, and a global

learning process usually requires numerous training samples. In fact, a global learning

process is not necessary. Depending on the frame rate, the motion between two frames

is usually restricted within a certain region. Therefore a local representation of the

appearance manifold can be enough for tracking incremental motion. As discussed

earlier, an appearance manifold is defined by its underlying motion. Since motion lies in

a low dimensional space, the dimensionality of the appearance manifold is low. Therefore

it should be possible to compute a linearization of the local appearance manifold with

a small number of local image samples.

Based on the above observations, I present a framework that tracks incremental 3D

rigid motion by sampling and linearizing the local appearance manifold. Local appear-

ance samples are acquired using a camera cluster at run time. Using these samples,

a linear approximation of the local appearance manifold is computed. Motion estima-

tion is then achieved by solving a linear system. This method does not require any

prior scene model or off line training process. It does not assume any 3D or 2D corre-

spondence, thus can accommodate scenes with view-dependent appearance changes. As

far as I know, this is the first motion estimation approach that addresses challenging

scenes that exhibit complicated behaviors like semitransparancy, specularity and curved
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reflections.

1.4 Thesis statement and main contributions

Thesis Statement

A 2D image can be considered as a point in a high dimensional appearance

space. When the camera or a rigid object in the scene moves, the image point moves

along a 6D appearance manifold. While globally nonlinear, the appearance manifold

can be locally linearized using a set of 7 neighboring image samples. Such a local

linearization of the appearance manifold can be used for 3D motion segmentation

and tracking.

The main contributions of this thesis work can be summarized as follows:

I A novel appearance based differential framework for tracking 3D rigid

motion. The local appearance manifold is linearized using a small number of

image samples captured by a camera cluster. Tracking is effectively achieved by

solving a linear system. This approach does not require any offline scene model

or training images; nor does it assume any 3D or 2D correspondence. To my

knowledge, it is the first method that accommodates scenes with view-dependent

appearance changes. This framework can be integrated into a model-based frame-

work. When a prior graphics model is provided, the local samples can be acquired

through graphical rendering.

II A spectral analysis of the linearization of a local appearance manifold.

Any linearization of a non-linear function can only be considered valid within a

local region. To quantitatively determine the size of the local region, I formulate

the linearization as the process of sampling and reconstructing the appearance sig-

nal. The Fourier analysis shows that to avoid aliasing, the image motion between

appearance samples should be within one pixel. This analysis can be applied to

6



other approaches that assume local linearization, for instance, optical flow.

III A pure appearance based approach to dense motion segmentation. This

approach is also based on a local linearization of the appearance function. The

change of the intensity of a pixel can be considered as a linear function of the

motion of the corresponding imaged surface. When a sequence of local image

samples are captured, the intensity changes of a particular pixel over the sequence

form a vector called intensity trajectory. The intensity trajectories of pixels corre-

sponding to the same motion span a linear subspace. Thus the problem of motion

segmentation can be cast as that of clustering local subspaces.

1.5 Thesis outline

The thesis is organized as follows. A review of various approaches to motion estimation

is given in Chapter 2. Depending on their input measurements, motion estimation

methods are categorized into three classes: feature-based, flow-based and appearance-

based. Chapter 3 presents the novel framework of appearance-based differential tracking.

The algorithm of tracking by sampling and linearizing the local appearance manifold

will be introduced. Chapter 4 describes the techniques for acquiring local appearance

samples. Chapter 5 presents a spectral analysis that justifies the linearization of the local

appearance manifold from a signal process point of view. In Chapter 6, the locally linear

appearance model is applied to solve the problem of motion segmentation. Experiment

results on these new appearance-based approaches to tracking and motion segmentation

are demonstrated in Chapter 7. Finally, Chapter 8 concludes this thesis and discusses

the directions for future work.
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Chapter 2

Related work

Motion estimation systems take an input image sequence and output motion parameters

of some target objects, or the camera. As described in Chapter 1, this process can be

formulated as solving a reverse mapping. An image I is a function F of the scene M

and its pose S with respect to the camera.

I = F (S, M) (2.1)

Motion can be recovered by computing one of the two reverse mappings F−1 : from the

image I to the pose P (then subtract reference pose to current pose to get motion), or

from the change of the image dI to the motion dS. 1.

S = F−1(I, M) (2.2)

dS = F−1(dI, M) (2.3)

In the above equations, I and dI are conceptually described as image and change

in image. To quantitatively solve the problem, motion estimation systems extract a set

of measurements from input images and describe I and dI using these measurements.

1Note that the two functions in (2.2) and (2.3) are usually different. Here I denote both of them as
F−1 to indicate that motion estimation is a reverse process.



Image measurements can simply be pixel intensities or some high-level descriptors or

features computed from basic intensity values. The above equations also show that to

directly relate I to S or dI to dS, the scene M needs to be decoupled. Motion estimation

algorithms achieve this by acquiring some invariant representation or model of the scene.

A scene model can be an explicit one provided as a prior, or an implicit one acquired

during tracking.

This chapter will start with a brief survey of image measurements. Based on their

input image measurements, motion estimation algorithms will be categorized into three

classes: feature-based, flow-based and appearance-based. Popular methods in each of

these three classes will be reviewed. Different approaches to scene modeling will be

introduced. Finally, to conclude this chapter, a general discussion on existing motion

estimation techniques will be presented.

2.1 Image measurements

Vision-based motion estimation methods usually start by extracting measurements from

input images. Different types of image measurements have been used. Some of them

are low-level measurements that can be directly acquired from images. The most basic

image measurements are pixel intensities and intensity derivatives.

Intensity or color. The intensity or color of an image pixel is determined by the

illumination and the albedo of the corresponding surface patch. In the color represen-

tation, a variety of color spaces are used. The commonly used ones include RGB, HSV,

Luv and Lab. Among all the image measurements, intensity and color are the simplest.

However, they are sensitive to motion-dependent illumination variations hence their us-

age is usually prohibited in scenarios where the motion-dependent illumination effects

are non-neglectable.

Intensity derivative. The derivative of a pixel intensity indicates the smoothness
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of the observed image at that pixel. Compared with the original intensity measure-

ments, intensity derivatives are more sensitive to imaging noise. This noise issue gets

exaggerated for high order derivatives. In practice, only the first and the second or-

der derivatives are used, and they are usually used as intermediate measurements for

computing some high-level measurements like textures or optical flow.

The intensity and intensity derivative measurements have the advantage that they

can be acquired with minimal computation power. However, being the simplest mea-

surements, they are in general not very descriptive to the uniqueness of the scene. To

achieve a better representation of the scene, motion estimation system usually employ

further processing of the basic image measurements to form high-level descriptors or

features. A list of commonly used high-level descriptors are presented as follows.

Intensity statistics. The probability density of the pixel intensities inside an im-

age region provides a unique description of the appearance of the object corresponding

to that region. The intensity statistics can be parametric such as a Gaussian Mixture

(RMG98), or nonparametric such as color histogram (HVM98). Like the original inten-

sity measurements, intensity statistics are usually sensitive to illumination changes.

Texture. As an image measurement, texture is usually defined as the variation

pattern of pixel intensities within a processed image window. Texture measurement

can be used to quantify the smoothness and regularity of the imaged surface. The

difference between a texture and an intensity statistic is that the latter only represents

color information while the former also records structure information. Some example

texture descriptors are wavelets (LK89) and steerable pyramids (GBG+94). Compared

with pixel intensity or color, texture measurements are usually considered less sensitive

to illumination changes.

Interest point. Interest point features are the most widely used image features

in the area of tracking. Popular point feature detecting algorithms include the Harris

corner detector (HS88), the KLT feature detector (TK91) (ST94), and the SIFT feature
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detector (Low04). An overview of the state of the art in feature extractors is given by

Mikolajczyk and Schmid (MS05). In general, point features extracted by these algo-

rithms are invariant to smooth illumination changes. As a comparison, Harris features

and KLT features are invariant to translation, rotation and uniform scaling in the spatial

domain, but are not invariant to affine and projective projections. SIFT features are

more robust to different transformations, but the SIFT detector is also relatively slow

for real time tracking.

Edge. Edges correspond to discontinuities in image intensities. Possible causes of

edges include discontinuities in depth, discontinuities in surface normals, and changes

in material properties. An edge can be detected using an edge detector, which usu-

ally uses intensity derivatives. One of the most efficient and popular edge detectors is

Canny (Can86). A review of edge detecting techniques can be found in (ZT98). Edge

features are usually insensitive to illumination changes. However, edge features can

cause difficulties for tracking in an image sequence where the viewpoint changes. This

is because the occlusion relationship are view-dependent. Hence, edges caused by depth

discontinuities may change substantially when the viewpoint changes.

Optical flow. Optical flow refers to the dense 2D displacement field that indicates

the pixel motion on the image plane. For each pixel, its flow is the 2D projection of the

3D motion of its corresponding 3D scene point. The flow field is usually computed under

the brightness constancy assumption. Popular optical flow techniques include differential

methods by Lucas and Kanade (LK81) and Horn and Schunk (HS81), region-based

matching by Anandan (Ana89) and phase-based correlation by Fleet and Jepson (FJ90).

The readers are referred to the survey by Barron et al. (BFB94) for an evaluation of

optical flow methods. Optical flow is a commonly used image measurement for recovering

motion and scene geometry. However, like pixel intensities, optical flow measurements

are sensitive to illumination changes. Moreover, since optical flow is usually computed

across a local region, the flow estimates are noisy at occlusion boundaries.
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So far, I have introduced a list of popular classes of image measurements. Among

them, interest point and edge features represent the 2D projections of 3D geometric

primitives. As they describe the structure and shape of the underlying 3D scene, I cate-

gorize them as geometric features. Similarly, I categorize intensity, intensity statistics

and texture as appearance measurements, since they describe the appearance of the

scene. The optical flow measurement is unique in that it directly encodes motion in-

formation. So I separate it from the other image measurements and classify it as flow

measurements.

In accordance with the three classes of input measurements, I categorize motion

estimation methods into: feature-based, flow-based and appearance-based. In the

remainder of this chapter, I will discuss each of them in details.

2.2 Feature-based motion estimation

In a feature-based framework, the scene is represented as a collection of 3D geometric

entities whose projections are observed in images as 2D features. Feature-based motion

estimation systems use the positions of these 2D features to compute the change of the

relative pose between the camera and the scene. To relate the 2D feature positions with

the 3D pose parameters, they usually assume some knowledge about the scene structure,

or more precisely, the 3D shapes and positions of the geometric entities. Such a scene

structure can be provided explicitly as a prior model or be recovered simultaneously

during tracking.

2.2.1 Model-based approaches

Most model-based approaches assume an explicit model that defines the 3D shapes and

positions of a set of geometric entities of the scene in some global coordinate system.

During tracking, the projections of these entities are identified and matched in the im-
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age. Motion estimation is then formulated as the single-view 3D-to-2D pose estimation

problem. The relative pose between the camera and the scene at each frame can be

estimated by computing the projective transformation that best maps the model from

its own 3D coordinate system to its current 2D image observations. Motion can then

be acquired by subtracting pose estimates.

One way of acquiring a scene model is by adding fiducials or markers into the scene.

Some commonly used fiducials include color-coded rings (SHC+96; CN98) and Light-

emitting Diodes (LEDs) (WBV+01; BN95). In general, fiducials are some artificial

markers whose 3D positions in the world coordinates are precisely measured by some

offline process. These markers are designed such that they can be detected easily in

the images and their image locations can be measured to a high accuracy. Therefore,

fiducials provide easily detectable and accurate 3D-to-2D point correspondences. These

correspondences can then be used to compute poses and motions in a relatively reliable

and accurate manner. Due to such advantages, fiducial-based techniques have been

widely used in Virtual Reality and Augmented Reality.

Fiducial-based techniques require instrumenting the scene. This task can be tedious

or even impractical, especially for outdoor environments. Therefore, it is usually more

convenient to rely on natural features present in the environment. While in theory any

image feature that is detectable and measurable can be used, most practical motion esti-

mation systems employ linear primitives such as interest points (Alt92; GRS+02; VLF04)

or lines (Low87; Low92; NF93; Jur99; CMC03) or both (LHF90; HN96). There are two

major reasons for the popularity of point or edge based methods. First, methods using

simple linear primitives are computationally efficient and relatively easy to implement.

Moreover, interest point and edge features are usually insensitive to illumination vari-

ances. To establish 3D-to-2D correspondences, the 3D positions of the points and lines

need to be provided. This 3D information can be in the form of an off line CAD model

built by commercial products, or can be acquired by triangulation of several key frames
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with known poses during the initialization process. The fitting of higher order prim-

itive models to their 2D projections have also been explored. For instance, quadratic

primitives have been used in (Wei93; FPF99). In comparison with linear primitives,

quadratic primitives provide more geometric constraints about the viewing parameters.

However they are usually difficult to identify and extract from images in an accurate

and reliable manner.

Fiducials and natural features can be used in a complementary way. An example was

given in an early work of Bishop (Bis84). Noticing the task of motion estimation can be

simplified by accelerating the imaging-processing-imaging circle 2, Bishop designed and

fabricated a self-tracking system using multiple out-viewing VLSI chips that performed

both imaging and processing. This integrated system used the natural features to esti-

mate incremental motion at a very high framerate. Fiducials were used to address the

drifting of the pose estimated by integrating the motion.

Estimating pose parameters

The viewing parameters can be computed from the correspondence between a set of

geometric entities with known 3D positions and their 2D projections. This so-called 3D-

to-2D pose estimation problem is one of the oldest problem of computer vision. Usually

the pose parameters are estimated by maximizing an objective function that quantifies

the 3D-to-2D alignment. Due to the large number of proposed algorithms, a complete

survey of pose estimation is beyond the scope of this dissertation. Readers can refer

to (LF05) and Chapter 20 of (Se07) for detailed reviews. Here, I will briefly introduce

several of the most popular point-based approaches. The problem is formulated as:

given correspondences between a set of n 3D points Mi = [Xi Yi Zi]
T and their 2D

projections mi = [xi yi]
T , compute the projection matrix P that best maps Mi to mi.

2Shorter imaging time results in a higher framerate, which results in a smaller motion, which results
in simpler estimation problem, which results in shorter processing time, which in turn results in a
possibly even higher framerate and shorter imaging time.
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Direct Linear Transformation (DLT) . As shown in (2.4), each correspondence

between Mi and mi defines two equations on the elements of P . Based on this ob-

servation, DLT algorithms such as (Sut74; Gan84) solve the 11 entries of the camera

projection matrix from at least six corresponding points.

xi = (P11Xi + P12Yi + P13Zi + P14)/(P31Xi + P32Yi + P33Zi + P34)

yi = (P21Xi + P22Yi + P23Zi + P24)/(P31Xi + P32Yi + P33Zi + P34)
(2.4)

DLT is usually used as a camera calibration technique that determines both the pose

and the camera intrinsic parameters up to a scale. This over-parameterization usually

introduces instability and requires more correspondences for the purpose of pose esti-

mation. In this case, it is usually preferable to estimate the camera intrinsic parameters

separately.

Perspective-n-Point (PnP) . When camera intrinsic parameters are known, cor-

respondences of 3 points can be used to estimate pose parameters with up to 4 solutions.

Additional point correspondences are required to guarantee a unique solution. (FB87)

shows that the solution is unique for 4 points on a plane or 6 points in general positions.

Depending on the number of points used, the problem is known as P3P, P4P or in the

general form PnP. Different approaches to PnP have been proposed (HLON91; QL99).

They usually employ the constraints defined by the triangle equations shown in (2.5).

d2
ij = d2

i + d2
j − 2didj cos θij

cos θij = (mT
i Qmi)/((m

T
i Qmi)

1
2 (mT

j Qmj)
1
2 )

(2.5)

Here dij = ‖Mi −Mj‖, di = ‖Mi − C‖ and dj = ‖Mj − C‖ respectively represent the

distances between the reference points Mi, Mj and the camera center C. θij is the angle

between the viewing lines CMi and CMj. For known camera intrinsic matrix K, the

directions of CMi and CMj can be written as K−1mi and K−1mi. cos θij can the be

computed using the image projections mi, mj and matrix Q = (KKT )−1.
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Gold Standard method. DLT and PnP algorithms are fast and can be solved

in closed form. However, they achieve pose estimation by minimizing algebraic error

that has no direct geometric meanings, thus are usually sensitive to measurement noise.

When the error of image measurements mi are independent and Gaussian, the optimal

pose estimate can be computed by minimizing the sum of the reprojection errors in

(2.6). This nonlinear optimization is typically solved in a iterative form. The initial

pose estimate is usually provided by one of the DLT or PnP algorithms.

[R, T ] = argmin
(R,T )

∑
i

‖PMi −mi‖2 (2.6)

2.2.2 Structure from motion approaches

So far, we have assumed that the 3D structure of the scene is provided in terms of

a prior model. For a rigid scene, its structure can also be acquired simultaneously

during tracking. This problem is referred to as SFM in computer vision. Given a set of

images of a rigid scene taken from different perspectives, SFM algorithms recover the

3D scene structure along with the camera motion across the image sequence. Depending

on the input image measurements, SFM methods can be categorized into feature-based

and flow-based. In this section, I will discuss the feature-based SFM. The flow-based

approaches will be introduced in the next section.

Feature-based SFM considers a set of 3D features undergoing rigid motion with

respect to the camera. Given the correspondences of 2D projections of the features

across multiple perspectives, SFM systems estimate the positions of the features and

the relative motion between the views, using the so-called epipolar geometry constraint.

Commonly used features include interest points and line segments. Methods using the

two classes of features are comparable in computational complexity. The former is the

choice for most state of the art SFM systems as the real world usually consists of a

cluttered background that causes difficulty when extracting and matching line features.
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Our discussion here will focus on point-based methods. Some line-based examples can

be found in (TK95; ZF92). For a comprehensive introduction to both classes, interested

readers are referred to the multi-view geometry books by Hartley and Zisserman (HZ00)

and Faugeras and Long (FL01).

The projections of a 3D point in a rigid scene into two views are related by the

epipolar geometry constraint, which can be linearly formulated as:

m1
T Fm2 = 0 (2.7)

Here m1 and m2 are the image coordinates of the 2D projections of the same 3D point

M observed in two views. The 3×3 singular matrix F is called the fundamental matrix.

Given the camera intrinsic matrix K, F can be used to compute the essential matrix E:

E = KT FK (2.8)

The estimation of the essential matrix E is the key to SFM algorithms. Once estimated,

E can be factorized to acquire the relative motion (the rotation and translation) between

the two views. The 3D position M can then be easily acquired by triangulation. Note

that the linear constraint in (2.7) is only defined up to a scale. The same scaling applies

to the recovered scene structure and the translational component of the motion.

The recovery of the essential matrix using the epipolar geometry was first proposed by

Lounget-Higgins. The so-called 8 point algorithm presented in (LH81) has the appealing

property of being linear. However, the results obtained using this approach are usually

not satisfactory in the presence of noise. From a numerical point of view, Hartley showed

that the stability of the 8 point algorithm can be improved by a simple renormalization

of the input measurements (Har97). The performance can be further improved by using

more points and adopting least square techniques, or enforcing rank (Har97) and Degrees

of Freedom (DOF) constraints (HN94; TBM94), or employing nonlinear optimization
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(LF96). A review of these techniques is provided in (Zha98).

The performance of SFM can be improved by combining information from more

than two views. For instance, the feature correspondences across a triplet of images

is constrained by a trifocal tensor (SW95). When feature correspondences across a

relatively large number of views are available, the optimal structure and motion can be

estimated by solving a large nonlinear optimization problem known as bundle adjustment

(TMHF00). The objective function is the sum of square of the reprojection error of all

features from all views. Probably the most interesting technique in multi-view geometry

is the simultaneously recovery of camera intrinsic parameters along with motion and

structure, a technique called auto-calibration. Robust systems have been demonstrated

in (PKG98; Nis03). A nice introduction to these techniques, as well as a comparison

between the flow-based and the feature-based SFM approaches, can be found in (Zuc02).

2.3 Flow-based motion estimation

The term optical flow refers to the dense displacement field that indicates the pixel mo-

tion across frames. For each pixel, its flow is the 2D projection of the 3D motion of its

corresponding scene point. Flow-based systems thus attempt to recover the underlying

3D motion from its 2D projection. This is usually achieved simultaneously with the

recovery of the scene structure. While flow-based methods are akin to feature-based

methods in the sense that both rely on (dense or sparse) image correspondences, these

two approaches are quite different. Feature-based methods are based on epipolar geom-

etry. They can, and are better at, recovering large motions. Flow-based methods, as we

will discuss soon, use a locally linear model that is only valid for a small motion.

Under perspective projection, the flow of a pixel undergoing a small motion can be

computed (Hor86) using (2.9) where (x, y) are the coordinates of the pixel, (u, v) are

the image displacement or flow of the pixel, z is the depth of the pixel, T and R are the
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translation and rotation of the relative motion between the scene and the camera. For

a pinhole camera model with focal length f

[u, v]T = AT/z + BR

A =

∣∣∣∣∣∣∣
−f 0 x

0 −f y

∣∣∣∣∣∣∣
B =

∣∣∣∣∣∣∣

xy
f

−(f + x2

f
) y

(f + y2

f
) −xy

f
−x

∣∣∣∣∣∣∣

(2.9)

Equation (2.9) shows that the flow field is related to two sets of parameters: the global

parameters T and R that indicate the camera motion, and the local (per pixel) parameter

z that indicates the 3D structure or depth of the scene. Based on this observation,

researchers have developed many optical flow based motion estimation methods. These

methods usually consist of two steps: first computing optical flow from input image

sequences, then simultaneously recovering structure and motion from flow estimate.

In the rest of this section, I will discuss the two steps accordingly, starting from flow

estimation.

2.3.1 Flow estimation

The estimation of optical flow is based on the brightness constancy assumption (HS81).

The brightness constancy assumption states that the brightness of a moving object re-

mains constant and the change of the image intensity I(x, y, t) is a result of a translation

in the image plane.

I(x + u, y + v, t +4t) = I(x, y, t) (2.10)

where (x, y) are the coordinates of image pixel, (u, v) are the image displacement or flow

of pixel (x, y) between the two images taken at time t and t + 4t respectively. From

the first order Taylor’s expansion of (2.10), the well-known gradient constraint equation

can be written as

Ixu + Iyv + It = 0 (2.11)
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where (Ix, Iy) are the spatial derivatives and It is the change of pixel intensity at (x, y).

Different techniques have been developed to estimate flow field (u, v). Based on

the types of extracted image measurements, optical flow algorithms can be categorized

into four classes: differential-based, energy-based, phase-based and correlation-based

(BFB94). Here I will briefly introduce the more commonly used differential and correla-

tion methods. Interested readers can refer to (BFB94) for a detailed review. Evaluations

of optical flow methods can be found in (LHH+98; BRS+07).

Differential-based methods

Differential-based methods compute the flow field using (2.11). Since (2.11) only pro-

vides one constraint to two unknowns, we need to introduce other constraints to compute

(u, v). Horn and Schunk (HS81) combined a global smoothness term with the gradient

constraint equation to form an objective function for flow estimation.

∑
D

(Ixu + Iyv + It)
2 + λ(u2

x + u2
y + v2

x + v2
y) (2.12)

The flow field can then be solved iteratively by minimizing the objective function. In

(2.12), D represents a local region, and (ux, uy, vx, vy) are the flow derivatives that

indicate the smoothness of the flow field inside D. Thus the second regulation terms

can be expressed as the flow field is smooth within the local region.

Similarly, Lucas and Kanade (LK81; Luc84) added a global smoothness constraint

by assuming constant flow within a local region. The objective function becomes

∑

(x,y)∈D

W 2(x, y)[Ix(x, y)u + Iy(x, y)v + It(x, y)]2 (2.13)

where W (x, y) represents a window function that gives more weight to center pixels than

the periphery ones. The flow field is then solved linearly in the least-square form.

The above methods are based on constancy or smoothness of the flow field within a lo-
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cal region. The underlying assumption is that neighboring pixels are likely to correspond

to the same surface. When the surface is smooth the flow field should change smoothly.

Most differential-based methods employ this assumption. Clearly, this smoothness con-

straint is likely to be violated when the examined local region crosses surface boundaries.

Correlation-based methods

The most direct way to compute flow field is to match regions from the previous image

to the current image. In this type of methods, the flow field is assumed to be constant

within a local neighborhood. This formulation is similar to area based stereo correla-

tion. The flow estimate can be computed by finding the best match that minimizes a

distance function. For example, Anandan (Ana89) and Singh (Sin92) use Sum-of-square

Difference (SSD) as the distance function shown in (2.14).

∑

(x,y)∈D

[I(x + u, y + v, t +4t)− I(x, y, t)]2 (2.14)

The correlation-based methods again assume constant local flow field. The underlying

assumption is that the intensity pattern of a small region is likely to remain constant

over time, even when its position changes. This assumption can be violated, for instance,

when the local region contains motion boundaries or when the change of illumination

occurs.

2.3.2 Motion estimation

Equation (2.9) shows that the flow field provides constraints to two sets of parameters:

the global parameters that indicate the camera motion and the local (per pixel) param-

eters that indicate the 3D structure of the scene. It follows that both the structure

and the motion can be recovered from the estimated flow field in an iterative form. In

the absence of noise, the motion parameters can be recovered using the flow and depth
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measurements at five or more pixels (Hor87). In practice, as the per-pixel flow estimate

is usually noisy, more points are needed. Thus the structure from motion problem is

usually solved using a least-square optimization scheme (ZT99; BH83; HJ92).

Bruss and Horn (BH83) proposed a method to estimate ego-motion by minimizing

the sum-of-square of the optical flow residual r = [u∗, v∗]T − [u(T, Ω, z), v(T, Ω, z)].

The least-square estimate of the depth z and the rotation Ω are computed as a function

of translation T . These estimates are then substitute back to the residuals to form a

function of the translation alone. A nonlinear solver is then applied to estimate T , z

and R are then computed.

Heeger and Jepson (HJ92) proposed to estimate egomotion using subspace meth-

ods. Similar to (BH83), they used algebraic manipulation to separate the computa-

tion of translation from those of the depth and the rotation. However, they avoided

the nonlinear optimization process required for computing the translation. Under the

instantaneous-time assumption, for a given set of optical flow at n pixels they con-

structed m− 6 constraint vectors that are orthogonal to the camera translation. Thus

the translation can be computed in a linear form.

2.3.3 Direct methods

The above methods recover structure and motion parameters using (2.9). The esti-

mation accuracy depends on the quality of the input flow field. Unfortunately, as

we have discussed, the computation of the optical flow is usually error prone. To

address this issue, researchers have developed methods that bypass flow estimation

(IA99; Ira02; Han91; HO93). The so-called direct methods solve two problems simul-

taneously: the estimation of structure and motion, and the estimation of optical flow

(pixel correspondence).

Direct methods use the gradient constraint provided in (2.11). Using some paramet-

ric motion model, flow vectors u and v of a pixel are replaced with functions of the global
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motion parameters and the local shape parameter. A set of n pixels provide n gradient

constraints to n+5 unknowns: n local shape parameters plus 6 DOF rotation and trans-

lation minus 1 DOF scaling factor. To solve this ill-posed problem, more constraints

need to be added. There are two general approaches to additional constraints: assuming

smoothness of scene depth (Han91), or using multiple frames (IAC02). For instance,

3 frames (two motions) of n pixels provide 2n constraints for the n + 11 unknowns.

Note that the latter approach also assumes local smoothness. This is determined by the

use of (2.11), which is only applicable to small (sub-pixel) motion. To accommodate

practical image motion that is almost always larger than a pixel, direct methods smooth

the original image to acquire a filtered image with enlarged pixel size. The underlying

assumption is that the 3D scene patch corresponding to an enlarged pixel is of constant

depth and therefore uniform flow velocity. As we have discussed, the local smoothness

assumption can be violated at occlusion boundaries. Therefore, the application of di-

rect methods is usually constrained to close-to-planar scenes, where the motion can be

described using simple parametric form such as affine or quadratic (TZ99).

2.4 Appearance-based motion estimation

The scene appearance in the 2D camera images changes with respect to the motion be-

tween the scene and the camera. The key to 3D appearance-based tracking is to acquire

some appearance model that can parameterize this relationship. There are two general

approaches to 3D appearance-based tracking. One approach utilizes a 3D renderable

model that can be used to predict the scene appearance from different hypothesized

views. Motion estimation is achieved by matching the real image appearance with the

predicted ones. The other approach learns a parametric representation of the scene ap-

pearance using a set of training images. The motion estimate is computed by projecting

current appearance observation into that parametric space.

23



Many appearance-based motion estimation algorithms aims at solving the problem

of visual tracking in a 2D scenario. The goal is to consistently locate the image region

occupied by a specific target in each frame of the input image sequence. Typically, the

target object is represented using an appearance model that describes some invariant

image property. Popular appearance models include global statistics such as mixture

model (Fre00) or color histogram (CRM00), and texture such as wavelets (JFEM03).

A major advantage of these models is that they can be acquired on line with minimum

effort. The models are usually initialized using a small number of (usually one) frames

and can often be refined during tracking. However, these appearance models are inher-

ently 2D, and only encode information on object appearance changes with respect to an

image or an affine motion.

2.4.1 Model-based approaches

For 3D tracking, some kind of 3D appearance representation is required to predict

the appearances of the scene from different views. A popular class of approaches to

tracking objects under changing views employs textured 3D graphical models of target

objects. The appearance of the object at some predicted pose is generated through

graphics rendering. Dellaert et al. (DTT98) proposed a Kalman filter based system that

simultaneously estimates the pose and refines the texture of a planner patch. Cascia

et al. (CSA00) used a textured cylindrical model for head pose estimation. Schodl

(SHE98) and Chang (CC01) used a textured polygonal model for more accurate head

pose estimation. An appealing property of a textured 3D model is that it can be rendered

efficiently using graphics hardware. This advantage has made it the choice of most

existing model-based methods. In theory, any model that can be used to synthesize

appearance samples from different views can be used. For instance, a pre-acquired

lightfield model is used in (ZFS02).

Usually, a 3D appearance model is built off line under an illumination that is usu-
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ally different from the on line condition. Since the appearance of an object changes

with respect to the illumination, model-based methods are prone to the illumination in-

consistencies between the modeled and the real spaces. Different techniques have been

developed to address the illumination issue. In (CC01), the change of illumination is

addressed by using local correlation coefficients as the similarity measurements. Hager

et al. (HB98) and Cascia et al. (CSA00) used a linear subspace to model the change

of appearance under varying lighting conditions. Zhang et al. (ZMY06) proposed the

use of belief propagation to estimate the intensity ratio between corresponding pixels

of an image pair. They applied this illumination insensitive method to visual track-

ing. In (YWP06), we addressed model-based 3D tracking of Lambertian objects under

directional light sources. A Kalman filter framework is applied to estimate the object

motion, the illumination and refine the texture model simultaneously. This illumination

insensitive model-based method is described in Section 4.2.

Acquiring an off line model can be tedious and sometimes impractical, for instance,

consider camera tracking in an outdoor environment. Researchers thus have worked

on developing methods that can recover the 3D shape (ZSM06) and appearance model

(ZH01) from image data during tracking. While on line modeling is appealing, and can

greatly boost the applicability of model-based approaches, the state of the art algorithms

are still not robust enough in general . Tracking error usually causes the mapping of

background data into the model, which in turn results in larger tracking error. The

system therefore becomes unstable quickly. Practical model-based methods thus still

rely on an off line modeling process to provide the full 3D model of the target object or

at least an initial one to start with.

2.4.2 Image-based approaches

A parametric representation of the scene appearance can be acquired using training

image samples taken from different known perspectives. The idea is that the set of
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all possible images of the target object lie on a low-dimensional manifold that can be

parameterized by the varying pose and illumination parameters.

Pioneered by the work of Murase and Nayar (MN95), a popular class of algorithms

models scene appearance using linear subspaces. Usually, the appearance subspaces

are computed by applying Principal Component Analysis (PCA) to a set of collected

training images with known pose and illumination parameters.

Consider an n-pixel image I, which can be considered as a vector point in the high

dimensional space Rn. At the training stage, a set of m images Ψ = [I1, I2, ..., Im] are

taken from different poses Θ = [θ1, θ2, ..., θm] under different illumination conditions

Ω = [ω1, ω2, ..., ωm]. We can compute the eigenvalues λi and eigenvectors Vi by apply-

ing eigen-decomposition of the n × n covariance matrix Q = ΨΨT . The eigenanalysis

provides an efficient way of dimension reduction. As the image is a function of the

pose and illumination parameters, the appearance manifold is low-dimensional. We can

approximate the nonlinear appearance manifold using the linear subspace spanned by

the first k eigenvectors 3. More specifically, the least square approximation Ĩ of the real

image I can be computed as

Ĩ =
k∑

i=1

ciVi (2.15)

where ci = I · Vi represents the coordinate (projection) of the image in the appearance

subspace spanned by the eigenvectors Vi. We can project all training images into the

appearance subspace and acquire m discrete samples with known pose θ and illumination

ω parameters. A parameterization of the appearance subspace (θ, ω) = Φ(c1, c2, ..., ck)

can then be computed from the discrete samples through, for instance, interpolation.

During tracking, the input image is again projected into the appearance subspace. The

pose and illumination parameters can be recovered using Φ.

The linear subspace model is first applied to object recognition by Murase and Na-

3Due to the highly nonlinear nature of the appearance manifold, k is usually chosen to be larger
than the dimension of the underlying appearance manifold.
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yar (MN95). They also demonstrated tracking 1D rotation of a rigid object. Later,

Hager and Belhumeur (HB98), and Black and Jepson (BJ98) applied the appearance

subspace model to visual tracking of rigid and articulated object respectively. The linear

appearance model is simple and computationally efficient. However, globally approxi-

mating a nonlinear function using linear representation is fundamentally problematic.

Systems adopting this linear model require higher dimensional parameters to model the

underlying low dimensional nonlinear manifold. While projecting the problem to higher

dimensions can reduce approximation errors, it also enlarges the search space and causes

the optimization to be less stable. Moreover, as the dimensionality increases, the number

of training images usually increases dramatically. The training process then becomes

extremely tedious. For building a model for one specific target, it already involves tens

if not hundreds of tuning and recording of the pose and illumination parameters.

To address the nonlinearity of the appearance manifold, a number of researchers

have proposed to learn a nonlinear mapping between the image appearance and the

pose parameters. For instance, Rahimi et al. (RRD05; RRD07) and Elgammal (Elg05)

proposed to approximate the appearance function using a series of Radial Basis Func-

tions (RBF). In theory, given enough input-output examples, any smooth nonlinear

function can be learned using a family of functions such as RBF. However, that number

of enough examples is usually high for a close approximation. For instance, 125 training

images are used in (Elg05) to track an rigid object undergoing affine motion. To reduce

the number of examples, a semi-supervised learning process that leverages the temporal

coherence of video sequence is proposed in (RRD05). The authors reported tracking of

a synthetic cube undergoing 3D rotation under a constant illumination. The training

dataset includes 6 manually selected supervised images plus 1496 unsupervised images.

Tested using the same training data, a mean estimation error of 4 degrees is reported.

In a closely related area, the problem of manifold learning has been actively studied

recently. Manifold learning techniques recover the low-dimensional structure embedded
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in the high-dimensional data. Usually, this is achieved by mapping the high-dimensional

input data to low-dimensional global output coordinates, while preserving the local re-

lationship between data points. For instance, Isomap (TdSL00) preserves the geodes-

tic distances between local points, and LLE (RS00) preserves the linear interpolation

weights between local points. The local neighborhood is defined by thresholding the

pairwise distances between data samples. Clearly, the manifold needs to be densely

sampled. Otherwise, neighboring points along the manifold are difficult to identify, the

algorithms will then fail to recover the underlying structure. Experiment results show

that, given enough training samples, these algorithms can almost always learn an accu-

rate mapping from the high-dimensional data space to the low-dimensional parameter

space. However, due to the requirement of dense sampling, it is impractical to apply

learning methods to appearance-based 3D tracking. The study of manifold learning

techniques, especially LLE, justify and emphasize that an age-old strategy also applies

to appearance manifold: approximating a globally nonlinear function can be

done with a piecewise locally linear representation .

2.5 Discussion

Feature-based approaches describe the scene as a collection of 3D geometric primitives

such as points or lines. For model-based approaches, the 3D positions of these primitives

in some global coordinate are given as priors. Motion is recovered by solving a 3D-

to-2D pose estimation. By estimating the pose rather than the motion, model-based

methods efficiently eliminate error accumulation. However, acquiring offline models can

be tedious and sometimes infeasible, for instance, outdoor camera tracking.

In a different approach, feature-based SFM methods apply the epipolar constraint to

corresponding features across multiple frames. The scene structure is recovered during

tracking. As they estimate relative motion (essential matrix) rather than the pose,
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feature-based SFM methods are prone to drifting. This issue, however, is well-balanced

by the convenience of online modeling. Besides, with the development of multi-view

techniques such as bundle adjustment, modern SFM systems have been able to track

over a long period of time with little drift. The real challenge to feature-based SFM

techniques comes from the task of corresponding features. Identifying and matching

features in different views are hard in general, and can become really difficult in scenes

presenting view-dependent appearance. For instance, scenes with occlusion boundaries,

curved reflective surface, semitransparent surfaces, and specular reflections all change

appearance dramatically as the viewpoint changes. Moreover, algorithms adopting the

epipolar constraint are numerically unstable for small feature displacements. Therefore

feature-based SFM methods usually generate less accurate results when estimating small

scale motions.

Based on a local linear model, flow-based SFM systems handle small motions. Like

feature-based approaches, they do not require a prior model of the scene. Motion and

scene structure are both recovered using dense optical flow field. The performance of

flow-based methods is usually restricted by the noisy input flow field. To compute flow

estimates, flow-based methods usually make two assumptions: constant intensity and

locally smooth depth. For simple scenes, 4 the constant intensity assumption can be

considered valid under small motion. The assumption about local depth smoothness is

usually violated at occlusion boundaries. Therefore, the application of flow-based SFM

methods is usually restricted to scenes with smooth surfaces, or distant and close-to-

planar scenes where an affine projection model can be used.

Appearance-based methods utilize the entire appearance observation. Compared

with feature or flow measurements, appearance (intensity) measurements are easier to

acquire. The computation time for feature extraction is eliminated, and the difficult

4Here normal indicate that the scene surface does not present complicated photometric properties,
such as specularity or semi-transparency.
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correspondence problem is avoided. Despite all of these advantages, appearance-based

methods still receive less publicity among vision community. I believe this unpopu-

larity is, to a large extent, due to the difficulty of globally modeling scene

appearance. Existing 3D appearance-based methods assume an offline global appear-

ance model of the scene. Such a global model is hard to acquire. Hundreds of training

images need to be captured, all at known poses. Moreover, aside from poses, the scene

appearance is also largely determined by illumination. Since illumination changes be-

tween the offline modeling stage and online tracking stage are usually inevitable, more

training images need to be captured to accommodate this variation. Besides, adding il-

lumination parameters projects the problem into a higher dimension. Estimation in this

enlarged searching space becomes less stable. One day, these difficulties of global ap-

pearance modeling may eventually be solved, probably with a new generation of imaging

hardwares. But what do we do now? My answer is to go locally.
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Chapter 3

Differential Camera Tracking

The set of all possible n-pixel images of a rigid object lies on a low dimensional manifold

embedded in Rn. Globally, this appearance manifold is highly nonlinear and requires

numerous samples to be learned. But locally, due to its low-dimensional nature, it can

be linearly approximated using a small number of neighboring image samples. In this

chapter, I will introduce our novel differential tracking approach. The discussion will

be focused on the problem formulation and the linearization of the local appearance

manifold. The techniques for acquiring local appearance samples will be discussed in

Chapter 4.

3.1 Tracking by surfing the appearance manifold

An image is a collection of pixel intensities. While an image is normally considered a

2D observation, it can also be formulated as a 1D vector that represents a point in a

high dimensional space. The set of all n-pixel images forms an n-dimensional appearance

space. The appearance space consists of image points captured at different places, under

different lighting conditions. This dissertation addresses the set of all possible images

of a rigid scene under a constant lighting captured from different perspectives. These

images form a manifold of the appearance space called the appearance manifold.

Consider a rigid scene, a projective camera, and 3D rigid motions between them. At



Pixel 1

Pixel 2

Pixel 3 Pixel n

Figure 3.1: Appearance space and appearance manifold. Images of n pixels are rep-
resented as points in an n-dimensional appearance space. The right three images are
taken in the scene under the same lighting. They lie on an appearance manifold (the
blue meshed region).

each frame time, the camera captures from its current pose S an image I, a point in

the appearance space. As the camera moves with respect to the scene and changes S,

I also changes, moving along an appearance manifold. One can see that there exists

a mapping from S to I, denoted as I = F (S). Since the transformation space of the

pose S has six DOF, the dimensionality of the appearance manifold is at most six. 1

Note that the appearance manifold is parameterized using pose parameters. Motion

estimation can therefore be achieved through learning the appearance manifold.

Ideally, we would like to learn a global representation of the appearance manifold.

However, due to its highly nonlinear nature, a global learning of the appearance manifold

usually requires a large number of input-output examples, even for a static scene. The

number can become extremely large for camera tracking when considering the possible

movements of some scene objects. Moreover, as discussed in 2.5, to accommodate the

almost inevitable changes of the lighting between the two stages of training and tracking,

one usually needs to parameterize illumination. Modeling illumination increases the

1The dimension can be smaller than six in degenerate cases — for example, when a camera looks at
a very distant scene.
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dimensionality thus requires an even larger number of training samples. Due to the

requirement of excessive sampling, global learning of the appearance manifold is usually

infeasible in practice.

In fact, the task can be simplified. Most practical rigid motions are continuous.

According to the speed of the motion and the frame rate of the camera, the relative

displacement between the camera and the scene within a frame will be restricted within

a certain region. Thus a local representation of the appearance manifold is sufficient

for estimating the incremental motion. This observation motivates the development

of our differential tracking approach, which is based on learning the local appearance

manifold using a small number of neighboring samples. In particular, as the appearance

manifold is 6D, a set of 7 samples in a general configuration is enough for a first order

approximation. The differential tracking method works as follows. At each frame, we

capture 7 samples and linearize the local appearance manifold around the current pose.

At the next frame, when the camera moves to a different pose, we can compute the

motion using the linearization from the previous frame. This pipeline continues as we

capture another group of 7 samples and linearize around the new pose, then compute

a new motion, and so on (see Figure 3.2). In this way, we generate a piecewise linear

approximation of the appearance manifold along the path of the motion. As tracking is

achieved by traversing a series of tangential planes of the manifold, we give this method

a nickname manifold surfing.

3.2 Linearizing the local appearance manifold

Consider a rigid scene, a projective camera, and 3D rigid motions between them. Assume

we simultaneously acquire a reference image I0 at the current pose S0, and m perturbed

images Ik from nearby perspectives Sk (k = 1, . . . ,m). We can compute m difference

images dIk = Ik−It that correspond to m local motions dSk = Sk−̇S0. Here −̇ indicates
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Figure 3.2: Manifold surfing. Tracking of three frames (two motions) is illustrated. The
dots indicate local image samples captured at each of the three frames. The rectangles
indicate the linear approximation of the local appearance manifold. The small coordinate
frames indicate the relative poses between the camera and the scene at the three frames.

that dSk is the rigid transformation from S0 to Sk (see the discussion of dS in the next

section for more details). We want to use these samples to linearize the appearance

manifold around S0:

I = I0 + F (S−̇S0) (3.1)

dI = F dS. (3.2)

Here I and dI are n-pixel images represented as n× 1 vectors, S and dS are 6× 1 pose

vectors, and F is the Jacobian (partial derivative) matrix ∂I/∂S of size n× 6. Given m

samples of dIk and known dSk, we can combine these sample vectors into matrices and

write the linear equation as:

[dI1, dI2, . . . , dIm] = F [dS1, dS2, . . . , dSm] (3.3)

If m is greater than 6 and the images and poses are not degenerate, the equation is

of rank 6. Under the assumption of Gaussian noise, we can compute the least square
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solution of F using the Moore-Penrose pseudo inverse as

F = [dI1, dI2, . . . , dIm] [dS1, dS2, . . . , dSm]+ (3.4)

The above discussion addresses the appearance manifold linearization problem in

the general case where m ≥ 6. For an efficient system, one would like to use minimum

number of samples to expand the underlying 6D motion space. In this case, m = 6 and

the Jacobian F becomes

F = [dI1, dI2, . . . , dI6] [dS1, dS2, . . . , dS6]
−1 (3.5)

3.3 Estimating incremental motion

Once a linear approximation is computed for the local appearance manifold, we can

estimate the rigid motion using a linear solver. Assume at frame t, we capture a set of

local image samples. We define one of them as the reference image I t
0 and its pose as the

reference pose St
0. We then compute a Jacobian matrix F t using the method described

in the previous section. Then at frame t + 1, we capture an updated reference image

I t+1
0 at a new pose St+1

0 . We can compute a temporal difference image dI t = I t+1
0 − I t

0

and estimate the motion dSt = St+1
0 −̇St

0 as the least square solution of (3.6).

F t dSt = dI t (3.6)

Note that dSt indicates the local rigid transformation from St
0 to St+1

0 . Specifically,

dSt can be represented as a 6D vector [X t, Y t, Zt, αt, βt, γt]T , where [X t, Y t, Zt] represent

the translation of the origin and [αt, βt, γt] are the Euler angles indicating the rotation

of the frame axes. Using the homogeneous representation, the rigid transformation from
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frame t to t + 1 can be written as a 4× 4 matrix P t,

P t =




Rt T t

0 1


 (3.7)

where T t = [X t, Y t, Zt]T and the 3×3 rotation matrix Rt can be written as the product

of three matrices. Each of them represents the rotation around one of the three axes.

Rt =




cos αt − sin αt 0

sin αt cos αt 0

0 0 1







cos βt 0 sin βt

0 1 0

− sin βt 0 cos βt







1 0 0

0 cos γt − sin γt

0 sin γt cos γt




(3.8)

Note that the outer (left) matrix represents a rotation around one of the axis of the

reference frame t, and the middle and the inner (right) matrices represent rotations

around intermediate axes. In general, for an unique representation, one needs to define

the order in which these rotations are performed. However, for small rotations, the

results from all possible orderings of the 3 matrices can be considered the same. For

instance, when all three Euler angles are less than 1 ◦, the variation of the elements in

R is less than 10 −4.

The advantage of using the homogeneous representation is that the incremental mo-

tion can be composited using matrix production. 2 Consider a sequence of l small

motions between frame t and t + l. At each frame t + i (i = 1, . . . , l), we sample and

linearize the local appearance manifold around St+i
0 and compute a rigid transformation

matrix P t+i. The transformation between St
0 and St+l

0 can be computed as

P = P tP t+1 · · ·P t+l−1 (3.9)

2This can be proved using the theory of Lie group and Lie algebra. The basic idea is that rigid
motions form a Lie group SE(3), and the tangent spaces at the origin of SE(3) form a Lie algebra se(3).
Interested readers are referred to (SFP96).
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The accumulated motion across these l frames can then be computed by decomposing

P .
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Chapter 4

Sampling the local appearance manifold

The local linearization of the appearance manifold requires input image samples. In this

chapter, I describe techniques for sampling local appearance manifolds. As shown in

Figure 4.1, there are two general approaches to acquiring appearance samples: through

capturing or through rendering. The input image samples come from three sources: real

images captured by physical cameras, synthetic images acquired by warping real images,

and synthetic images acquired by rendering a 3D graphical model.

Imaging Device

Real

Scene

3D Scene

Model

Rendering

Image

Samples

Homography

Sample

Through

Capturing

Sample

Through

Rendering

Figure 4.1: Techniques for acquiring appearance samples.

4.1 Sampling through capturing

As discussed in Section 2.4, almost all existing appearance-based methods address object

tracking. To achieve that, they build an off-line appearance model of the target object



using a large number of training images, usually numbering in the hundreds. While

such a training process is still feasible for modeling the appearance of an em object, it

is normally impractical for camera tracking. A scene of moderate complexity usually

consists of hundreds of individual objects, all can possibly move between the training

stage and the tracking stage. Modeling the appearance of the whole scene thus requires

building models for all the objects and initializing their poses before the tracking starts.

On top of this, the model also needs to address the possible illumination changes between

the training and tracking stages, as much time can pass between them.

When concerning the incremental motion, the impractical task of learning an off-line

appearance model can be avoided. As I have described in Chapter 3, a linear approx-

imation of the local appearance manifold can be applied to estimating an incremental

motion. Since computing a local linearization only requires a small number of neigh-

boring samples, we can now afford to directly sample the appearance manifold on line.

Image samples from nearby viewpoints can be physically captured using closely placed

cameras. In addition, using a homography transformation, we can warp a real image

to acquire additional synthetic samples from the same viewpoint but different viewing

directions.

4.1.1 Differential camera cluster

As shown in Figure 4.2 we have constructed a prototype Differential Camera Cluster

(DCC) consisting of four synchronized and calibrated small baseline cameras: one center

camera c0 and three cameras c1, c2 and c3 that are offset from the center. The coordinate

frame of the cluster is defined to align with c0. We call the other three cameras c1, c2 and

c3 translational cameras as they capture images from translated viewpoints.1 At any

point in time, the center camera and the translational cameras can be used to obtain

four simultaneous appearance samples of the local appearance manifold. See the example

1In a general case, their axes do not need to be parallel with those of the center camera.
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images indicated by the green (solid) arrows in Fig. 4.2. In addition we generate three

warped images by rotating the image plane of c0 around its three coordinate axes. See

the example images indicated by the red (dashed) arrows in Fig. 4.2. One can consider

these warped images as having been captured by three virtual rotational cameras c4,

c5 and c6, each with the same camera center as c0 but with rotated axes. Thus at any

frame the cluster effectively “captures” seven local appearance samples I0, . . . , I6. In a

non-degenerate case these images can be used to derive a first order approximation of

the local appearance manifold as described in Chapter 3.

4.1.2 Inter-camera calibration

The camera cluster provides seven real-time appearance samples. Because the rotational

images are warped versions of the center image, these four samples are from the same

manifold. However, the center and the translational samples are captured using different

cameras. To use these samples as if they are extracted from the same appearance

manifold, we need to enforce geometric and photometric consistency across cameras.

Geometric calibration

To begin the geometric calibration, I use Bouguet’s camera calibration toolkit (Bou08) to

estimate and the projection matrix Pi for each of the four physical cameras (i = 0, 1, 2, 3

for the center and translational cameras c0, c1, c2, c3)
2. I then decompose Pi as

Pi = KiRi [E| − Ci] (4.1)

where E is the identity matrix, Ri is the rotation matrix that represents the orientation

of the camera, Ci is the position of the camera center. Both Ri and Ci are defined in

2This calibration procedure also estimates lens distortion. The result parameters can be applied
to warp the original images to generate radial-distortion-corrected images. The geometric calibration
procedure described here assumes radial-distortion-corrected images
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Figure 4.2: A prototype differential camera cluster (center) and illustrative images.
Seven images were obtained: one center, three translated, and three rotated. Note that
the images shown above were rendered with exaggerated baselines to make the differing
perspectives more apparent. The center image shows a real DCC. The baselines between
the cameras were about 34 mm in X and Y , and 66 mm in Z.

the same world coordinate system. Ki is called the intrinsic matrix. It represents the

intrinsic parameters such as focal length, pixel size and principle point (see Appendix A

for a detailed explanation). Due to the differences in these intrinsic parameters, different

cameras capture different images from the same perspectives. Therefore images from
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cameras of different intrinsic parameters do not lie on the same appearance manifold.

To address this issue, I apply the intrinsic parameters of the center camera to all the

translational cameras and create a new set of translational cameras c̃i

P̃i = K0Ri [E| − Ci] (4.2)

The new images Ĩi observed by c̃i can be computed by warping the original translational

images Ii. As they share the same intrinsic parameters, they can be considered lying

on the same appearance manifold. Note that the warping from Ii to Ĩi only involves 2D

transformations in the image plane. It does not change the position and orientation of

the camera.

In (4.1) and (4.2), Ri and Ci are defined in the world coordinate system. To simplify

notation, I align the world coordinate system with the coordinate system of the center

camera c0
3, thus R0 = I, C0 = 0 and P0 = [K0|0]. Note that Ri and Ci represent

the rotation and translation from c0 to ci. The corresponding sampled motion dSi =

[Xi, Yi, Zi, αi, βi, γi] can then be computed from them and applied to (3.5) of Section

3.2.

After describing the process of geometrically calibrating the translational cameras

and computing their corresponding sampled motion, I now discuss the generation of

virtual rotational cameras cj (j=4,5,6). Again, the world coordinate system is assumed

to be aligned with the center camera c0. The projection matrices of cj can be written

as (4.3). The rotation matrix Rj is in one of the three forms of (4.4). Here α, β and γ

indicate the rotation angles around the Z, Y , and X axes of c0 respectively. The rota-

tional image samples Ij can be computed from I0 using the homography transformation

indicated by (4.3).

Pj = K0Rj [E|0] = P0Rj (4.3)

3The alignment of the world coordinate system and the camera coordinate system of c0 can be
achieved by multiplying Ri (i=1,2,3) with the inverse of R0 and change Ci as C ′i = R0(Ci − C0).
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Rj =




cos α − sin α 0

sin α cos α 0

0 0 1




or




cos β 0 sin β

0 1 0

− sin β 0 cos β




or




1 0 0

0 cos γ − sin γ

0 sin γ cos γ




(4.4)

Photometric calibration

In the DCC setup, I used CCD cameras with linear intensity responses. The intensity

value Ii(x, y) of a pixel (x, y) observed by camera ci can be written as

Ii(x, y) = bi + gili(x, y) (4.5)

where li(x, y) is the number of electrons received by the CCD pixel, gi is the gain, and

bi is the black value — the intensity value when the camera looks at a pure black scene.

In theory, we can achieve photometric consistency by physically adjusting the cameras

such that they have the same gains and black values. However, this task is hard in

practice. The target parameters are largely determined by the chip circuits, which are

usually not adjustable.

Instead of a pure hardware solution, I adopt the hardware-software-combined ap-

proach proposed by Ilie (IW05). This approach consists of two steps. In the first

(hardware) step, we tune the register settings of the translational cameras ci. The goal

is to adjust their response functions such that the intensity values of a 24-sample color

target are consistent, or as close as possible to the reference image observed by c0. In

the second (software) step, we use the same color target to compute, for each ci, a linear

transformation Îi = kiIi + di that minimizes the sum of square distances

∑
x0,y0,xi,yi

(I0(x0, y0)− (kiIi(xi, yi) + di))
2 (4.6)

where (x0, y0) and (xi, yi) are the pixels covered by the same color sample in I0 and Ii.
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We then use Îi as the appearance samples.

4.2 Sampling through rendering

While a complete model of the entire scene is usually not available, in some situations a

graphical model of the target object can be acquired off-line. Such a model may range

from textured 3D polygons to a light field. As long as the model is renderable, one can

consider generating appearance samples by means of graphics rendering.

As an example, I will describe in this section an approach to tracking a Lambertian

object under directional lighting using a 3D textured polygonal model. Specifically, I

will present a Kalman filter framework that iteratively refines the motion estimate, the

illumination, and the model texture. Again, I use appearance samples from nearby per-

spectives to linearly approximate the local appearance manifold. The local appearance

samples consist of two sets of images: real images of the object captured by the camera

at the current pose, and synthetic images rendered at nearby poses around the current

estimated pose. To address the illumination inconsistency between the synthetic and the

real samples, I estimate an Illumination Normal Map (INM)—a mapping from the sur-

face normal of a 3D point to the intensity ratio of its projections in the real and synthetic

images. The INM defines a transformation that can be used to generate illumination-

corrected synthetic images as if they were taken under the same illumination as the real

images. Figure 7.8 shows the illumination correction of a cube.

4.2.1 Illumination Normal Map

Illumination variation between the real and synthetic scenes can be modeled as the

intensity ratios of corresponding pixels in two images. Consider a 3D point p on the

surface of the target object. The projection of p on the image plane is (x, y). Under the

assumption of a Lambertian surface and directional lighting, the pixel intensity I(x, y)
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Figure 4.3: Illustration of illumination correction. (a) Real image. (b) Synthetic image
without illumination correction. (c) Illumination corrected synthetic image.

can be written as

I(x, y) =
∑

k

lkλ(p) max(Lk ·N(p), 0) (4.7)

where λ(p) is the nonnegative absorption coefficient (albedo) of the surface at p, Lk is

the unit direction vector of light source k, lk is the intensity of the light source k, N(p)

is the unit inward normal vector of the surface at p.

The intensity ratio r of corresponding pixels at (x, y) in the real and synthetic images

can be computed as

r(x, y) =
I(x, y)

Î(x, y)
=

∑
k lkλ(p) max(Lk ·N(p), 0)∑
k l̂kλ(p) max(L̂k ·N(p), 0)

(4.8)

where Î(x, y) is the pixel intensity in the synthetic image, l̂k and L̂k represent the

illumination of the modeled scene. Since the albedo λ(p) is a constant, it can be moved

outside the summation and canceled in the division. Thus (4.8) can be rewritten as

r(x, y) =

∑
k lk max(Lk ·N(p), 0)∑
k l̂k max(L̂k ·N(p), 0)

(4.9)

One can see from (4.9) that the illumination ratio r of a point p is independent of the

albedo a, and is a smooth function of the surface normal N . This key observation leads

to the formulation of the INM, a lookup table that maps a normal to an illumination

ratio. Each point in the INM corresponds to a unit normal vector N in the 3D space.
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Its horizontal coordinate θ ∈ [0, 2π) and vertical coordinate φ ∈ [0, π) are defined by

the projection of N in a fixed spherical coordinate system. Its value is the illumination

ratio value ρ for the normal N (see Figure 4.4). An INM defines an illumination trans-

formation between the real and the synthetic scene. A nice property of INM is that ρ is

a smooth function of (θ, φ). Thus we can compute ρ at sparse grid-points and estimate

the rest using bilinear interpolation.

Illumination correction

Consider a pixel (x, y) in the synthetic image. Given the geometry model and pose

estimation of the object, the corresponding surface point p with normal N(p) in the

world space can be found through backprojection. Its coordinate (θ, φ) in the INM can

then be derived by projecting N(p) to a specified spherical space. Thus ρ(θ, φ), which

equals to r(x, y), can be computed by comparing the corresponding pixel intensities in

two images (see (4.8)).

Consider a Lambertian scene under directional lighting. In this case, points with the

same surface normal are illuminated the same. Accordingly, their corresponding pixels

should have a consistent illumination value within one frame. Moreover, when the scene

lighting is static, this illumination ratio consistency constraint can be applied to pixels

across multiple frames, as long as their associated scene points share the same surface

normal. This means, with the presence of some measurement noise, we can acquire

Ν

θ

φ ρ(θ,φ)

θ

φ

Figure 4.4: Spherical coordinate and INM.
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multiple observations of the same illumination ratio variable. Based on this observation,

I formulate the illumination estimation problem in a Kalman filter framework. The

details will be explained later in the Section 4.2.2.

So far, we have made the assumption that the real and synthetic images are regis-

tered. However, due to the inevitable error in the pose estimate, the two images are

almost never registered exactly in practice. Therefore the per-pixel-based illumination

computation is subject to fail, for the ratio maybe computed by comparing the imaging

of two different 3D surface points. However, since most object surfaces are piece-wise

smooth and the illumination ratio is a smooth function of the surface normal, r(x, y)

should be spatially smooth. Discontinuity only happens at sharp edges where N(p)

changes abruptly. This observation leads to the area-based method for estimating illu-

mination ratio. Specifically, we blur both the real and the synthetic images, and compute

the illumination ratio from the corresponding pixels in the filtered images. Note that

blurring across regions with normal discontinuities should be prohibited.

Once an INM is computed, we can use it to generate illumination-corrected synthetic

images. For each pixel (x, y) in the synthetic image, we back-project it into the model

space, find its normal and compute its INM coordinate (θ, φ). Since INM only defines ρ

at some sparse grid points, we compute ρ(θ, φ) by bilinear-interpolating the neighboring

grid points. We then set the pixel intensity ratio r(x, y) = ρ(θ, φ). In this way, we

compute the intensity ratio for each pixel and form the intensity ratio map r. Finally

we acquire the illumination-corrected image Î(x, y) = I(x, y) ∗ r(x, y).

4.2.2 Iterative estimation

We implement our model-based tracking system using the Kalman filter framework (see

Appendix C for a introduction of the Kalman filter). The state of the system X is

modeled as [S, M, T ], where S represents the object pose parameters, M indicates the

INM and T denotes the texture of the object. Pixel intensities I are used as the system
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measurements. The estimated measurement of a pixel (x, y) in the synthetic image is

computed as:

I(x, y, S, M, T ) = M(HM(S, x, y)) · T (HT (S, x, y)) (4.10)

where HM and HT are the back-projection functions. Given a pose estimate Ŝ, they

define the mapping from an image pixel at (x, y) to an INM pixel at (θ, φ) and a texture

pixel at (u, v). In fact, the camera calibration and object model are also implicitly used

by HM and HT . However, since they are constant throughout the image sequences,

they are not included in the equation. One can see that (4.10) can be divided into two

parts. The fist part M(HM(S, x, y)) defines the illumination correction. The second

part T (HT (S, x, y)) represents the texture mapping.

HM defines the mapping from the image coordinate system to the INM coordinate

system. A pixel in the image may be mapped to a non-grid point in the INM. In this

case, we compute the illumination ratio of the pixel by interpolating neighboring grid

points, where the values are defined. A similar issue holds for the image-texture mapping

HT . Besides, the projection of a pixel in the texture space is an ellipsoid rather than

a point (GH86). When a relatively high-resolution texture is provided, the ellipsoid

usually covers multiple texture pixels. Therefore we compute the value of the image

pixel as a weighted average of the covered texture pixels. (4.10) can then be rewritten

as

I(x, y, S, M, T ) =
∑

θ,φ

M(θ, φ)ξM(HM(S, x, y), θ, φ) ·
∑
u,v

T (u, v)ξT (HT (S, x, y), u, v)

(4.11)

where ξM and ξT are the filtering kernels centered at HM(S, x, y) and HT (S, x, y). Note

that both HM and HT are nonlinear functions of the pose parameters S.

With the above definition of the system model, we use a Kalman filter to estimate

the object pose, INM, and texture in a recursive fashion. The processing at each frame

consist of four steps: prediction, pose update, illumination estimation and texture re-
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finement.

Prediction

We predict the state X̂− based on the previous state estimate X̂ using (C-1). The

system state consists of the object pose S, texture T and Illumination Normal Map

M . T is fixed for a given object. S can be predicted using a simple motion model. In

our system, we use a constant-speed motion model. M can be predicted using different

dynamic models. For instance, if we assume static lighting, M would be constant, and

an identity matrix should be used for the state-transition matrix A. However if for

example the light sources’ intensity and/or direction change, we can use a non-identity

dynamic model matrix to predict M . The prediction step is important as it provides

the initialization for the remaining steps.

Pose update

In this step, we fix the current estimate of INM M̂ and texture T̂ , and update the

pose estimate Ŝ. Since HM(S) and HT (S) involve perspective projection, the intensity

measurement I is a nonlinear function of the pose S (see (4.11)). This nonlinear esti-

mation problem can be solved using an Extended Kalman Filter (EKF) (see Appendix

C for a introduction of the EKF). We linearize Î around the current pose estimate Ŝ−.

Specifically, we use M̂ and T̂ to render illumination-corrected appearance samples at

Ŝ− and around it. We then use these synthetic images to compute the Jacobian matrix

F = ∂I/∂S (see (3.5) in Section 3.2). The measurement function Î can then be written

as

Î(Ŝ) = IŜ− + F (Ŝ − Ŝ−) = (IŜ− − FŜ−) + FŜ (4.12)

where IŜ− is the image rendered at Ŝ−. After acquiring this local linearization, we apply

the real image measurements (captured by the camera) to compute a new pose estimate

Ŝ using an EKF.
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Illumination estimation

In this step, we estimate the values of INM pixels by comparing the image intensities of

corresponding pixels in the synthetic and the real image. This time, we fix the pose Ŝ

and the texture T̂ . For a pixel at (x0, y0) whose normal is at (θ0, φ0) = HM(Ŝ, x0, y0) with

neighboring INM grid points (θk, φk), the measurement function and Jacobian matrix

can be written as

Î(M̂) = c(x0, y0)
n∑

k=1

M̂(θk, φk)ξM(θ0, φ0, θk, φk) (4.13)

H(M̂) = c(x0, y0)[ξM(θ0, φ0, θ1, φ1), ..., ξM(θ0, φ0, θn, φn)] (4.14)

where c(x0, y0) =
∑

u,v T̂ (u, v)ξT (HT (Ŝ, x0, y0), u, v) is the intensity of pixel (x0, y0) com-

puted directly from texture mapping, ξM(θ0, φ0, θk, φk) is the interpolation kernel for

computing M̂(θ0, φ0), and n is the size of the interpolation window. Currently, we

compute M̂(θ0, φ0) using bi-linear interpolation of the surrounding n = 4 pixels.

The intensity measurement in (4.13) is a linear function of M̂ . So we apply the

standard Kalman measurement update equations to estimate M̂ . Specifically, we send

the intensity measurement of each pixel to the Kalman filter one at a time. Then H is an

n-vector with elements wk = c(x0, y0) ξM(θ0, φ0, θk, φk), Kalman gain K is an n-vector

and the noise covariance R becomes a scaler σ2. In addition, we make the assumption

that pixel values in the INM are independent of each other. Therefore we represent the

process covariance P as an n×n diagonal matrix. Given the definition of these matrices,

the measurement update equations (C-4)-(C-6) can be written as

Kk = P−
kkwk(

n∑
j=1

(P−
jjw

2
j ) + σ2)−1 (4.15)

M̂k = M̂−
k + Kk(I(x0, y0)− Î(x0, y0)) (4.16)
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Pkk = (1−Kkwk)P
−
kk (4.17)

From the above equations one can see that the residual of intensity measurement of an

image pixel is used to update the values of the INM pixels that contribute in computing

its illumination ratio.

Texture refinement

We perform the texture refinement in a way similar to the illumination estimation.

In this step, we keep the pose Ŝ and illumination M̂ constant. For a synthetic pixel

at (x0, y0) with texture coordinate (u0, v0) = HT (Ŝ, x0, y0), we derive the following

equations

Î(T̂ ) = l(x0, y0)
n∑

k=1

T̂ (uk, vk) ξT (u0, v0, uk, vk) (4.18)

H(T̂ ) = l(x0, y0)[ξT (u0, v0, u1, v1), ..., ξT (u0, v0, un, vn)] (4.19)

where l(x0, y0) =
∑

θ,φ M̂(θ, φ)ξM(HM(Ŝ, x, y), θ, φ) is the illumination ratio at (x0, y0),

and (uk, vk) are the n texture pixels inside the projection ellipsoid of pixel (x0, y0). Here

Î is a linear combination of texture intensities. Currently we use equal weights for all

the texture pixels, i.e. ξT (u0, v0, uk, vk) equals to 1/n if (uk, vk) is inside the projection

ellipsoid around (u0, v0), or 0 otherwise.

The measurement estimate Î(T̂ ) in (4.18) is a linear function of T̂ . Therefore, we can

use a linear Kalman filter to estimate the texture T̂ using (4.15)-(4.17). The elements

in the H vector become wk = l(x0, y0) ξT (u0, v0, uk, vk).
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Chapter 5

Analysis on sampling appearance manifolds

In the previous chapters, I have introduced the algorithms and techniques for sampling

and linearizing the local appearance manifold. In theory, given seven samples one can

always generate a linear approximation of the sampled appearance manifold, and such

a linearization will be accurate within a local region. Intuitively, we know that for an

accurate linear approximation, the displacement (between samples) needs to be small

and the underlying appearance manifold (or usually a filtered version of it) needs to be

smooth. But what exactly do small and smooth mean here?

From a signal processing point of view, the process of linearizing the local appear-

ance manifold can be considered as reconstructing intensity signals using local samples

(images). We can then apply the sampling theorem to determine the minimum sampling

rate that avoids aliasing. Based on this observation, I have developed some Fourier spec-

tral analysis on sampling the local appearance manifold. A similar analysis on sampling

4D light fields has been proposed in (CTCS00). Here I extend it to full 3D cases.

In the context of the appearance-based differential tracking, I apply the Fourier

analysis to guide the design of a DCC and to determine the filter kernels for blurring

images (smoothing appearance manifold). On a larger scope, I believe this analysis can

also be used to explain the commonly used sub-pixel motion constraint in the optical

flow field. Since the foundation for optical flow estimation, the brightness constancy



equation, is also based on a local linearization of the pixel intensities.

5.1 Sampling the appearance signals

The appearance of a static scene under constant lighting lies on a 6D manifold. Assume

this appearance is measured by a camera and presented as an image consisting of pixel

intensities/colors. For a specific pixel, its intensity can be represented as an 8D signal

I(x, y, Tx, Ty, Tz, Rx, Ry, Rz), where [Tx, Ty, Tz, Rx, Ry, Rz] is the camera pose and [x y]

is the image coordinate of the pixel. In the differential tracking approach, we acquire

discrete samples Is of the continuous signal I.

The Fourier transform I of the continuous pixel intensity signal I is an 8D function

(shown in (5.1)). Here F denotes the Fourier transform, [ωu, ωv] are the angular frequen-

cies of the spectral domain in the image dimensions, and [ωTx , ωTy , ωTz , ωRx , ωRy , ωRz ] are

the angular frequencies of the spectral domain in the motion dimensions. The sampled

signal Is can be represented as the multiplication of I and an 8D comb function S (see

(5.2)). 4x, ...,4Rz are the sampling intervals in each of the 8 dimensions. The Fourier

transform of the sampled signal Is is the convolution of two Fourier transforms I and

S (see (5.3)). Since S is also an 8D comb function, Is is a composition of replicas of I
with intervals 2π

4x
, ..., 2π

4Rz
in the 8 dimensions of the spectral domain.

I(ωx, ωy, ωTx , ωTy , ωTz , ωRx , ωRy , ωRz) = F{I(x, y, Tx, Ty, Tz, Rx, Ry, Rz)} (5.1)

Is = I ∗ S = I(x, ..., Rz) ∗
∞∑

mx=−∞
...

∞∑
mRz =−∞

δ(x−mx4x, ..., Rz −mRz4Rz) (5.2)

Is = F(I ∗ S) = F(I)⊗F(S) = I ⊗ S
= I(ωx, ..., ωRz)⊗

∑∞
mx=−∞ ...

∑∞
mRz =−∞ δ(ωx −mx

2π
4x

, ..., ωRz −mRz

2π
4Rz

)
(5.3)

We can apply the well-known Nyquist–Shannon theorem to the sampling of the

appearance signal. According to the theorem, aliasing occurs in the reconstructed signal
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if the spectral replicas of the sampled signal overlap. Exact reconstruction is only

possible when the sampling frequency is greater than twice the signal bandwidth. Since

our tracking algorithm reconstructs (linearizes) the appearance (pixel intensity) signal

from its local samples, it is clear that we need to sample at least twice as frequently as

the bandwidth of the appearance signal in each of the 8 dimensions. The solution is then

straight forward except that we do not know the bandwidth of the appearance signal.

In the following sections, I will prove that the appearance signal, more specifically the

camera-observed appearance signal, is bandlimited. I will show that its bandwidth is

determined by the image resolution and the scene depth.

5.2 Fourier analysis of the local appearance mani-

fold

In this section, I compute the 8D Fourier transform of the local appearance manifold.

Without loss of generality, I will choose the reference pose to be [0 0 0 0 0 0]. For a

more concise representation, I will first compute the Fourier transform of the reference

image I0 and six 1D sub-manifolds ITx , ITy , ITz , IRx , IRy , IRz that correspond to six

basic motions: three translations along the axes and three rotations around the axes.

I0(x, y) = I(x, y, 0, 0, 0, 0, 0, 0)

ITx(x, y, Tx) = I(x, y, Tx, 0, 0, 0, 0, 0)

ITy(x, y, Ty) = I(x, y, 0, Ty, 0, 0, 0, 0)

ITz(x, y, Tz) = I(x, y, 0, 0, Tz, 0, 0, 0)

IRx(x, y, Rx) = I(x, y, 0, 0, 0, Rx, 0, 0)

IRy(x, y, Ry) = I(x, y, 0, 0, 0, 0, Ry, 0)

IRz(x, y, Rz) = I(x, y, 0, 0, 0, 0, 0, Rz)

(5.4)

54



I will then combine the analysis on the reference images and the six 3D appearance

functions to compute the entire Fourier transform of the 8D appearance signal.

For simplicity of representation, I will begin the Fourier analysis on the local appear-

ance manifold of a Lambertian scene where the brightness constancy assumption holds.

I will extend the analysis on more general cases later in Section 5.3. When computing

the Fourier transform of the Lambertian appearance manifold, I will use optical flow

to relate current appearance samples to the reference appearance samples. I have com-

puted the flow for the six basic motions. The result is shown in Table 5.1. Note that the

rotational flow fields listed in Table 5.1 are computed using small angle approximation.

While such a approximation can not be applied to large rotations, it is appropriate for

our analysis of the local appearance manifold. Readers can read Appendix B for details.

Motion Type Motion Magnitude H-Flow(u) V-Flow(v)

X Translation Tx
f
Z
Tx 0

Y Translation Ty 0 f
Z
Ty

Z Translation Tz − x
Z
Tz − y

Z
Tz

X Rotation Rx −xy
f

Rx −(f + y2

f
)Rx

Y Rotation Ry (f + x2

f
)Ry

xy
f

Ry

Z Rotation Rz −yRz xRz

Table 5.1: Optical flow of six 1D motions. f denotes the camera focal length. x and y
are the image coordinates. Z is the scene depth at pixel [x, y]

5.2.1 Fourier analysis of the reference image

The 2D Fourier transform of the reference image I0(x, y) acquired at pose [0 0 0 0 0 0]

is written in (5.5).

I0(ωx, ωy) = F{I0(x, y)} =

∫ ∞

−∞

∫ ∞

−∞
I0(x, y)e−j(ωxx+ωyy)dxdy (5.5)

Note that I0 here is not the real appearance function Î but a filtered and sampled

version of it. First, the original image is captured by a camera at a certain resolution.

Each intensity value is a weighted integral of the light rays arriving in the area of the
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associated CCD pixel. Moreover, to further smooth the appearance function, we apply

an additional software low-pass filtering process to the original camera image. Therefore

even if the spectral support of the underlying scene appearance can be unbounded, the

support of the observed appearance function I0 is bounded by the bandwidth of the low-

pass filter BP . I0 is sampled at a certain resolution. Assume I0 has pixel aspect ratio of

1 and denote 4x as the pixel size. 4x and BP are related. From sampling theorem, we

know that the shortest frequency of the appearance signal that can be recovered from

the image is of period of 2 pixels. Thus for a fixed 4x, we should choose BP ≤ π/4x to

avoid aliasing. Based on this observation, we can compute the practical bandwidth of

the reference image BI using the bandwidth of the observed scene texture BS and the

resolution of the camera 4x (shown in (5.6)).

|ωx| , |ωy| ≤ BI = min(BS,
π

4x
) (5.6)

Note the integral in (5.5) is from −∞ to ∞. The same lower and upper limits apply

to all the integrals in this section. To simplify representation, I will not specify them

again.

5.2.2 Fourier analysis of X or Y translation

I now compute the Fourier transform of ITx(x, y, Tx). This 1D appearance manifold

consists of the infinite set of images captured by a camera translating along the X

axis. Under the brightness constancy assumption, we can relate ITx to I0 using the

X-translation flow listed in Table 5.1. Here Z is the scene depth at pixel (x, y). To

begin, let us assume that the scene is a plane at a constant depth Z0.

ITx(x, y, Tx) = ITx(x−
f

Z0

Tx, y, 0) = I0(x− f

Z0

Tx, y) (5.7)
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The Fourier transform of ITx can be computed as

ITx(ωx, ωy, ωTx) =
∫ ∫ ∫

ITx(x, y, Tx)e
−j(ωxx+ωyy+ωTxTx)dxdydTz

=
∫ ∫ ∫

I0(x− f
Z0

Tx, y)e−j(ωxx+ωyy+ωTxTx)dxdydTz

(5.8)

Applying (5.9) to (5.8) and substituting ωx with ωu, we get (5.10)

u = x− f

Z0

Tx or x = u +
f

Z0

Tx (5.9)

ITx =
∫ ∫ ∫

I0(u, y)e
−j(ωu(u+ f

Z0
Tx)+ωyy+ωTxTx)

dudydTx

=
∫ ∫

I0(u, y)e−j(ωuu+ωyy)dudy
∫

e
−j(ωTx+ f

Z0
ωu)TxdTx

= I0(ωu, ωy)δ(ωTx + f
Z0

ωu) = I0(ωu, ωy)HTx(ωu, ωv, ωTz)

(5.10)

(5.10) shows that the spectral support I(ωu, ωy, ωTx) of a planar scene at constant depth

Z0 is a plane in the 3D Fourier domain that is defined by

ωTx +
f

Z0

ωu = 0 (5.11)

Now, let us consider a scene with a varying depth. Let the minimum and maximum

depth be Zmin and Zmax. The spectral support is then bounded by two planes: ωTx +

f
Zmin

ωu = 0 and ωTx + f
Zmax

ωu = 0, as shown in Figure 5.3. The first row of Figure 5.3

shows a near plane a far plane and a tilted plane in between. The second row of Figure

5.3 shows the X − Tx plane of the appearance function ITx
1. The Fourier transforms

of these 2D cross-sections of ITx are presented in the third row. We can see that the

spectral support of the tilted plane is bounded by the spectral supports of the near and

the far planes.

Applying (5.6) to (5.11), we can compute the bandwidth of ITx in the Tx dimension

1By fixing Y , the 2D cross-section of the appearance function ITx defines an epipolar image (EPI).
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using (5.12). Here Zmin is the smallest scene depth.

|ωTx | = | f
Z

ωu| ≤ f

Zmin

min(Bs,
π

4x
) (5.12)

The lowest sampling density along the X axis 4Tx can then be computed as

4Txmin =
π

|ωTx |
≤ Zmin

f
max(

π

Bs

,4x) (5.13)

The maximum horizontal and vertical image flow with respect to X translation can be

computed as: 



lx = f
Z
4Tx = max( π

Bs
,4x)

ly = 0
(5.14)

For Y translation, the spectral support ITy can be analyzed using the same approach.

The resulting minimum sampling density 4Ty and the maximum image flow ly have the

same form as 4Tx and lx.

5.2.3 Fourier analysis of Z translation

Now, let us compute the Fourier transform of ITz(x, y, Tz). This 1D appearance manifold

consists of the infinite set of images captured by a camera translating along the Z axis.

Again, we begin by studying the Fourier transform of a plane at a constant depth Z0.

Using the Z-translation flow listed in Table 5.1, we can represent ITz as

ITz(x, y, Tz) = ITz(x +
x

Z0

Tz, y +
y

Z0

Tz, 0) = I0(x +
x

Z0

Tz, y +
y

Z0

Tz) (5.15)

The Fourier transform of ITz can be computed as

ITz(ωu, ωv, ωTz) =
∫ ∫ ∫

ITz(x, y, Tz)e
−j(ωxx+ωyy+ωTz Tz)dxdydTz

=
∫ ∫ ∫

I0(x + x
Z0

Tz, y + y
Z0

Tz)e
−j(ωxx+ωyy+ωTz Tz)dxdydTz

(5.16)
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Let





u = x + Tz

Z0
x

v = y + Tz

Z0
y

or





x = u/(1 + Tz

Z0
) ≈ (1− Tz

Z0
)u

y = v/(1 + Tz

Z0
) ≈ (1− Tz

Z0
)v

(5.17)

Note that the approximation shown in (5.17) can be applied to our analysis of the local

appearance manifold, where Tz is usually small compared to the scene depth. To give

an idea, the approximation error when Tz = Z0/10 is 1%. Applying (5.17) to (5.16) and

substituting ωx ωy with ωu ωv, we have

ITz(ωx, ωy, ωTz) =
∫ ∫ ∫

I0(u, v)e
−j(ωu(1− Tz

Z0
)u+ωv(1− Tz

Z0
)v+ωTz Tz)

(1− Tz

Z0
)2dudvdTz

=
∫ ∫

I0(u, v)
∫

(1− Tz

Z0
)2e

−j(−ωu
u

Z0
−ωv

v
Z0

+ωTz )TzdTze
−j(ωuu+ωvv)dudv

(5.18)

(5.18) can be considered as the Fourier transform of a product of two 2D signals: I0 and

an integral ITz .

ITz(u, v) =

∫
(1− Tz

Z0

)2e
−j(−ωu

u
Z0
−ωv

v
Z0

+ωTz )TzdTz (5.19)

Thus ITz can be computed as the convolution of the two Fourier transforms

ITz(ωu, ωv, ωTz) = I0(ωu, ωv)⊗F{ITz(u, v)} = I0(ωu, ωv)⊗HTz(ωu, ωv, ωTz) (5.20)

Assuming −ωu
u
Z0
− ωv

v
Z0

+ ωTz 6= 0,

F{ITz(u, v)} =
∫ ∫ ∫

(1− Tz

Z0
)2e

−j(−ωu
u

Z0
−ωv

v
Z0

+ωTz )Tze−j(ωuu+ωvv)dudvdTz

=
∫

(1− Tz

Z0
)2e−jωTz Tz

∫
e
−j(ωu(1− Tz

Z0
)u)

du
∫

e
−j(ωv(1− Tz

Z0
)v)

dvdTz

=
∫

(1− Tz

Z0
)2e−jωTz Tzδ(1− Tz

Z0
)δ(1− Tz

Z0
)dTz

= (1− Tz

Z0
)2e−jωTz Tz |Z0=Tz = 0

(5.21)
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we know from (5.21) that F{ITz} = 0 implies ITz = 0. Therefore (5.21) shows that the

spectral support ITz is bounded within the region:

− ωu
u

Z0

− ωv
v

Z0

+ ωTz = 0 (5.22)

For a scene with a varying depth. The spectral support is bounded by −ωu
u

Zmin
−

ωv
v

Zmin
+ ωTz = 0, where Zmin is the minimum scene depth. The bounded effect of the

spectral support is illustrated in Figure 5.3. The first row shows a near plane a far plane

and a tilted plane in between. The fourth row shows the Z−Tz plane of the appearance

function ITz . The Fourier transform of the 2D cross-sections of ITz are presented in the

fifth row. We can see that the spectral support of the tilted plane is bounded within

the spectral supports of the near plane.

Note that the maximum value of the horizontal and vertical image coordinates u and

v are determined by the camera Field of View (FOV). Let θ be the FOV of the camera

(assuming equal horizontal and vertical FOV), we have




|u| ≤ f tan (θ/2)

|v| ≤ f tan (θ/2)
(5.23)

Apply (5.6) and (5.23) to (5.22), we can compute the bandwidth of ITz in Tz dimension

using (5.24).

|ωTz | = | u
Z

ωu +
v

Z
ωv| ≤ 2

f tan (θ/2)

Zmin

min(Bs,
π

4x
) (5.24)

The lowest sampling density along the Z axis 4TZ can then be computed as

4Tz =
π

|ωTz |
≤ Zmin

f tan (θ/2)
max(

π

2Bs

,4x/2) (5.25)

The maximum horizontal and vertical image flow with respect to Z translation |lx| and
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|ly| can be written as:




|lx| = u

Z
4Tz ≤ max( π

2Bs
,4x/2)

|ly| = v
Z
4Tz ≤ max( π

2Bs
,4x/2)

(5.26)

5.2.4 Fourier analysis of rotation around X or Y axis

The 1D appearance manifold IRx(x, y, Rx) consists of the infinite set of images captured

by a camera rotating around the X axis. Using the X-rotation flow listed in Table 5.1,

we can relate IRx to I0. Note that the warping is completely determined by the rotation

angle Rx and is independent on the scene geometry.

IRx(x, y, Rx) = IRx(x+
xy

f
Rx, y+(f +

y2

f
)Rx, 0) = I0(x+

xy

f
Rx, y+(f +

y2

f
)Rx) (5.27)

The Fourier transform can be written as

IRx(ωx, ωy, ωRx) =
∫ ∫ ∫

IRx(x, y, Rx)e
−j(ωxx+ωyy+ωRxRx)dxdydRx

=
∫ ∫ ∫

I0(x + xy
f

Rx, y + (f + y2

f
)Rx)e

−j(ωxx+ωyy+ωRxRx)dxdydRx

(5.28)

Let





u = x + xy
f

Rx

v = y + (f + y2

f
)Rx

or





x = u/(1 + y
f
Rx) ≈ u− uv

f
Rx

y = (v − fRx)
x
u
≈ v − (f + v2

f
)Rx

(5.29)

(5.29) assumes a small local rotation Rx. The error of this approximation depends on

the rotation angle and the camera FOV. Usually it can be considered small enough for

the analysis of local appearance manifolds. To give an example, for a camera with 90 ◦

FOV, the approximation error for a rotation of 6 ◦ is about 1%. The assumption on

small local rotations has also been applied to rotation around Z axis, as will be shown
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in (5.40). Applying (5.29) to (5.28) we have

IRx(ωu, ωv, ωRx)

=
∫ ∫ ∫

I0(u, v)e−j(ωu(u−uv
f

Rx)+ωv(v−(f+ v2

f
)Rx)+ωRxRx)(1− v

f
Rx)(1− 2 v

f
Rx)dudvdRx

=
∫ ∫

I0(u, v)
∫

(1− 3 v
f
Rx + 2 v2

f2 R
2
x)e

−j(−ωu
uv
f
−ωv(f+ v2

f
)+ωRx )RxdRxe

−j(ωuu+ωvv)dudv

(5.30)

(5.30) can be considered as the Fourier transform of a product of two 2D signals: I0 and

an integral denoted as IRx .

IRx(u, v) =

∫
(1− 3

v

f
Rx + 2

v2

f 2
R2

x)e
−j(−ωu

uv
f
−ωv(f+ v2

f
)+ωRx )RxdRx (5.31)

Thus IRx can be computed as the convolution of two Fourier transforms

IRx(ωu, ωv, ωRx) = I0(ωu, ωv)⊗F{IRx(u, v)} = I0(ωu, ωv)⊗HRx(ωu, ωv, ωRx) (5.32)

Compute the second Fourier transform. Assume −ωx
xy
f
− ωy(f + y2

f
) + ωRx 6= 0.

F{IRx(u, v)} =
∫ ∫ ∫

(1− 3 v
f
Rx + 2 v2

f2 R
2
x)e

−j(−ωu
uv
f
−ωv(f+ v2

f
)+ωRx )Rxe−j(ωuu+ωvv)dudvdRx

=
∫

e−j(ωRx−fωv)Rx
∫

(1− 3 v
f
Rx + 2 v2

f2 R
2
x)e

−jωv(1− vRx
f

)v
∫

e−jωu(1− vRx
f

)ududvdRx

=
∫

e−j(ωRx−fωv)Rx
∫

(1− 3 v
f
Rx + 2 v2

f2 R
2
x)e

−jωv(1− vRx
f

)vδ(v − f
Rx

)dvdRx

=
∫

e−j(ωRx−fωv)Rx [(1− 3 v
f
Rx + 2 v2

f2 R
2
x)e

−jωv(1− vRx
f

)v|v= f
Rx

]dRx

=
∫

e−j(ωRx−fωv)Rx ∗ 0 dRx = 0

(5.33)

We know from (5.32) that F{IRx} = 0 implies IRx = 0. Therefore (5.33) shows that the

spectral support IRx is bounded within the region given by:

− ωu
uv

f
− ωv(f +

v2

f
) + ωRx = 0 (5.34)
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Note that u v ωu and ωv are bounded. Applying (5.6) and (5.23) to (5.34), we can

compute the bandwidth of IRx in Rx dimension using (5.35).

|ωRx| = |ωu
uv

f
+ ωv(f +

v2

f
)| ≤ f(1 + 2 tan2 (θ/2)) min(Bs,

π

4x
) (5.35)

The lowest sampling density in rotation around X axis 4Rx can then be computed as

4Rx =
π

|ωRx |
≤ 1

f(1 + 2 tan2 (θ/2))
max(

π

Bs

,4x) (5.36)

The maximum horizontal and vertical image flow with respect to the rotation around

X axis |lx| and |ly| can be written as




|lx| = uv

f
4Rx ≤ tan2 (θ/2)

1+2 tan2 (θ/2)
max( π

Bs
,4x)

|ly| = (f + v2

f
)4Rx ≤ 1+tan2 (θ/2)

1+2 tan2 (θ/2)
max( π

Bs
,4x)

(5.37)

For rotation around Y axis, the spectral support of the 1D appearance manifold IRy

can be analyzed using the same approach. The resulting minimum sampling density

4Ry has the same form as 4Rx.

5.2.5 Fourier analysis of rotation around Z axis

The 1D appearance manifold IRz(x, y, Rz) consists of the infinite set of images captured

by a camera rotating around the Z axis. Using the Z-rotation flow listed in Table 5.1, we

can relate IRz to I0 (shown in (5.38)). Note that the warping is completely determined

by the rotation angle Rz and is independent on the scene geometry.

IRz(x, y, Rz) = IRz(x + yRz, y − xRz, 0) = I0(x + yRz, y − xRz) (5.38)
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The Fourier transform can be written as

IRz(ωx, ωy, ωRz) =
∫ ∫ ∫

I(x, y, Rz)e
−j(ωxx+ωyy+ωRz Rz)dxdydRz

=
∫ ∫ ∫

I0(x + yRz, y − xRz)e
−j(ωxx+ωyy+ωRz Rz)dxdydRz

(5.39)

Let





u = x + yRz

v = y − xRz

or





x = (u− vRz)/(1 + R2
z) ≈ u− vRz

y = (v + uRz)/(1 + R2
z) ≈ v + uRz

(5.40)

Note that (5.40) assumes a small local rotation Rz. Applying (5.40) to (5.39) and

substituting ωx ωy with ωu ωv, we have

IRz(ωu, ωv, ωRz) =
∫ ∫ ∫

I0(u, v)e−j(ωu(u−vRz)+ωv(v+uRz)+ωRz Rz)(1 + R2
z)dudvdRz

=
∫ ∫

I0(x, y)
∫

(1 + R2
z)e

−j(−ωuv+ωvu+ωRz )RzdRze
−j(ωuu+ωvv)dudv

(5.41)

(5.41) can be considered the Fourier transform of a product of two 2D signals: I0 and

an integral denoted as IRz .

IRz(u, v) =

∫
(1 + R2

z)e
−j(−ωuv+ωvu+ωRz )RzdRz (5.42)

Thus IRz can be computed as the convolution of two Fourier transforms

IRz(ωu, ωv, ωRz) = I0(ωu, ωv)⊗F{IRz(u, v)} = I0(ωu, ωv)⊗HRz(ωu, ωv, ωRz) (5.43)
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Compute the second Fourier transform. Assume −ωuv + ωvu + ωRz 6= 0.

F{IRz(u, v)} =
∫ ∫ ∫

(1 + R2
z)e

−j(−ωuv+ωvu+ωRz )Rze−j(ωuu+ωvv)dudvdRz

=
∫

(1 + R2
z)e

−jωRz Rz
∫

e−j(ωu+ωvRZ)udu
∫

e−j(ωv−ωuRZ)vdvdRz

=
∫

(1 + R2
z)δ(Rz + ωu

ωv
)δ(Rz − ωv

ωu
)dRz

= (1 + R2
z)|Rz=±i = 0

(5.44)

We can see from (5.43) that F{IRz} = 0 implies IRz = 0. Therefore (5.44) shows that

the spectral support IRz is bounded within the region given by

− ωuv + ωvu + ωRz = 0 (5.45)

Note that u v ωu and ωv are bounded. Applying (5.6) and (5.23) to (5.45), we can

compute the bandwidth of IRz in Rz dimension using (5.46).

|ωRz | = |ωuv − ωvu| ≤ 2f tan (θ/2) min(Bs,
π

4x
) (5.46)

The lowest sampling density in rotation around Z axis 4Rz can then be computed as

4Rz =
π

|ωRz |
≤ 1

f tan (θ/2)
max(

π

2Bs

,4x/2) (5.47)

The maximum horizontal and vertical image flow with respect to the rotation around Z

axis |lx| and |ly| can be written as




|lx| = v4Rz ≤ max( π

2Bs
,4x/2)

|ly| = u4Rz ≤ max( π
2Bs

,4x/2)
(5.48)
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5.2.6 Discussion

So far, I have computed the spectral support for the six 1D appearance manifolds that

correspond to the six basic motions. I have shown that their spectral supports are

bounded along the motion dimensions. I have computed the bandwidths in the Fourier

domain and the associated minimum sampling densities in the spatial domain. The

result of the analysis is summarized in Table 5.2. Here 4x represents the camera

resolution, f denotes the camera focal length and Zmin represents the minimum depth

of the observed scene. The first column shows the minimum sampling densities of the

six appearance manifolds along their motion dimensions. The second and the third rows

columns show the maximum horizontal and vertical flows associated with the minimum

sampling rate. The combined maximum flows are shown in the last column. Note that

for all six motions, the maximum allowed flow is one pixel. Therefore Table 5.2 reveals

that for reconstructing the 1D appearance manifold, we should acquire samples densely

enough such that the image flow between two adjacent samples is less than one pixel.

Or, for a fixed sampling rate, we need to blur the original images such that the size of

the blurred pixel is larger than the possible maximum flow.

Motion Min sampling density Max H-Flow(lx) Max V-Flow(ly) Max lx + ly
X Tran Zmin

f
4x 4x 0 4x

Y Tran Zmin

f
4x 0 4x 4x

Z Tran Zmin

2f tan (θ/2)
4x 4x/2 4x/2 4x

X Rot 1
f(1+2 tan2 (θ/2))

4x tan2 (θ/2)
1+2 tan2 (θ/2)

4x 1+tan2 (θ/2)
1+2 tan2 (θ/2)

4x 4x

Y Ro 1
f(1+2 tan2 (θ/2))

4x 1+tan2 (θ/2)
1+2 tan2 (θ/2)

4x tan2 (θ/2)
1+2 tan2 (θ/2)

4x 4x

Z Rot 1
2f tan (θ/2)

4x 4x/2 4x/2 4x

Table 5.2: Minimum sampling density and maximum flow.

Figure 5.4 shows the spectral support of 1D appearance manifolds associated with

four motions: X translation, Z translation, X rotation and Z rotation. The synthetic

scene was a plane with random texture placed at 1m away. The camera resolution was

128 × 128. The camera FOV was 90 degrees. For each motion, 128 synthetic images
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were generated at 128 poses with a uniform step size (4mm and 2mm for X and Z

translation, and 0.1 degree for both X and Z rotation). These images were stacked

to form a 3D matrix. I then used Matlab to compute the 3D Fourier transform. The

resulting spectral supports are demonstrated using three cross-section images. We can

see that the bounding regions in the resulting figures match the theoretical analysis from

the previous sections.

5.2.7 Fourier analysis of the 8D appearance function

I now combine the analysis on the six 1D appearance sub-manifolds and compute the

Fourier transform of the 8D appearance signal. We can decompose any camera motion

from the reference pose S0 = [0, 0, 0, 0, 0, 0] to a specific new pose S6 = [tx, ty, tz, rx, ry, rz]

into a sequence of six 1D motions: three translations along the coordinate axes and three

rotations around the coordinate axes. Depending on the order of the motions, at the

end of each step, the camera reaches at an intermediate reference pose. 2 Without loss

of generality, we can assume the order to be translation in X, Y , Z directions and then

rotations around X, Y , Z axes. We can apply the flow listed in Table 5.1 to relate the

new image I(x, y, tx, ty, tz, rx, ry, rz) with the reference image I0 through six intermediate

2Note that Rx Ry Rz are Euler angles. To arrive at the correct target pose, the camera needs to
perform the three 1D rotations in the order that is consistent with the definition of Euler angles.
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steps.

S0 = [0, 0, 0, 0, 0, 0] I0(x, y) = I(x, y, 0, 0, 0, 0, 0, 0)

S1 = [tx, 0, 0, 0, 0, 0] I1(x, y, Tx) = I0(x− f
Z
Tx, y)

S2 = [tx, ty, 0, 0, 0, 0] I2(x, y, Ty) = I1(x, y − f
Z
Ty, tx)

S3 = [tx, ty, tz, 0, 0, 0] I3(x, y, Tz) = I2(x + x
Z
Tz, y + y

Z
Tz, ty)

S4 = [tx, ty, tz, rx, 0, 0] I4(x, y, Rx) = I3(x + xy
f

Rx, y + (f + y2

f
)Rx, tz)

S5 = [tx, ty, tz, rx, ry, 0] I5(x, y, Ry) = I4(x− (f + x2

f
)Ry, y − xy

f
Ry, rx)

S6 = [tx, ty, tz, rx, ry, rz] I6(x, y, Rz) = I5(x + yRz, y − xRz, ry)

I(x, y, tx, ty, tz, rx, ry, rz) = I6(x, y, rz)

(5.49)

In (5.20) (5.32) (5.43), we have switched the order of integration and represented the

Fourier transform I(ωx, ωy, ωTR) of the target 3D appearance function as a convolution

of two spectral functions. One is the 2D spectral I0(ωx, ωy) of the reference image.

The other is the 3D function H(ωx, ωy, ωTR) that defines the spectral bounds of I in

the motion dimension. Here ωTR denotes the angular spectral frequency in the motion

dimension. 3 Similarly, we can compute the Fourier transform of the 8D appearance

function as

I = HRz ⊗F(I6) = HRz ⊗HRy ⊗F(I5) = · · ·
= HRz ⊗HRy ⊗HRx ⊗HTz ⊗HTyHTxI0

(5.50)

Note that each ωTR is only defined in one H. Its response in the other five H is defined

as delta functions. Therefore the convolutions do not change the bounds of the spectral

support in motion dimensions. The bandwidth of the 8D I in each of the six motion

dimensions is the same as that of the associated 3D I. The above convolutions appear

to enlarge the bandwidth in ωx and ωy dimensions. This may be true for continuous

3Originally, we define the convolution in the 2D space of (ωx,ωy). To help understanding, we can
add the motion dimension to I0 and represent it as I ′0(ωx, ωy, ωTR) = I0(ωx, ωy)δ(ωTR). Then we can
apply convolution in the 3D space. Similarly, we can add additional motion dimensions to H in (5.50)
by multiplying it with 5 delta functions.
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appearance functions. However, in practice, all the images are captured by a camera,

and the spectral support of the measured appearance function is always bounded by the

camera resolution.

In summary, I have shown that the spectral support of the 8D appearance function

(6D appearance manifold) are bounded, and its bandwidths in the motion dimensions are

the same as the ones of the six 1D appearance sub-manifolds. Therefore we can directly

apply the analysis on sampling 1D motions to 6D cases. Specifically, we should either

sample densely enough in each of the six motion dimensions or blur the image samples,

such that the maximum flow between adjacent samples is less than one (blurred) pixel.

5.3 Fourier analysis on general scenes

In the previous sections, I assumed a Lambertian scene and analyzed the spectral support

of the appearance function using the brightness constancy model. In this section, I will

extend the analysis to scenes with more realistic geometric and photometric properties.

I will address three cases: semitransparency, occlusion and specular highlight.

5.3.1 Semitransparancy

The 8D appearance function of a semitransparent scene can be modeled as the sum of

the appearance functions of the two superimposed scene layers.

I = c1I1 + c2I2 (5.51)

Here c1 and c2 denotes the transparent and reflective coefficient of the surface. The

Fourier transformation of I can be written as

I = F(c1I1 + c2I2) = c1I1 + c2I2 (5.52)
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Let B1 and B2 be the bandwidth of I1 and I2. The bandwidth B of I is

B = max(B1, B2) (5.53)

(5.53) shows that the spectral support of the appearance function of a semitransparent

scene is again bounded. When both layers are Lambertian, the brightness constancy

model can be applied to each of them. Which, according to the previous analysis,

results in a sub-pixel motion constraint on each layer separately. In other word, we

should choose a blurring filter such that the maximum pixel motions of both layers are

within one blurred pixel.

5.3.2 Occlusion

In general, the appearance discontinuity at occlusion boundary can be really complicated

thus difficult to model. In this subsection, I will study the Fourier spectrum of simple

occluded scenes using an opacity-based model proposed by Zhang and Chen (ZC06).

Under the assumption that the objects do not occlude themselves 4, we can formulate

the appearance function of the occluded scene as

I(x, y) = g(x, y)I1(x, y) + (1− g(x, y))I2(x, y) (5.54)

where I1 and I2 are the appearance functions of the foreground and background objects

without considering occlusion. g is the occlusion mask defined as

g(x, y) =





1 if(x, y) ∈ Ω

0 otherwise
(5.55)

4As pointed out by Zhang and Chen, mutual occlusion is typically more significant than self-
occlusion. The former often cause a sharp discontinuity in the appearance function, while the latter
usually does not as the surface normal often changes slowly.
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where Ω is the image support of the foreground. Let G, I1 and I2 be the Fourier

transforms of g, I1 and I2. The Fourier transform of I can be written as

I = F(gI1 + (1− g)I2) = G ⊗ I1 + I2 + G ⊗ I2 (5.56)

The first part of (5.56) is the Fourier transform of the foreground image. Notice that

g and I1 are at the same depth. Their multiplication can still be considered a Lambertian

surface 5. Clearly, the second part I2 is a Lambertian surface. Therefore, the previous

analysis on Lambertian surfaces can be directly applied to the first two parts. In other

words, the bandwidths of G ⊗I1 and I2 in the image dimensions are determined by the

blurring filter (see (5.6)). The bandwidths in the motion dimensions can be computed

using the linear constraints defined in previous equations (see (5.13) (5.24) (5.35) (5.46)).

However the previous equations can not be applied to the third part, as their basic

assumption of brightness constancy model does not hold for the multiplication of g and

I2. These two layers are at different depths therefore move at different speeds in the

image plane. This relative motion between the background and the occlusion mask

generates new frequency components in the motion dimensions, as demonstrated in the

1D examples that follows.

Consider two sinuous signals ĝ(X) and Î2(X). Denote their images observed by a

1D projective camera placed at T as g(x, T ) and I2(x, T ). Assume the images observed

by the reference camera placed at the origin (T = 0) as g(x, 0) = sin ax + θ1 and

I2(x, 0) = sin bx + θ2. The observed combined reference image can then be written as:

I(x, 0) = g(x, 0)I2(x, 0) = sin (ax + θ1) sin (bx + θ2) (5.57)

Assume ĝ and Î2 are at depths Z1 and Z2 and the camera focal length is f . The

5Readers are referred to (5.60) for a formal explanation. As g and I1 are at the same depth, their
image speeds v1 = v2. From the first delta function, we have wx = ±a±b. Substitute it into the second
delta function, we have δ(ωT + wxv1). This constraint is the same as (5.11).
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translational speed of g and I2 are then v1 = f
Z1

and v2 = f
Z2

. The image taken at

position T can be written as

I(x, T ) = g(x, T )I2(x, T ) = sin (a(x− v1T ) + θ1) sin (b(x− v2T ) + θ2) (5.58)

Now let us compute the Fourier transform of the appearance signal. Notice that g(x, T )

and I2(x, T ) can be represented as shifted version of g(x, 0) and I2(x, 0). From pre-

vious analysis (see equations (5.7 – 5.11)), their Fourier transforms can be written as

G(ωx, ωT ) = G0(ωx)δ(ωxv1 + ωT ) and I2(ωx, ωT ) = I20(ωx)δ(ωxv2 + ωT ), where G0 and

I20 are the spectral support of g(x, 0) and I2(x, 0). Therefore we have

I(ωx, ωT ) = G(ωx, ωT )⊗I(ωx, ωT ) = G0(ωx)δ(ωxv1 + ωT )⊗I20(ωx)δ(ωxv2 + ωT ) (5.59)

Substitute the Fourier transforms of sinuous signals G0 = e−jθ1δ(ωx − a) + ejθ1δ(ωx + a)

and I20 = e−jθ2δ(ωx − b)+ejθ1δ(ωx + b) into (5.59), and use the property of convolution

with delta function f(t)⊗ δ(t− t0) = f(t− t0), we have:

I(ωx, ωT ) = e−j(θ1+θ2)δ(ωx − a− b)δ(ωT + av1 + bv2)

+ej(θ1+θ2)δ(ωx + a + b)δ(ωT − av1 − bv2)

+e−j(θ1−θ2)δ(ωx − a + b)δ(ωT + av1 − bv2)

+ej(θ1−θ2)δ(ωx + a− b)δ(ωT − av1 + bv2)

(5.60)

Equation (5.60) shows that the Fourier transform consists of 4 points whose coor-

dinates are ωx = ±a ± b in the image dimension and ωT = ±av1 ± bv2 in the motion

dimension respectively. Notice that the mask and background can have arbitrarily high

but close frequencies. When |a− b| < π
4x

(4x is the size of the blurred pixel), the im-

age blurring filter will not filter out the difference frequency components ωx = ±(a− b),

thus leaves two possible high frequency components of ωT = ±(av1− bv2) in the motion

dimension. When the background is at infinity, the frequency in the motion dimension
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becomes ωT = av1, clearly unbounded as a goes to infinity.

The previous example shows that the appearance signal can have high-frequency

component in the motion dimensions, and this high-frequency component can not be

filtered out by blurring in the image dimensions. Such un-filterable aliasing occurs when

the spectral supports of both the occluder and background consist of significant yet

close high-frequency components. In real world, this phenomenon happens, probably

more often than we expected. Consider looking at a building with horizontal patterns

through window blinds. However, in most cases the spectral support of the occluder

is dominated by low-frequency component. The following example studies the effect of

occlusion using a representative occluder: the gate function.

Consider a 1D gate function ĝ(X) at depth Z1, a general background Î2(X) at depth

Z2, and a 1D projective camera of focal length f . Denote their images captured at

reference camera position (T = 0) as g(x, 0) and I2(x, 0), where g(x, 0) is of the form

g(x, 0) =





1 |x| ≤ d
2

0 otherwise
(5.61)

The images captured at camera position T can be represented as shifted version of the

reference images: g(x, T ) = g(x − v1T, 0) and I2(x, T ) = I2(x − v2T, 0), where v1 = f
Z1

and v2 = f
Z2

are the image translational speeds. The Fourier transform of g(x, 0) is

G0 = d√
2π

sincdωx

2π
. The Fourier transform of the background I2(x, 0) can be represented

as the sum of a series of frequency components I20 =
∑

m cmδ(ωx − ωm). Substituting

G0 and I20 into (5.59) and using the convolution property of delta functions give:

I(ωx, ωT ) = d√
2π

sincdωx

2π
δ(ωxv1 + ωT )⊗∑

m cmδ(ωx − ωm)δ(ωxv1 + ωT )

= d√
2π

∑
m sincd(ωx−ωm)

2π
δ(ωT + (ωx − ωm)v1 − ωmv2)

(5.62)

Equation (5.62) shows that the Fourier transform in the image dimension is a sinc

function. While the support of the sinc function goes to infinity, more than 95% of its
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energy falls within the first envelop between [−1, 1]. Therefore it can be considered a

low-pass filter with a cut-off frequency of 1. This leads to the bound |ωx − ωm| ≤ 2π
d

.

Notice that the image blurring filter provides another bound |ωx| ≤ π
4x

. Substituting

these two bounds to the delta function of (5.62) gives the upper bound in the motion

dimension as ωTmax = max(2π
d

, π
4x

)v1. Notice that the second part corresponds to the

sub-pixel motion constraint described earlier (see (5.11)). For an arbitrary d, the overall

bandwidth in the motion dimension is determined by the first part ωTmax = 2π
d

f
Z1

6. The

corresponding step size for the lowest sampling rate is

4Tmax =
π

ωTmax

=
1

2

Z1

f
d. (5.63)

Notice that Z1

f
d is in fact the gate length of ĝ(X) in the world space. (5.63) thus indicates

that to avoid aliasing the sampling step size or the camera baseline should be smaller

than half the size of the occluder.

For the differential camera cluster (DCC) used in the experiments of this thesis (see

Chapter 7), the camera baseline is 34mm. This corresponds to a 68mm occluder. When

the scene consists of occluders smaller than 68mm, aliasing will occur. However, notice

that the Fourier transform in (5.62) has a coefficient of d√
2π

. Which means its energy

is weighted by d2

2π
. This weight drops fast as d decreases. Therefore, unless a majority

part of the scene is made up of small occluders, aliasing caused by small occluders does

not significantly affect the global Fourier transform of the appearance signal.

So far, our analysis has assumed the pinhole camera model where every point is in

focus. In practice, the camera sees the scene through a lens that has a physical size.

The back projection of an image point forms a cone in the scene space. The intensity of

an image point is the mean intensity of the incident light rays within that cone. This

6This bandwidth can not be effectively reduced by blurring the images. Increasing the blurring
magnitude may result in a smaller bound for ωx. However, one can always choose a ωx within that
bound and a ωm such that |ωx − ωm| = 2π

d .
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Figure 5.1: Illustration of occlusion observed by a thin-lens camera.

physical blurring of the lens can be considered as a low-pass filter, and can help alleviate

the aliasing caused by occlusion.

Fig. 5.1 illustrates a thin-lens camera model. The size of the lens is L, the focal

length is 1 and the image is focused at a plane of depth f . The scene consists of two

planes, the occluder at depth Z1 and the background at depth Z2. Two incident light

rays arriving at the same image point x are illustrated. The red ray passes through the

center of the lens. The green ray shows the general case of a light ray hits the lens at a

position a, gets refracted, then hits the image place at position x.

Now let us compute the Fourier transform of the appearance signal. From (5.56), we

can see that the Fourier transformation of a scene with occlusion can be decomposed

into three parts. Since the first two parts are merely the Fourier transform of Lamber-

tian scenes which has been extensively studied in the previous sections, our following

discussion will focus on the third part.

Using triangular equations, we can compute the coordinate of the two points where

the red ray intersects the mask and the background (indicated by hollow and solid red

circles in Fig. 5.1). Denoting the background intensity and the mask as I2 and g, we
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can represent the intensity of the light ray that passes through a and hits x as.

i(x, a) = g(−Z1x− Z1 − f

f
a)I2(−Z2x− Z2 − f

f
a) (5.64)

Let us now take into account the motion of the camera. Consider a reference image taken

at camera position X = 0, and a new image taken at camera position X = T . Since the

lens and the image plane move with the camera, the viewing ray passing through a and

x in the reference image still passes them in the new image. However, the new ray has

shifted by T in the world coordinate. Therefore, we can write

i(x, a, T ) = g[−Z1(x− a

Z1

+
a

f
)− T ]I2[−Z2(x− a

Z2

+
a

f
)− T ] (5.65)

The overall intensity at I(x, T ) is the integral of i(x, a, T ) over a. Let L be the diameter

of the lens, we can write the final intensity as

I(x, T ) = 1
L

∫ L/2

−L/2
i(x, a, T )da

= 1
L

∫ L/2

−L/2
g[−Z1(x− a

Z1
+ a

f
)− T ]I2[−Z2(x− a

Z2
+ a

f
)− T ]da

(5.66)

Using (5.66), we can represent the Fourier transform as a multi-integral.

I(ωx, ωT ) =

∫

a

∫

T

∫

x

g[−Z1(x− a

Z1

+
a

f
)−T ]I2[−Z2(x− a

Z2

+
a

f
)−T ]e−j(ωxx+ωT T )dxdTda

(5.67)

Let us first compute the inner integral over x.

İ(ωx) =
∫

g[−Z1(x− a
Z1

+ a
f
)− T ]I2[−Z2(x− a

Z2
+ a

f
)− T ]e−jωxxdx

=
∫

g[−Z1(x− a
Z1

+ a
f
)− T ]e−jωxxdx⊗ ∫

I2[−Z2(x− a
Z2

+ a
f
)− T ]e−jωxxdx

= 1
Z1

e
−j( a

Z1
− a

f
−T

f
)ωxG(ωx

Z1
)⊗ 1

Z2
e
−j( a

Z2
− a

f
−T

f
)ωxI2(

ωx

Z2
)

(5.68)

For general g and I2, we can decompose them into series of sinuous signals and write their
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Fourier transform as G =
∑

n cmδ(ωx − ωm) and I20 =
∑

n dnδ(ωx − ωn). Substituting

this representation into (5.68) we have

İ(ωx) = 1
Z1Z2

∑
m cme

−j( a
Z1
− a

f
−T

f
)ωxδ(ωx − Z1ωm)⊗∑

n dne
−j( a

Z2
− a

f
−T

f
)ωxδ(ωx − Z2ωn)

= 1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)e

−j(1−Z2
Z1

)(a−T )ωne
−j( a

Z1
− a

f
−T

f
)ωx

(5.69)

Substituting (5.69) into (5.67) and integrating over T , we have

˙̇I(ωx, ωT )

= 1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)e

−j(1−Z2
Z1

)(a−T )ωne
−j( a

Z1
− a

f
−T

f
)ωxe−jωT T dT

= 1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)e

−j(ωm+ωn−ωx
f

)
∫

ej(ωm+ωn)T e−jωT T dT

= 1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)δ(ωT − ωm − ωn)e−j(ωm+ωn−ωx

f
)da

(5.70)

We now integrate over a and compute the complete Fourier transform.

I(ωx, ωT ) = 1
L

∫ L
2

−L
2

1
Z1Z2

˙̇I(ωx, ωT )

= 1
L

∫ L
2

−L
2

1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)δ(ωT − ωm − ωn)e−j(ωm+ωn−ωx

f
)da

= 1
L

1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)δ(ωT − ωm − ωn)

∫ L
2

−L
2

e−j(ωm+ωn−ωx
f

)ada

= 1
Z1Z2

∑
(m,n) cmdnδ(ωx − ωmZ1 − ωnZ2)δ(ωT − ωm − ωn)sinc

(ωm+ωn−ωx
f

)L

2π

(5.71)

We are now ready to discuss the optical blurring provided by the lens. (5.71) consists

of a sinc function. As discussed earlier, sinc function is a low-pass filter and 95 % of

its energy is contained within its first envelope of [-1,1]. This cut-off frequency provides

one constraint |ωm + ωn − ωx

f
|L ≤ 2π. Notice that the second delta function of (5.71)

provides another constraint ωT = ωm +ωn. Combing these two constraints gives a linear

constraint that relates the image bandwidth to the motion bandwidth. |ωT − ωx

f
| ≤ 2π

L
.

ωx is bounded by the software blurring filter. Its bandwidth is π
4x

, where 4x is the

size of the blurred pixel. Substituting it to (5.71) gives the bandwidth in the motion

dimension ωT ≤ ωx

f
+ 2π

L
. Notice that f is the ratio between the focus depth and the
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Figure 5.2: Illustration of specular reflection.

focal length (see Fig. 5.1). When the camera is adjusted to focus at infinity, f goes to

infinity and the bandwidth in the motion dimension becomes

ωTmax =
2π

L
. (5.72)

The corresponding sampling step size is

4Tmax =
π

ωTmax

=
L

2
. (5.73)

The result shows that the physical blurring of the lens can eliminate any occlusion-based

aliasing if the motion is less than half the size of the lens.

5.3.3 Specular hightlights

In this subsection, I will study the Fourier transform of specular highlights using Phong

model 7. Fig. 5.2(a) illustrates a camera observing a specular surface under a static

lighting, N is the outward surface normal at surface point p, R is the direction of the

7In a perfect specular reflection, the reflection of the light is only visible when the surface normal is
precisely halfway between the direction of the light and the direction of the viewer. However, due to
the existence of microfacets, the reflected light is usually scattered around the direction of the mirrored
reflection. A number of models exist to predict the distribution of the reflected light. Here we choose
the most commonly used model, Phong model.
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mirror-reflection of the incident ray at p, and V is the reverse viewing direction from

p to the camera. Assume p is projected on the image plane at x. Using Phong model,

the pixel intensity I(x) can be represented using (5.74), where θ = arccos(R · V ) is the

angle between R and V , n is a constant scaler that indicates the surface specularly, and

IN is the maximum intensity acquired at θ = 0.

I(x) = IN(x) cosn(θ(x)) (5.74)

Consider a 1D camera placed at the reference pose X = 0. It captures an image

I0, where p is projected at x0 with angle θ0 between R and V and angle α0 between

R and the image plane. Let the camera translate T along the direction of the image

plane, and captures another image I(x, T ), in which p is imaged at xT with θT . When

motion T is small (compared to the scene depth Z), the change of θ, cos θ and the ratio

of cosn θ can be linearized using small angle approximation, Taylor expansion, and the

linear approximation of (1 + ε)n ≈ 1 + nε.

θT = θ0 +
sin α0T

Z
(5.75)

cos θT = cos θ0 − sin θ0
sin α0T

Z
(5.76)

cosn θT

cosn θ0

= (
cos θ0 − sin θ0

sin α0T
Z

cos θ0

)n = 1− n tan(θ0) sin α0
T

Z
(5.77)

Using equations (5.75–5.77) and the image flow of xT = x0 − f
Z
T , we can represent

I(x, T ) using the transform of reference image I(x, 0) and compute its Fourier transform.

I(x, T ) = I0(x− f

Z
T )(1− n tan(θ0(x))

sin(α0(x))T

Z
) (5.78)

I(ωx, ωT ) = I0(ωx)δ(ωT +
f

Z
ωx)− I0(ωx)δ(ωT +

f

Z
ωx)⊗ n

Z
F [tan(θ0(x)) sin(α0(x))T ].

(5.79)
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The Fourier transform F [tan(θ0(x)) sin(α0(x))T ] can be computed as

F [tan(θ0(x))T ] =
∫ ∫

tan(θ0(x)) sin(α0(x))Te−j(ωxx+ωT T )dxdT

=
∫

tan(θ0(x)) sin(α0(x))e−jωxxdx
∫

Te−jωT T dT

= Θ0(ωx)j
√

2πδ′(ωT )

(5.80)

where Θ0(ωx) is the Fourier transform of tan(θ0(x)) sin(α0(x)). Substituting (5.80) into

(5.79) gives

I(ωx, ωT ) = I0(ωx)δ(ωT +
f

Z
ωx)− j

n
√

2π

Z
I0(ωx)δ(ωT +

f

Z
ωx)⊗Θ0(ωx)δ

′(ωT ). (5.81)

The first term of (5.81) is the Fourier transform of the stack of translated reference

images. It provides the same constraint between the bandwidths of ωx and ωT as (5.11).

Let us now study the second term that corresponds to the change of the intensities with

respect to the change of the viewing directions. Using equations
∫

f(x)δ(x−a) = f(x−a)

and
∫

f(x)δ′(x− a) = −f ′(a), the convolution can be computed as

∫ ∫ I0(ωx − a)δ[(ωT − b) + f
Z
(ωx − a)]Θ0(a)δ′(b)dadb

=
∫ I0(ωx − a)Θ0(a)δ′[ωT + f

Z
(ωx − a)]da = I ′0(−Z

f
ωT )Θ′

0(ωx + Z
f
ωT )

(5.82)

I ′0(−Z
f
ωT ) does not provide any constraint on the bandwidth of ωT . However ωT will be

bounded when Θ′
0 is bandlimited. Assume the cut-off frequency of Θ′

0 is c, which gives

the constraint |ωx + Z
f
ωT | ≤ c. Notice that the image blurring process provides another

constraint |ωx| ≤ π
4x

, where 4x is the size of the blurred pixel. Combining these two

constraints gives us the bound

|ωT | ≤ f

Z
(c +

π

4x
). (5.83)

The question then becomes whether Θ′
0 is bounded. In the rest of this section, I will
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first prove that Θ′
0 is bounded for an planar specular surface. I will then conceptually

discuss the bound for curved surfaces.

Consider a 1D camera observing the reflection of a distant light source through a

planar specular surface ( illustrated in Fig. 5.2(b)). Assume R and V overlaps (θa = 0)

at surface point pa with projection xa in the reference image . Without loosing generality,

let us assume xa = 0. The angle between R and V of a point p projected at x can then

be written as θ0(x) = arctan(x
f
). Or, tan(θ0(x)) = x

f
. Since α0 is the angle between R

and the image plane, we have sin(α0(x)) = f√
x2+f2

. We can then compute Θ0(ωx) as

Θ0(ωx) =

∫
tan(θ0(x)) sin(α0(x))e−jωxxdx =

∫
x√

x2 + f 2
e−jωxxdx =

f

π3/2
K1(fωx)

(5.84)

where K1 is the modified Bessel function of the second kind. From (5.84) we can compute

that Θ′
0(ωx) is in the form of K2(fωx). K2(fωx) is an exponentially decaying function

that goes to infinity at ωx = 0. Since most of the energy of K2(fωx) is covered within

an infinitely small band around ωx = 0, Θ′
0(ωx) has an infinitely small bandwidth or

c = 0. Apply this result to (5.83), we can see that the angular frequency in the motion

dimension is bounded by ωTmax = f
Z

π
4x

. The bandwidths in the motion dimensions are

not increased by specular highlights reflected from a planar surface. The corresponding

maximum image flow is still 4x.

The calculation of the bandwidth of Θ′
0(ωx) for a curved surface is more complicated,

and will not be covered in this thesis. In general, Θ′
0(ωx) of a scene consisting of

curved surfaces has non-zero bandwidth. However, for a smooth surface with small

curvature, tan(θ0(x)) will change smoothly and Θ′
0(ωx) will have a small bandwidth.

This will result in an increased but still bounded bandwidth in the motion dimension

(see (5.83)). To accommodate the increased bandwidth in the motion dimension, we

need to sample the appearance manifold at a higher spatial frequency. For scenes with

high curvature surfaces, Θ′
0(ωx) will have large bandwidth in the motion dimension, and
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aliasing will occur. However, a larger curvature also means a smaller radius. Therefore

high curvature surface areas typically have small image supports, and specular highlights

from these areas usually only contribute to an insignificant part of the global energy of

the appearance signal.
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(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

   
(d1) (d2) (d3) 

   
(e1) (e2) (e3) 

 
Figure 5.3: Fourier transform of the 2D cross-sections of the 3D appearance functions
associated with X and Z translations. (a): planar scenes. (b): cross-section images of
ITx on X − Tx plane. (c): Fourier transform of (b). (d): cross-section images of ITz on
X − Tz plane. (e): Fourier transform of (d).
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(a1) (a2) (a3) 

   
(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

   
(d1) (d2) (d3) 

 
Figure 5.4: Fourier transform of four 3D appearance functions associated with four 1D
motions. First row: X translation. Second row: Z translation. Third row: X rotation.
Fourth row: Z rotation. First column: Spectral support on the ωx − ωy plane (a1)
ωTx = 0, (b1) ωTz = 0, (c1) ωRx = 0, (d1) ωRz = 0. Second column: Spectral support of
the ωy = 0 plane. Third column: Spectral support on the ωx = 0 plane.
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Chapter 6

Motion Segmentation

In the previous chapters, I have introduced the theory and techniques for sampling

and linearizing the local appearance manifold. Based on this local linearization, I have

developed a differential approach to tracking a rigid motion. In this chapter, I will

discuss the usage of such a locally linear model for a different application: 3D motion

segmentation. More specifically, I will present an approach to clustering individual

image pixels into groups associated with different 3D rigid motions.

6.1 Related work

Motivated by the research in 2D motion estimation, in particular optical flow, most

early approaches to motion segmentation address the problem of segmenting pixels using

dense 2D flow fields. For instance, Black and Anandan use robust statistics to handle

discontinuities in the flow fields (BA96). In layered approaches (XS05) (WA94), images

are segmented into a set of layers. These methods work on image motion and can not

be extended to accommodate 3D motion.

Common approaches to 3D motion analysis segmentation are feature-based. They

usually aim at clustering feature points according to their underlying motion. Early

work includes applying robust statistic methods like RANSAC (FB87). Ozden et al.

present a feature based 3D reconstruction system that can simultaneously estimate the



camera motion and track independently moving objects (OSvG07). The system is based

on several hypothesis tests for the segmentation of the different observed motions. Pi-

oneered by Costeira and Kanade’s work, multi-body factorization based methods have

been proposed (CK95) (Gea98) for segmenting independent affine motions. These algo-

rithms use as input a matrix of 2D feature trajectories (sequences of image coordinates

of feature points across multiple frames), then use algebraic factorization techniques to

cluster the feature trajectories into groups with different motions. One issue with the

factorization method is that it assumes independent motion. Recently, to address more

complicated scenes that exhibit partially dependent-motion, (VH04) (YP06) propose to

solve motion segmentation by clustering the motion subspaces spanned by the feature

trajectories.

Compared to the prosperous research in feature-based techniques, dense (per-pixel)

3D motion segmentation is to a large extend unexplored. To my knowledge, only one

effort has been made to address this problem (ZMMI06). In this approach, image re-

gions are segmented using optical flow, or more exactly, covariance-weighted optical flow

approximated using spatial and temporal intensity derivative measurements 1, under the

assumption of brightness constancy. A covariance-weighted flow-field matrix is formed

by stacking row vectors of transformed horizontal and vertical flows of all image re-

gions across multiple frames. Motion-based segmentation is achieved by factorizing the

covariance-weighted flow-field matrix into a motion matrix and a shape matrix. Then

regions with same motion are grouped by computing and sorting a reduced row echelon

form of the shape matrix.

In this chapter, I will present an approach to clustering individual image pixels

associated with different 3D rigid motions. Similar to (ZMMI06), my method is based

on the observation that the image measurements captured from different perspectives

1Since the flow estimate is usually noisy, Irani proposed to compute a covariance-weighted flow-field
using intensity measurement, and showed that the subspace constraints for the original flow-field can
also be applied to the transformed flow-fields. Details can be found in (Ira02).
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across multiple frames span a linear subspace. However, instead of 2D flow fields I use

the less noisy 1D pixel intensities as the input measurements. Specifically, I introduce

the notion of the pixel intensity trajectory, a vector that represents the intensity changes

of a specific pixel over multiple frames. Like the 2D feature trajectories, the intensity

trajectories of pixels associated with the same motion span a low-dimensional linear

subspace. I therefore formulate the problem of motion segmentation as that of clustering

local subspaces. Unlike the flow-based technique, this linear model of the intensity

measurements does not require strict brightness constancy. As I will show later, it

can be extended to accommodate more general cases, such as illumination changes on

Lambertian surface under directional lighting. For segmenting motion subspaces, I apply

spectral clustering to the intensity trajectories. This classification technique addresses

some issues of direct matrix factorization, such as the noise-sensitivity (GW06) and the

difficulty in handling partially dependent motion (Kan01).

6.2 Clustering motion subspaces

In this section, I describe the notion of the intensity trajectory, and show that the

intensity trajectories of pixels associated with the same motion span a low-dimensional

subspace.

6.2.1 Intensity trajectory matrix

To begin, let us consider a projective camera and a scene with constant uniform illumina-

tion. The image intensity of a pixel (x, y) is a function of the pose P = [X,Y, Z, α, β, γ]

of the corresponding imaged surface point in the camera viewing space. Let I(x, y, P )

be the image intensity, or a filtered version of the image intensity. Using the brightness

constancy equation, we can compute a local linearization of the intensity function using
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a Taylor expansion

I(x, y, P + dP ) = I(x, y, P ) +
∂I(x, y)

∂P
dP (6.1)

where dP represents a 3D motion in viewing space. If dP is small, namely image motion

caused by dP is sub-pixel, the change of intensity dI can also be locally linearized as

dI(x, y) = I(x, y, P + dP )− I(x, y, P ) =
∂I(x, y)

∂P
dP (6.2)

Now consider a reference image I0 captured at pose P0, and a sequence of f images

Ii at nearby poses Pi. We can compute f difference images dIi = Ii−I0. Thus each pixel

(x, y) is associated with an f -vector of intensity changes [dI1(x, y), dI2(x, y), ..., dIf (x, y)]T

that corresponds to a chain of motions [dP1, dP2, ..., dPf ]
T . We call this f -vector of in-

tensity changes a pixel intensity trajectory (as oppose to the 2D feature trajectories).

Combining the intensity trajectories of all n image pixels, we can construct an inten-

sity trajectory matrix W . The rows of W represent difference images, and its columns

represent pixel intensity trajectories.

W =

∣∣∣∣∣∣∣∣∣∣

dI1,1 ... dI1,n

...
. . .

...

dIf,1 ... dIf,n

∣∣∣∣∣∣∣∣∣∣

Readers may have found out that the intensity trajectory matrix W is similar to dI

used in (3.3) of Section 3.2. Like dI, W is constructed using changes of pixel intensities.

Besides, as I will show in the next section, W also provides a linear subspace represen-

tation of the local appearance manifold. The difference is, for motion estimation, we

use subspaces spanned by the difference images (multiple pixels single frame) or rows

of W . While for motion segmentation, we are interested in subspaces spanned by the

intensity trajectories (single pixel multiple frames) or columns of W .
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6.2.2 Motion subspaces

Consider a scene with a single 3D rigid motion. Using equation (6.2), W can be decom-

posed into two matrices: a motion matrix M of size f × 6 and an intensity Jacobian

matrix F of size n× 6 as follows.

W = MF T (6.3)

M =

∣∣∣∣∣∣∣∣∣∣

dP1,1 ... dP1,6

...
. . .

...

dPf,1 ... dPf,6

∣∣∣∣∣∣∣∣∣∣

, F =

∣∣∣∣∣∣∣∣∣∣

∂I
∂P 1,1

... ∂I
∂P 1,6

...
. . .

...

∂I
∂P n,1

... ∂I
∂P n,6

∣∣∣∣∣∣∣∣∣∣

If the scene texture and the motion are non-degenerate, M and F are of rank 6.

Thus the intensity trajectory matrix W is at most rank 6 (less for degenerate cases). In

other words, the intensity trajectories of pixels associated with a single 3D rigid motion

span a linear subspace of rank less than or equal to 6.

Now consider a scene with k different rigid motions. In this case, the image pixels

belong to k different groups that are associated with the k underlying motions. To show

the structure of the W matrix, we assume a certain permutation matrix Λ to sort the

pixels with respect to their associated motions, such that

WΛ = |W1,W2, ..., Wk|

= |M1,M2, ..., Mk|

∣∣∣∣∣∣∣∣∣∣∣∣∣

F T
1

F T
2

. . .

F T
k

∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.4)

For each groups of pixels, we have

Wi = MiF
T
i (i = 1, 2, ....k) (6.5)
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where Mi and Fi are the motion matrix and intensity Jacobian matrix for the i-th group,

and Wi is the concatenation of intensity trajectories of pixels in that group. Again

rank(Wi) ≤ 6. Equations (6.4) and (6.5) show that the pixel intensity trajectories

extracted from an image sequence captured in a scene with k rigid motions can be

clustered into k groups. Each of them span a linear subspace of rank less than or equal

to 6. Therefore we can achieve motion segmentation by clustering subspaces expanded

by the intensity trajectories.

Although I will only discuss 3D rigid motion in this thesis, I believe the above analysis

can be extended to more general motion such as articulated, non-rigid motion. Just like

parameterizing dI into a 6D space for rigid motion, for a general motion of rank m,

we can map dI into an mD space represented by its motion parameters. In this case

the motion vector dP becomes an mD vector. We can still decompose the intensity

trajectory matrix W into the motion matrix M and the intensity Jacobian matrix F .

All three matrices are of rank m. Thus the intensity trajectories of pixels corresponding

to a general motion of rank m span an mD subspace.

6.2.3 Motion subspaces under directional illumination

The previous analysis assumes brightness constancy. In this section, I will show that

such a constraint can be relaxed to accommodate scenes with Lambertian objects and

constant directional light sources.

Consider a scene that consists of m light sources with directions Li and magnitudes

li (i = 1...m), and a 3D point p on a convex object with surface normal N and albedo

λ. If we denote the incidence angle, the angle between the ray from light source i and

the surface normal at p, to be θi, the intensity of p can be written as

I =
m∑

i=1

li λ max(Li ·N, 0) =
m∑

i=1

li λ max(cos θi, 0) (6.6)
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Denote the half cosine function as ki = max(cosθi, 0).

Its derivative can be written as 2

∂ki

∂θi

=




− sin θi − π

2
< θi < π

2

0 otherwise
(6.7)

Now let us consider the change of the intensity caused by the motions of the object

and the camera. We denote object motion as dPo. Unlike the dP used in previous

sections, dPo is defined in the world space. We begin our discussion by assuming a

fixed camera. When the object motion consists of nonzero rotational components, the

surface normal and the incidence angles will change accordingly. Denote the change of

the incidence angle of light source i as dθi. For a small dPo and thus a small dθi, we

can apply Taylor extension and represent the change of the pixel intensity dI as a linear

function of dθi.

dI = λ

m∑
i=1

li
∂ki

∂θi

dθi (6.8)

Equation (6.8) shows that the change of intensity dI of point p is a linear function of

dθi. For fixed distant light sources, the incidence angle θi (i=1...m) is determined by

the surface normal N . Therefore, θi is function of N . Under small motion, we can

approximate the change of incidence angle dθi as a linear function of the change of the

surface normal dN .

dθi = arccos(Li · (N + dN))− arccos(Li ·N)

≈ − 1
2
√

1−(Li·N)2
Li · dN = − 1

sin θi
Li · dN

(6.9)

If θi is not zero, it is clear that dθi is a linear function of dN . Notice that θi is zero only

when N and Li align with each other. In this case, dN is perpendicular to Li. Using a

2The partial derivative ∂ki

∂θi
is unbounded at θi = 0. This indiscontinuity only affects pixels lying

exactly on the illumination silhouette of the light sources. In practice, its effect is usually blurred out
by the low-pass filtering process.
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small angle approximation of sin θ = θ, we have dθi = sin dθi = dN . Equation (6.8) and

(6.9) show that dI is a linear function of dθi, which is a linear function of dN . Since dN

is clearly a linear function of dPo, we show that the change of intensity dI is a linear

function of the object motion dPo.

Under the small motion assumption, dN has only two degrees of freedom (on the

plane perpendicular to N). Thus the change of intensity dI caused by the change of

illumination lies in a 2D subspace. For a fixed camera, the relative motion between the

object and the camera dP is the same as dPo. Thus the 2D illumination subspace is

embedded in the 6D motion subspace. In more general cases, where both the object

and the camera move independently, dP is independent of dPo. The 2D illumination

subspace and the 6D motion subspace are orthogonal. Therefore, for a scene with convex

Lambertian objects and constant directional light sources, the intensity trajectories of

pixels corresponding to the same underlying motion generally span a 8D subspace.

6.3 Motion segmentation by clustering local sub-

spaces

I have shown that given a number of local image samples captured at nearby poses

(sub-pixel motion), one can construct an intensity trajectory matrix W . The 3D motion

segmentation can be formulated as clustering columns of W with respect to their different

underlying motion subspaces.

The clustering of columns can be achieved by factorizing the measurement matrix

(CK95) (Gea98) (ZMMI06). However, matrix factorization requires the underlying mo-

tions to be independent (Kan01), an assumption that is often violated in real environ-

ments. Recently, researchers have attempted to address partially-dependent motion.

Most notably are Vidal and Hartley’s algebraic-based approach (VH04) and Yan and

Pollefeys’s spectral-based approach (YP06). A good review of these methods can be
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found in (TV07).

In this thesis, I employ the so called Local Subspace Affinity (LSA) method for

clustering motion subspaces (YP06). The LSA algorithm is based on the local linear

projection and spectral clustering. Instead of working directly on the trajectory matrix

W , LSA fits a local subspace for each point and constructs a similarity matrix A using

the pairwise distances between the local subspaces. Motion segmentation is achieved

by spectral clustering of the similarity matrix. The algorithm can be described in four

steps:

Step 1. Dimension reduction and data normalization: Remove redundant

dimensions (usually contributed by noise) by projecting the trajectories from Rf

onto a lower dimensional space Rl using SVD. Then normalize these l-vectors onto

a unit hyper-sphere.

Step 2. Local subspace estimation: For each projected point pi, find its

nearest neighbors on the hyper-sphere (not from the image space) and compute a

local linear subspace Si of dimension m.

Step 3. Similarity matrix construction: Compute the distances (principle

angles) between local subspaces, and construct a similarity matrix A, using Equa-

tion (6.10), where θijh is the h-th component of the principle angle vector between

two local subspaces Si and Sj.

Aij = exp(−
m∑

h=1

sin2 θijh) (6.10)

Step 4. Spectral clustering : Apply the spectral clustering (NJW01) to the

similarity matrix A and segment data into k clusters, where k is the number of

different rigid motions in the scene.

There are two potential causes of segmentation error in the above algorithm. First,

the neighbors selected in step 2 can be pixels of different subspaces. Second, the se-
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lected neighbors may not fully span the underlying motion subspace. In both cases, the

local subspace tend to have similar distances to several motion subspaces, and misclas-

sification may occur. To address this issue we have developed a refinement procedure

(Step 5). In this procedure, we identify ambiguous pixels by comparing their distances

to different motion subspaces, then reclassify them using the spatial continuity of the

moving objects.

Step 5a.1: For each cluster, compute a global motion subspace spanned by all

the pixels belonging to it, using the result from step 4.

Step 5a.2: For each pixel, compute the pixel-to-cluster distance as the distance

between its local subspace and its classified global subspace. Then for each cluster,

compute the median of the in-cluster pixel-to-cluster distance.

Step 5a.3: For each pixel compute the distances between its local subspace and

all k global subspaces, normalized by the median in-cluster distance. Compute the

ratio of the smallest and the second smallest normalized distances. Classify a pixel

as an ambiguous-pixel if its ratio is bigger than a threshold (in all the experiments

we set it to be 0.7).

Step 5b: For each ambiguous pixel, search for its neighbors in the image space

and classify it to the majority class.

Step 5 exploits the fact that an object covers a continuous region in the image. Based

on the same spatial continuity assumption, we can further refine the segmentation with

a simple outlier-correction process. We consider an isolated pixel, a single pixel labeled

differently from all its neighbors, to be an outlier. Therefore, we search for these single-

pixel holes and group them to be consistent with their neighbors.

Note that in the original work (YP06), the dimensions of the projected space l and

the local subspace m are automatically determined using a rank detection algorithm to

accommodate general unknown motion such as articulated or non-rigid motion. Since

94



this thesis only addresses 3D rigid motion, I choose l and m to be 6k and 6 for scenes

with uniform lighting or 8k and 8 for directional lighting.

6.4 Acquiring local appearance samples

So far, we have formulated the problem of motion segmentation as clustering linear

subspaces spanned by columns of the intensity trajectory matrix. To construct the

matrix, we need to capture a sequence of local appearance samples. In theory, to span a

motion subspace of rank k, we need at least k+1 image samples. This number is usually

bigger in practice due to the noise issue. Since our subspace formulation is based on

linearizing the local appearance manifold (see Equation (6.1)), the motion of the imaged

surface across the sequence needs to be small (within the linear region).

It is feasible to acquire sufficient local samples for normally moving objects using

commodity imaging devices. First, we can use the common technique of blurring the

original image to smooth the appearance manifold. The enlarged linear region can then

accommodate a larger motion. Secondly, the speed of commodity camera has become

high enough to densely sample motion in most practical scenes. For instance, the Point-

Gray Flea2 camera can capture at 80 frames-per-second at VGA resolution. Moreover,

for sampling 3D rigid motions in an ambient-lit environment, we can reduce the number

of temporal frames by using a small-baseline camera cluster such as the DCC prototype

described in Section 4.1 3. At each frame, a DCC provides seven appearance samples, all

captured from slightly different perspectives. Commercial products are also available.

3This is based on the dual relationship between the camera motion and the object motion. The basic
idea is that images captured by cameras from different perspectives can be considered as appearance
samples of the target object at different poses. Note that for a non-ambient lighting environment, an
object can be illuminated differently at different poses. However, the appearance samples from the
DCC are captured simultaneously when the object is at a certain pose. They do not record the possible
illumination changes associated with the real object motion. Therefore, strictly speaking, this technique
can only be applied in scenes where the brightness constancy assumption holds. However, in common
cases the target object moves slowly with respect to the camera frame rate, the appearance difference
caused by the illumination changes is usually small, and the illumination consistency requirement is
usually satisfied in a relaxed form.
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For instance, using its 5x5 camera array (12mm spacing), the Point-Gray’s ProFUSION

captures 25 local appearance samples at a time.
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Chapter 7

Experiment results

In this chapter, I will evaluate the appearance-based differential tracking and motion

estimation algorithms that I have introduced in Chapter 3 and 6. I will first present

results on differential camera tracking where I captured local appearance samples on line

using a DCC. Then in the sample-through-rendering setup, I will demonstrate tracking

a rigid object with an off-line appearance model. I will show results on tracking, illumi-

nation correction and texture refinement. Finally, I will present experiment results on

appearance-based motion segmentation.

7.1 Differential camera tracking using online sam-

ples

I begin the demonstration of differential camera tracking with a synthetic experiment.

I simulated a scene that consists of a textured planar patch and a curved mirror, both

contained inside a cube. The inner six surfaces of the (surrounding) cube were textured.

I placed the simulated DCC in front of the curved mirror such that it viewed some of the

scene beyond the edges of the mirror, and some of the reflection. Traditional tracking

techniques would not perform well on this data, since the epipolar constraint does not

hold for the distorted scene as reflected in the curved mirror.



In Figure 7.1, I present some tracking results on the synthetic scene over 40 frames.

Figure 7.1(a) shows an original image (640 × 640). The border of the curved mirror

is marked green. We can see that the reflection of the planar patch is distorted by the

curved mirror. When generating the image sequences, I restricted the maximum extent

of the camera motion so that the pixel motion for frontal scene points would be less than

4 pixels. To smooth the appearance manifold, I blurred the images (shown in Fig. 7.1(e))

using a Gaussian kernel of 160 × 160 with σ = 24 and sub-sampled them at 32 cycles

(20 pixels). I chose a σ that was larger than the analysis result shown in Chapter 5 to

accommodate the reflection of the rear scene, which could move faster in the image plane

than the front scene. I show the translation and rotation estimates in Fig. 7.1 (b-d) and

(f-h). The horizontal axes represent frame numbers and the vertical axes represent the

accumulated motion across the previous frames. The red (solid) curves represent the

true value, and blue (dashed) curves represent the estimated value. The translation and

rotation of the camera are defined in the coordinate system of the center camera at the

first frame.

In the second experiment, I demonstrate tracking a real DCC. The DCC was built

using four PointGrey Flea digital color cameras (see Figure 4.2). The color images

were converted to grayscale for scene appearance samples. The baselines between the

cameras were about 34 mm in the X and Y direction, and 66 mm in the Z direction. As

described in section 4.1.2, geometric and photometric consistencies were enforced across

the four cameras.

To obtain some form of a ground-truth reference motion path, I moved the camera

cluster along a pre-determined grid points marked on a table (the X-Z plane) while

imaging the scene. The results are shown in Fig. 7.2. An original image and its blurred

version is shown in Fig. 7.2(a) and (e). The resolution of the original image is 1024×768.

The image was blurred using a Gaussian kernel of 160× 160 with σ = 24, and then sub-

sampled at a ratio of 20 to 1. The accumulated translations and rotations are shown
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Figure 7.1: Tracking in a synthetic scene with a curved mirror over 40 frames. (a) An
image of the synthetic scene. The border of the curved mirror is marked in green. (e)
A blurred image. (b)-(d) Estimation of camera translations (in mm) in X, Y and Z
directions. (f)-(h) Estimation of camera rotation angles (in degree) around Y, X and
Z axes. Red (solid) curves represent the true values of the accumulated motion, blue
(dashed) curves represent the estimated values of the accumulated motion.

in Fig. 7.2(b-d) and (f-h). Again, the translations and rotations are defined in the

coordinate of the center camera at the first frame. We can see that the algorithm

achieves good estimates of X and Y translations, and the estimated rotations and Z

translations are small. I believe the exhibited error is due primarily to the inherent

drift in any (incremental) approach, and to registration error introduced by our manual

alignment process.

The third experiment shows the tracking of a hand-held camera cluster over 200

frames. As the ground truth motion was unknown, I illustrate the tracking accuracy

using projection error. I chose seven reference points in the scene. Using a standard

OpenCV KLT tracker, I extracted and matched their 2D coordinates in two camera im-

ages of the first frame at sub-pixel accuracy. I then back-projected them and computed

their 3D positions in the coordinates of the center camera at the first frame. As the
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Figure 7.2: Tracking a controlled camera motion over 20 frames. (a) An image of the
real scene. (e) A blurred image. (b)-(d) Estimation of camera translations (in mm).
(f)-(h) Estimation of camera rotation angles (in degree). Red (solid) curves represent
the true values of the accumulated motion, blue (dashed) curves represent the estimated
values of the accumulated motion.

cluster moved, I estimated its incremental motion at every frame and compute the accu-

mulated motion between the current frame and the first frame (see section 3.3). These

accumulated motion parameters can be used to compute a projection matrix of the cen-

ter camera at its current pose. I then used the estimated projection matrix to project

the reference 3D points onto the current center image, and indicated their projections

with white patches surrounded by red circles (see Figure 7.3). Figure 7.3(a) shows

the reference points in the center image of the initial frame. Their projections using the

estimated motion parameters are shown in Figure 7.3(b-f). Since the reference points

are initially back-projected using small baseline stereo, the computed 3D positions may

be considerably off from their true values. Therefore the final projection result contains

error from both the incremental tracking and the initial triangulation process.

In the fourth experiment, I tracked the DCC moving in a scene with semi-transparency.

Specifically, I pointed the cameras toward a large window and captured an image se-

quence at dawn. The indoor lighting environment was adjusted such that the cameras
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saw both the outside and the reflection of the inside (see Fig. 7.4). This was a chal-

lenging environment for most feature-based motion estimation systems. Since the image

was a superimposition of two layers undergoing different motion, typical feature-based

algorithms would encounter difficulties extracting and matching features. As I did in

the third experiment, I computed the projection matrices from the camera motion es-

timate and projected the reference scene points onto the center image (Fig. 7.4(b-f)).

However, since the standard KLT method does not handle semi-transparency well, I

manually selected the reference points in the initial frame (Fig. 7.4(a)) at an integer

pixel accuracy.

In the previous experiments, I tested the differential tracking algorithm on some

unknown camera motion. The estimation result was illustrated using backprojection

error. For a direct evaluation, I have set up another experiment where I used an external

tracker to acquire the ground-truth of the motion. Specifically, I used the NDI Optotrak

3020, a high-end commercial optical tracking system. The key component of the system

is a position sensor that consists of three cameras mounted permanently in a bar (see

Figure 7.5(b)). These cameras are calibrated by the manufacturer and are designed to see

only the wire-coupled (synchronized) LED markers inside its working volume. To relate

the DCC to the Optotrak, I mounted a rigid panel with four markers on the box of the

cluster (see Figure 7.5(c)). I measured the positions of the markers using the Optotrak

system software and stored them as a rigid object model. At runtime, the Optotrak

captured the 3D position for each marker and output the pose of the rigid model.

Since the DCC and the markers are fixed to each other, I then applied a coordinate

transformation to acquiring the pose of the camera cluster. In this experiment, I used

a DCC built with four black-and-white PointGrey flea2 cameras.

I present results in Figure 7.5. The red (solid) curves represent the accumulated mo-

tion reported by the Optotrak system, and blue (dashed) curves represent the estimate

from our differential tracker. We can see that the differential tracker worked reason-
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ably well. The maximum accumulated translation and rotation error in one dimension

over 120 frames was about 10mm and 0.5 ◦. During that period of time, the maximum

translation and rotation of the camera in one dimension was about 370mm and 6 ◦.

7.2 Differential object tracking using an off-line ap-

pearance model

In the previous section, I have tested tracking camera motion using local appearance

samples captured online. While a complete model of the entire scene is hard to acquire,

we can usually afford to model the appearance of a specific object. In this case, local

appearance samples can be acquired using the sample-through-rendering technique (see

section 4.2). In this section, I will apply the differential approach to tracking a rigid

object with an appearance model. I will show results on tracking, illumination correction

and texture refinement.

First I present results on synthetic data. The synthetic scene consisted of a textured

sphere (an earth model), two cameras, and two distant light sources. One light source

remained static, and the other changed its direction. To start the experiment, I randomly

generated a motion sequence 1. I then applied this motion sequence to the textured

sphere and rendered a sequence of images from the camera views with OpenGL lighting

enabled. The resulting synthetic image sequence was used as the test data.

During tracking, for each frame I rendered synthetic images of the sphere around its

current estimated pose. But this time, the OpenGL lighting was disabled. To acquire

illumination-corrected local appearance samples, I estimated an illumination normal

map (INM) and applied it to the images rendered without lighting (see section 4.2.1).

The process of illumination correction is illustrated in Figure 7.6. I computed the two

1I generated a sequence of random numbers. I then used these random numbers as the acceleration
parameters and integrated them to form a motion sequence.
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INMs shown in (c) by matching pixel intensities in image pairs (a,d) and (b,e). Although

(a) and (b) were textured differently, they were rendered under the same illumination.

As shown in (c), the INMs computed from (a) and (b) are very similar. This shows that

the INM estimation was insensitive to the surface texture. After illumination estimation,

I applied the upper INM to (d) and generated the illumination-corrected image (f). I

then used (f) as one of the local appearance samples. The results on tracking and INM

estimation of the synthetic sphere under varying lighting conditions are shown in Figure

7.7. We can see from the estimated INMs (middle row) that the direction of the light

source had changed within the sequence. Watch the dark spot in the right side of the

first INM moves to left side in the third INM. The resolution of the INMs shown in 7.6

and 7.7 is 72 × 36, or a spacing of 5 × 5 degrees between pixels. The tracking result

is illustrated in the bottom row. Wire-frame sphere rendered using the estimated pose

parameter are superimposed onto the original images.

I also tested the differential tracking method on real data. I used two calibrated and

synchronized Point Grey Dragonfly cameras to capture image sequences of an ambient

cube undergoing 6D free motion. The cameras were set to capture at 15 frames per sec-

ond. Photo-consistency was not enforced, thus an INM is estimated for each of the two

cameras. The scene environment consisted of an ambient lighting and two strong distant

light sources. The pose of the cube was manually initialized. Figure 7.8 illustrates the

effect of illumination correction. Figure 7.9 shows the results of tracking with and with-

out illumination correction. Wire-frame cubes were rendered using the estimated pose

parameters and superimposed onto the original images. With illumination correction,

the system tracked the cube well in the entire sequence of 200 frames (see the top row).

However it lost tracking in only a few frames without illumination correction (see the

bottom row). In addition to estimating the motion and illumination, the system also

refined the texture of the input object model as it included texture in the state param-

eters of the Kalman filter. The result of the texture refinement is presented in Figure
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7.10. Note that the texture extracted from real image (d) is significantly darker than

(a), which indicates an illumination difference between the modeled and the real scene.

However the refined texture (c) was estimated using illumination-corrected images thus

preserved the inherent luminance from the initial texture input (b).

7.3 3D dense motion segmentation

As described in Chapter 6, the linearization of the local appearance manifold also pro-

vides a means for (per-pixel) dense 3D motion segmentation. In this section, I will

present results on clustering pixels associated with different underlying rigid motions. I

tested my appearance-based motion segmentation algorithm on three real data sets. All

of them contained two rigid motions: the camera and one moving object.

I will first show the result of classifying intensity trajectories captured using a camera

cluster. Specifically, I built a DCC using four Point-Gray Flea2 black-and-white cameras.

The DCC captures seven spatial samples at a time thus helps to reduce the number of

temporal frames. In addition, this cluster setting can ensure the capturing of the full

6D motion subspace for any object in the scene 2, even if the real object motion within

the sequence is degenerate. Note that while I used a DCC in the first experiment, for

the above reasons, the motion segmentation algorithm is general and is not restricted

to a cluster setup. In the second and the third experiments, I tested it using a single

camera setup.

The cameras that I used in the experiments captured images at VGA resolution.

However, to accommodate larger motion, I blurred the images to smooth the appearance

manifold. In all the experiments, I blurred the original images and sub-sample the

blurred images at a 20-to-1 rate. I then ran the motion segmentation algorithm on

the sub-sampled images. As a result of the sub-sampling, one pixel in the resulting

2It only guarantees the motion subspace for each object to be 6D. The motion subspaces of different
objects can still be partially dependent.
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segmented images corresponds to a 20×20 block in the original images. Note that

because the cameras are packed closely in the cluster, some cameras see the lenses of

other cameras in the border area. In addition, the blurring process introduces some

additional border effects. For these reasons, in the experiments I only processed the

inner regions of the images.

The first experiment demonstrates motion segmentation in a scene with two con-

trolled rigid motions. To control the motion, I mounted the camera cluster on a 1D

translational platform, and a checkerboard on a rail. Between each frame, I shifted the

camera and the checkerboard (4mm for the camera, 5mm for the checkerboard) along

the directions of their rails. I captured six frames for a total of 42 real and synthetic

images, and extracted intensity trajectories from these images. The classification results

are presented in Figure 7.11. Figure 7.11(a) shows the segmentation without the refine-

ment step (see Step 5 of the classification pipeline in 6.3). The pixel classification result

is super-imposed on the original image. Boundary pixels are not processed (they are

marked as black). Dark gray and light gray are used to indicate foreground and back-

ground pixels, respectively. Ambiguous pixels identified during the refinement process

are marked white in Figure 7.11(b). The refined motion segmentation results are shown

in Fig. 7.11(c). The misclassification error (number of mis-classified pixels divided by the

number of all processed pixels) was 2.5%. Figure 7.11(d) shows the similarity matrices

permuted using the initial (top) and refined segmentations (bottom).

I ran the differential tracker on this sequence. The output estimate of the controlled

motion (restricted to the X-Z plane of the camera coordinate frame) is shown in Figure

7.11(e,f). There are five lines in both figures. The Estimated Whole line (black, dashed)

indicates the motion computed using all of the pixels under the assumption of a single

rigid scene. Using the segmentation results, I also tested estimating two motions by

running the tracker on two groups of pixels separately. In Figure 7.11(e,f), the upper

pairs of lines represent the real (true) and estimated motion of the checkerboard with
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respect to the camera. The lower pairs of lines represent the real (true) and estimated

motion of the background. The estimate using all of the pixels (unsegmented) appears

to be a weighted average of the two underlying motions, as one would expect, and is

clearly wrong for either motion. The result using the segmented pixels appears to be

very accurate for the background motion, and reasonably accurate for the foreground

motion 3. Note that neither the segmentation nor the tracking algorithms assumes any

prior information about the scene geometry.

In the second experiment, I tested the algorithm on segmenting two free-form rigid

motions—both the camera cluster and the checkerboard were moved by hand. The

motion segmentation results are shown in Fig. 7.12. Pixels corresponding to the moving

checkerboard are marked white. The remaining pixels are classified as background. For

a clearer representation, the boundary pixels are excluded.

To explore the use of the algorithm in a single camera setting, I ran it again on the

above sequence. But this time I only used images captured by the center camera plus

the three synthetic rotational cameras. The results are shown in Fig. 7.13. Although

only one physical camera was used, the segmentation result is comparable to the cluster

setup.

The last experiment demonstrates 3D motion segmentation in a scene with direc-

tional lighting using a single camera setup. The scene was illuminated with multiple

ceiling lights and a strong light source from the side. A person was sitting on a chair

and rotating. All light sources were static and constant. Again, I used images captured

by one physical camera and three synthetic rotational cameras. Fig. 7.14(a) presents

the illumination effect of the side light. The segmentation result is shown in (b)-(f).

Pixels corresponding to the person and the chair are marked gray. Notice that most of

the segmentation error are from pixels on the back of the chair. This is due to the plain

texture in that area.

3It is less accurate since fewer pixels are used for estimating the foreground motion
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(a) (b) 

(c) (d) 
  

(e) (f) 

 

Figure 7.3: Tracking a hand-held camera motion. The tracking results are illustrated
through projecting seven 3D scene points onto the center image. The projection matrix
is computed using the motion estimate. The reference scene points are marked as white
patches surrounded by red circles. (a) The extracted reference points in the center image
at the initial frame. (b)-(f) The projected points in the center image at frame 20, 60,
160, 180 and 200.
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(a) (b) 

(c) (d) 
  

(e) (f) 

 

Figure 7.4: Tracking a hand-held camera cluster moving in a scene with semi-
transparency. Watch the ghosting of the outside trees and chimneys on top of the
inside bookshelves. The tracking results are illustrated through projecting five 3D scene
points onto the center image. The projection matrix is computed using the motion
estimate. The reference points are marked as white patches surrounded by red circles.
(a) The manually selected points in the center image at the initial frame. (b)-(f) The
projected points in the center image at frame 10, 20, 30, 50 and 60.
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(a) (b) (c) 

  
(d) (g) 

  
(e) (h) 

  
(f) (i) 

 

Figure 7.5: Tracking a hand-held camera with known ground-truth motion. (a) An
image of the scene. (b) An Optotrak position sensor with three lenses mounted on the
stabilized bar. (c) A rigid panel with four LEDs are mounted on the box containing
the DCC. (d)-(f) Estimation of camera translations (in mm) in X, Y and Z directions.
(g)-(i) Estimation of camera rotation angles (in degree) around Y, X and Z axes. Red
(solid) curves represent the accumulated motion reported by the Optotrak system, blue
(dashed) curves represent the values estimated by the differential tracker.
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Figure 7.6: Illustration of the illumination correction process. (a) An illuminated tex-
tured sphere. (b) An illuminated texture-less white sphere. (c) Upper: an INM com-
puted by comparing (a) and (d). Lower: an INM computed by comparing (b) and (e).
(d) The textured sphere rendered without lighting. (e) The solid white sphere rendered
without lighting. (f) The illumination-corrected textured sphere transformed from (d)
using the upper INM in (c). Note that (a) and (b) are rendered under the same lighting
condition.
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Figure 7.7: Tracking and INM estimation of a synthetic image sequence with varying
illuminations. The first row shows three frames of the original synthetic sequence with
lighting. The second row represents the estimated INMs for these frames. One can see
that the lighting direction changes over frames. The last row represents the tracking re-
sults. Wire-frame sphere rendered using the estimated pose parameter are superimposed
onto the original images.

Figure 7.8: Illumination correction on real data. (a) Real image. (b) Synthetic image
without illumination correction. (c) Illumination corrected synthetic image.
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Figure 7.9: Tracking of a real cubic object under static directional lighting. Wire-frame
cube rendered using the estimated pose parameter are superimposed onto the original
images. The first row shows the tracking results (frames 1, 20 and 110) with illumination
correction. The second row shows the tracking results (frames 1, 10 and 20) without
illumination correction.

Figure 7.10: Texture refinement results on real data. (a) Original high-resolution tex-
ture. (b) Input texture of the initial off-line model. (c) Refined texture after 100 frames.
(d) Texture extracted directly from a real image.
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(d) (e) (f) 

 

Figure 7.11: Motion segmentation and tracking results for a controlled sequence. (a)
Segmentation results before refinement. (b) Segmentation results with ambiguous-pixels.
(c) Segmentation results after refinement. (d) Similarity matrices before (top) and after
(bottom) refinement. (e) Motion estimation of X translation. (f) Motion estimation of
Z translation.
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(a) (b) (c) 

   
(d) (e) (f) 

 
Figure 7.12: Segmenting free-form rigid motions using a DCC. The checkerboard and
the camera were moved by hand. A sequence of 45 frames were captured. Images (a)-(f)
show the segmentation results of 6 frames.

   
(a) (b) (c) 

   
(d) (e) (f) 

 
Figure 7.13: Segmenting free-form rigid motions using a single camera. The scene and
the motion were the same as the one shown in Fig. 7.12. Images (a)-(f) show the
segmentation results of the same 6 frames that are shown in Fig. 7.12.
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(a) (b) (c) 

   
(d) (e) (f) 

 
Figure 7.14: Motion segmentation in a scene with directional lighting using a single
camera. A person was sitting on a chair rotating; the camera was moved by hand. A
sequence of 40 frames were captured. (a) An image from the original sequence showing
the person was illuminated by a directional light source from the left side. (b)-(f):
Segmentation results of 5 frames.
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Chapter 8

Conclusion and future work

In the previous chapters, I have presented the framework of differential tracking. I

have described the algorithm of tracking through sampling and linearizing the local

appearance manifold. I have developed techniques for acquiring appearance samples. I

have analyzed the manifold linearization process from a signal processing point of view.

In addition to tracking, I have also applied the locally linear appearance model to motion

segmentation. I have tested these novel approaches on both real and synthetical image

sequences. In this chapter, I will summarize the contributions and discuss some future

research directions.

8.1 Summary of the thesis

The entire thesis is based on the local linearization of the appearance manifold. An

image is considered as a point in a high dimensional space. As an object in the scene or

the camera moves, the image point moves along a low-dimensional appearance manifold.

The key observation is that while the appearance manifold is globally nonlinear thus is

hard to learn, it can be locally linearized using a small number of nearby samples.

Motivated by the above observation, I have developed a novel differential approach to

track incremental rigid motion. At each frame, a set of seven on-line local image samples

are captured to linearize the appearance manifold around the current pose. At the next



frame, when the camera moves to a new pose, the incremental motion is estimated using

the linearization from the previous frame. This pipeline continues as a new set of local

samples are captured to compute a new linearization around the new pose, which is

used to compute the new motion. By generating a piecewise linear approximation of

the underlying manifold, tracking is achieved by traversing a series of tangential planes

along the path of the motion.

This differential tracking approach has several appealing properties. First, compared

with feature-based methods, it directly employs intensity measurements thus avoids the

difficulty of feature detection and matching. Therefore it can accommodate scenes with

view-dependent appearance variances such as occlusion, semitransparency and curved

reflection. Secondly, in contrast to the conventional appearance-based methods, it does

not assume a learned off-line global model. The small number of local image samples

can be captured on-line using a cluster setup. Thirdly, it is computationally simple.

Once image samples are acquired, the remaining processes of manifold linearization and

motion estimation only involve linear solver. Therefore, it can be integrated into a

compact system with limited processing power.

The local linearization of the appearance manifold requires input image samples. I

have presented two techniques for sampling the appearance manifold. For camera track-

ing in a general environment with no prior model, I have developed a DCC prototype to

capture simultaneous offset samples of the scene. One issue with this sampling through

capturing technique is that images captured from different cameras lie on different ap-

pearance manifolds. To address this issue, I applied inter-camera calibration to enforce

geometric and photometric consistency across cameras. For model-based object tracking

where a graphical model of the target object is available, appearance samples can be

generated through graphic rendering. In this so-called sampling through rendering ap-

proach, local appearance samples consist of both real and synthetic images. To address

the illumination inconsistency between the real and the modeled environments, I have
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developed a Kalman filter framework to correct the illumination of the synthetic images.

The differential tracking is based on a linearization of the appearance manifold.

In theory, given seven samples one can always generate a linear approximation of the

sampled appearance manifold. However this linearization is only accurate within a

local region. Intuitively, an appropriate linearization requires the displacement between

samples to be small and the appearance manifold (or usually a filtered version of it)

to be smooth. To quantitatively determine the locally linear region, I have studied

the process of locally sampling and linearizing the appearance manifold from a signal

processing point of view. Using the Fourier analysis I have shown that to avoid aliasing

the maximum image shift (sum of the horizontal and vertical shifts) between adjacent

image samples should be smaller than one (blurred) pixel. I have applied this spectral

analysis to guide the design of a DCC and to determine the filter kernels for blurring

images (smoothing appearance manifold). I believe the analysis can also be used to

explain the commonly used sub-pixel motion constraint in the optical flow field, as the

computation of dense optical flow is based on a local linearization of the brightness

constancy assumption.

In addition to tracking, the local linear appearance model can also be applied to 3D

motion segmentation. I have presented a novel appearance-based approach to cluster

individual pixels into groups associated with different underlying rigid motions. Based

on a local linear mapping between the changes of the pixel intensities and the underlying

motion, I have introduced the notion of pixel intensity trajectories — a vector that

records the intensity changes of a specific pixel over a sequence. I have shown that,

similar to 2D feature trajectories, the intensity trajectories of pixels corresponding to the

same motion span a linear subspace. Therefore I have formulated motion segmentation

as clustering local linear subspaces. Note that I have applied a locally linear appearance

subspace representation to both tracking and motion segmentation. However, the two

subspaces are different. For tracking, I use subspaces spanned by difference images
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Figure 8.1: Design of a single chip DCC.

(multiple pixels single frame). While for motion segmentation, I employ subspaces

spanned by intensity trajectories (single pixel multiple frames).

8.2 Future work

In the future, I would like to investigate several research directions to enhance the

performance and extend the applicability of the approaches described in this thesis.

Sensor design

One lesson I have learned from the development of the DCC prototype is the difficulty of

repeatedly performing photometric calibration. Due to fabrication variations and elec-

tronic noise, different cameras, even of the same model, can exhibit different intensity

responses. To address this issue, I have adopted a semi-automatic inter-camera pho-

tometric calibration process to align the camera response curves (see Section 4.1.2 for

details). However, the resulting alignment is only optimized for the lighting condition

under which the cameras are calibrated. When the lighting condition changes, or when

the camera settings such as shutter speed or gain values have been changed, the previ-

ous calibration becomes invalid. While it may be possible to develop a fully automatic
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photometric calibration procedure, I believe the real solution comes from the designing

of more suitable imaging hardwares.

Figure 8.1(a) illustrates a solution using a special optical design. By adding a mirror

array in front of a conventional camera, we can acquire four offset images using a single

imaging sensor. The four blue rectangles indicate that the lens of the original camera is

divided into four quadrants that correspond to the four offset cameras. 1 The other nine

indexed rectangles indicate eight mirrors and a beam splitter (rectangle 3). The arrows

indicate the optical paths of the offset cameras. Blue, red, green and yellow represent

the center, X, Y and Z translational cameras respectively. Note that the Z camera is

accomplished through beam splitting.

Compared with the multiple camera setup, this single-sensor-multiple-camera design

has several advantages. Most importantly, photometric consistency is guaranteed across

the four offset cameras, as they all share the same chip circuit. Besides, the system is

more compact. Moreover, the bandwidth for transferring images is reduced. Instead of

four images, we only need to take one full-resolution image and divide it to acquire four

quarter-resolution image samples. Note that the reduced resolution does not affect the

performance of our differential tracker, as it only requires low-resolution inputs.

The above optical design converts a conventional camera into a differential sensor.

Looking into the future, we can imagine a sensor that is specifically designed for dif-

ferential tracking. A conceptual illustration of such a sensor is shown in Figure 8.1(b).

The differential sensor consists of four lenses and four separate optical paths, but only

one CCD panel. Note that since we only need low-resolution input from the sensor, we

can use a CCD with large pixels. As more photons are received by each pixel within

an unit time interval, a larger pixel size means higher signal-to-noise ratio for a cer-

tain shutter speed, or a higher shutter speed for a certain signal-to-noise ratio. Note

1The separation of the lens is achieved by adding a cross baffle between the lens and the CCD chip,
as illustrated in Figure 8.1(b).
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that the signal-to-noise ratio of the sensor determines the maximum number of gradi-

ent level or the intensity resolution it can provide, and its shutter speed determines its

highest framerate. Therefore by using larger CCD pixels, we can capture images with

higher intensity resolution at a faster speed. Both may improve the performance of the

differential tracker.

Finally, we can imagine a compact system consists of small optical sensors and spe-

cialized embedded hardware such as FPGA. We can use such a stand-alone system as a

probe for sensing incremental motion.

Hybrid system

As an incremental method, the differential tracker is prone to the issue of drifting. 2 To

address this issue, we can consider implementing a hybrid system. At the lower-level,

the differential tracker will perform incremental motion estimation at a high framerate.

At the upper-level, a host program will take motion estimate stream with periodic key

frames from the differential tracker to provide key frame correction. For instance, we

can consider combining the appearance-based differential tracker with a feature-based

SFM system that usually generates less accurate results when estimating small scale

motions. In such a hybrid system, the low-level differential tracker will provide efficient

small motion estimation and the high-level SFM program will perform the computation-

demanding keyframe bundle adjustment.

A generalized framework

Another interesting research direction is to accommodate non-standard visual sensors.

The appearance-based framework described in this thesis is based on a general manifold

representation. Potentially, it can be applied to any vision sensor whose measurements

can be vectorized and represented as a point on a differentiable manifold. For example,

2Note that the accumulated error from the previous frames does not affect the accuracy of the
motion estimate of the current frame.
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two parallel 1D cameras with a position offset can be used to track 1D motion. It may

also be possible to apply the framework to heat sensors.

Finally, I would like to extend the framework to segment and track non-rigid motion

that is usually represented as a linear combination of a set of basis motions. Again, I

will represent images as points on an appearance manifold. I will then apply the same

algorithm to linearize the local appearance manifold and estimate the motion. The only

difference is that the manifold and motion are now parameterized by the coefficients of

the motion basis.

Filter design and adaptive framerate

In Chapter5, I studied differential tracking from a signal process point-of-view. To

address sampling issue, I applied Fourier analysis to the 8D appearance function and

computed its bandwidth in motion dimensions. The analysis was based on the assump-

tion that the images was blurred and its spectral support was bounded. I then derived

the sub-pixel motion constraint that can be used to determine the cut-off frequency of

the filter.

In the experiments of this dissertation work, I empirically chose the commonly used

Gaussian filter and acquired reasonably good results. However, this choice is not fully

justified. One potential issue with Gaussian blurring is its high pass-attenuation. In

fact, both low and high frequency components are useful to motion estimation. The

former plays a critical role in estimating relatively large motions, and the latter is more

sensitive to small ones. Therefore a Gaussian filter with a cut-off frequency determined

by the baseline of the camera cluster may not be the best choice for estimating camera

motion that are much smaller than the baseline.

In the future, I would like to test the differential tracking algorithm using different

filters. An immediate candidate would be a sinc filter that has equal weight for all

the frequency components below its threshold. Another idea is to develop a differential
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tracker with adaptive framerates. Instead of estimating motion for each frame, the

smart tracker can choose to hold and only perform motion estimation when it detects

enough motion. The final solution might be a combination of these two methods.
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Appendix A: Projective camera model

This appendix describes the decomposition of the projection matrix P for a projective

camera model. Detailed discussion on various camera models can be found in Chapter

5 of (HZ00).
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Figure 8.2: Rigid transformation between the world and camera coordinate systems.
The left side shows the coordinate system of a pinhole camera. The right side shows the
world coordinate system. R and T indicate the rotation and translation from the world
coordinate to the camera coordinate.

The left side of Figure 8.2 shows a pinhole camera model. c is called the camera

center. It is the center of projection and the origin of the camera coordinate system.

Z axis is perpendicular to the image plane and is called the principle axis. p is called

principle point. It is the intersection of the principle axis and the image plane. A 3D

point M is projected to a 2D point m in the image plane. Representing M and m in

the homogeneous coordinate as [X,Y, Z, 1]T and [x, y, w]T , the center projection can be

written in a matrix form as

m = PM (A-1)

The 3 × 4 matrix P is called the camera projection matrix. If we define the camera
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center to be the origin and the three camera axes to be the axes of the world coordinate

system, P can be written as

P = diag(f, f, 1) [E|0] (A-2)

where E represents the identity matrix.

Now, let us extend the discussion to the projective camera model. In this case, the

projection matrix P can be decomposed as

P = K [R|T ] (A-3)

The 3 × 3 matrix R and the 3 × 1 vector T represent extrinsic parameters. They

defines the rigid transformation (rotation and translation) from the world to the camera

coordinate.

Mcam = RMworld + T (A-4)

The translation T = −RC, where C is the world coordinate of the camera center. K is

the intrinsic matrix representing the camera intrinsic parameters. It is of the form

K =




f/px s x0

0 f/py y0

0 0 1




(A-5)

where f is the focal length, px and py are the pixel size in x and y directions of the

image plane, [x0, y0] are the image coordinate of the principle point, and s is the skew

parameter. For normal CCD cameras, s = 0.
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Appendix B: Motion projection and image

flow

In this appendix, the image flow is computed using the pinhole camera model. The

result is used by the Fourier analysis of Chapter 5.

Let M be a 3D point in the scene. M is observed twice by a pinhole camera from

a reference pose C0 and an offset pose C1 (after certain motion). Representing M in

the homogeneous coordinate as [X,Y, Z, 1]. Its 3D cartesian coordinates with respect

to both views, [Ẋ0, Ẏ0, Ż0] and [Ẋ1, Ẏ1, Ż1], can be computed using (A-1). Its image

coordinates [x0, y0] and [x1, y1] can be computed as

[x, y] = [Ẋ/Ż, Ẏ /Ż] (B-1)

Without loosing generality, we can define the world coordinates system to be same

as the coordinate system of the pinhole camera at C0. Therefore C0 and C1 become

[0, 0, 0, 0, 0, 0] and [Tx, Ty, Tz, Rx, Ry, Rz], where [Tx, Ty, Tz] and [Rx, Ry, Rz] represent

the translation and rotation from C0 to C1. We can then write the projection matrices

P0 and P1 as (B-2) and (B-3). R1 = |Rij|(i, j ∈ [1, 2, 3]) is the orthonormal rotational

matrix computed from [Rx, Ry, Rz].

P0 =

∣∣∣∣∣∣∣∣∣∣

f 0 0

0 f 0

0 0 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 1 0

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

f 0 0 0

0 f 0 0

0 0 1 0

∣∣∣∣∣∣∣∣∣∣

(B-2)
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P1 =

∣∣∣∣∣∣∣∣∣∣

f 0 0

0 f 0

0 0 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

R11 R12 R13

R21 R22 R23

R31 R32 R33

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

∣∣∣∣∣∣∣∣∣∣

(B-3)

For any camera motion [Tx, Ty, Tz, Rx, Ry, Rz], we can compute the corresponding

image flow [u, v] = [x1−x0, y1−y0] using (A-1) and (B-1—B-3). For the analysis of local

appearance manifold, we are particularly interested in 6 simple camera motion, namely

3 pure translations along the coordinate axes plus 3 rotations around the coordinate

axes. Each of the 6 motions corresponds to a change of pose parameter C in only one

dimension. The flows are listed in Table (8.1). The analysis in Chapter 5 only uses the

result from Table 8.1. Readers that are short of time can skip the rest of the section,

which mainly consists of the equations for computing flows.

Substitute (B-2) to (A-1) and (B-1). We can compute the 3D cartesian coordinates

[Ẋ0, Ẏ0, Ż0] and the 2D image coordinate [x0, y0] of point M in the reference view as:

[Ẋ0, Ẏ0, Ż0]
′ = P0[X, Y, Z, 1]′ = [fX, fY, Z]′ (B-4)

[x0, y0] = [Ẋ0/Ż0, Ẏ0/Ż0] = [fX/Z, fY/Z] (B-5)

For camera translation in X or C1 = [Tx, 0, 0, 0, 0, 0]. We can compute P1, [Ẋ1, Ẏ1, Ż1]

and [x1, y1] using (B-6–B-8).

P1 = KR1|E, [Tx, 0, 0]′| =

∣∣∣∣∣∣∣∣∣∣

f 0 0 Tx

0 f 0 0

0 0 1 0

∣∣∣∣∣∣∣∣∣∣

(B-6)

[Ẋ1, Ẏ1, Ż1]
′ = P1[X,Y, Z, 1]′ = [fX + fTx, fY, Z]′ (B-7)

[x1, y1] = [Ẋ1/Ż1, Ẏ1/Ż1] = [(fX + fTx)/Z, fY/Z] (B-8)

127



We can then compute the flow [u, v] as

[u, v] = [x1 − x0, y1 − y0] = [fTx/Z, 0] (B-9)

In a similar form we can compute the flow field for Y translation (C1 = [0, Ty, 0, 0, 0, 0])

as [u, v] = [0, fTy/Z].

For camera translation in Z or C1 = [0, 0, Tz, 0, 0, 0]. We can compute P1, [Ẋ1, Ẏ1, Ż1]

and [x1, y1] using (B-10–B-12). The flow can be computed using (B-13).

P1 = KR1|E, [0, 0, Tz]
′| =

∣∣∣∣∣∣∣∣∣∣

f 0 0 0

0 f 0 0

0 0 1 Tz

∣∣∣∣∣∣∣∣∣∣

(B-10)

[Ẋ1, Ẏ1, Ż1]
′ = P1[X, Y, Z, 1]′ = [fX, fY, Z + Tz]

′ (B-11)

[x1, y1] = [Ẋ1/Ż1, Ẏ1/Ż1] = [fX/(Z + Tz), fy/(Z + Tz)] (B-12)

[u, v] = [x1 − x0, y1 − y0] = [
fX

Z

Tz

Z + Tz

,
fY

Z

Tz

Z + Tz

] = [x0
Tz

Z + Tz

, y0
Tz

Z + Tz

] (B-13)

When Tz is small compared to Z the flow can be approximated as [u, v] = [x0

Z
Tz,

y0

Z
Tz].

For camera rotation around X axis or C1 = [0, 0, 0, Rx, 0, 0]. We can compute P1,

[Ẋ1, Ẏ1, Ż1] and [x1, y1] using (B-14–B-16).

P1 = KR1|E,0| =

∣∣∣∣∣∣∣∣∣∣

f 0 0 0

0 f cos Rx −f sin Rx 0

0 sin Rx cos Rx 0

∣∣∣∣∣∣∣∣∣∣

(B-14)

[Ẋ1, Ẏ1, Ż1]
′ = P1[X, Y, Z, 1]′ = [fX, fY cos Rx−fZ sin Rx, Y sin Rx+Z cos Rx]

′ (B-15)

[x1, y1] = [Ẋ1/Ż1, Ẏ1/Ż1] = [
fX

Y sin Rx + Z cos Rx

,
fY cos Rx − fZ sin Rx

Y sin Rx + Z cos Rx

] (B-16)

When the rotation angle Rx is small, we can use the following approximations that apply
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to a small angle 4.

1/(1 +4) = 1−4+ O(42) (B-17)

cos4 = 1

tan4 = sin4 = 4
(B-18)

(B-16) can then be simplified as (B-19) and the flow can be computed using (B-20).

x1 = fX
Y sin Rx+Z cos Rx

= fX
Z

1
cos Rx+Y

Z
sin Rx

≈ fX
Z

1
1+Y

Z
Rx
≈ fX

Z
(1− Y

Z
Rx)

y1 = fY cos Rx−fZ sin Rx

Y sin Rx+Z cos Rx
= f

Y
Z
−tan Rx

Y
Z

tan Rx+1
≈ f(Y

Z
−Rx)(1− Y

Z
Rx) ≈ f(Y

Z
− (1 + Y 2

Z2 )Rx)

(B-19)

u = x1 − x0 = fX
Z

(1− Y
Z
Rx)− fX

Z
= −fX

Z
Y
Z
Rx = −fX

Z
fY
Z

Rx

f
= −x0y0

f
Rx

v = y1 − y0 = f(Y
Z
− (1 + Y 2

Z2 )Rx)− fY
Z

= −f(1 + Y 2

Z2 )Rx = −(f +
y2
0

f
)Rx

(B-20)

Similarly for camera rotation around Y axis or C1 = [0, 0, 0, 0, Ry, 0], we can compute

the flow as [u, v] = [(f +
x2
0

f
)Ry,

x0y0

f
Ry].

For camera rotation around Z axis or C1 = [0, 0, 0, 0, 0, Rz]. We can compute P1,

[Ẋ1, Ẏ1, Ż1] and [x1, y1] using (B-21–B-23).

P1 = KR1|E,0| =

∣∣∣∣∣∣∣∣∣∣

f cos Rz −f sin Rz 0 0

f sin Rz f cos Rz 0 0

0 0 1 0

∣∣∣∣∣∣∣∣∣∣

(B-21)

[Ẋ1, Ẏ1, Ż1]
′ = P1[X, Y, Z, 1]′ = [fX cos Rz − fY sin Rz, fX sin Rz + fY cos Rz, Z]′

(B-22)

[x1, y1] = [Ẋ1/Ż1, Ẏ1/Ż1] = [
fX cos Rz − fY sin Rz

Z
,
fX sin Rz + fY cos Rz

Z
] (B-23)

Apply (B-18) to simplify (B-23), the flow can be computed as:

u = x1 − x0 = fX cos Rz−fY sin Rz

Z
− fX

Z
= −fY

Z
Rz = −y0Rz

v = y1 − y0 = fX sin Rz+fY cos Rz

Z
− fY

Z
= fX

Z
Rz = x0Rz

(B-24)
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I have now shown the equations for computing the optical flows of the six 1D motions.

In particular, I have derived some simplified forms for small camera motions along the

local appearance manifold. The result are summarized in Table 8.1.

Motion Type Motion Magnitude H-Flow(u) V-Flow(v)

X Translation Tx
f
Z
Tx 0

Y Translation Ty 0 f
Z
Ty

Z Translation Tz − x
Z
Tz − y

Z
Tz

X Rotation Rx −xy
f

Rx −(f + y2

f
)Rx

Y Rotation Ry (f + x2

f
)Ry

xy
f

Ry

Z Rotation Rz −yRz xRz

Table 8.1: Optical flow of six 1D motion. f denotes the camera focal length. x and y
are the image coordinates. Z is the scene depth at pixel [x, y].
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Appendix C: Kalman Filtering

The Kalman filter (KF) is a popular and time-tested Bayesian estimation tool (Kal60).

In the classical KF framework, an uncontrolled linear system is modeled as

X̂−
t = AX̂t−1 + Wt−1 (C-1)

Ẑt = HtX̂
−
t + Vt (C-2)

(C-1) is called the state-transition or process equation, where t is the time step, X̂ is

the estimate of the real system state X, X̂− is the a priori (predicted) state, A is the

deterministic state transition between steps, and W is the process noise. (C-2) is known

as the measurement equation, where Ẑ is the estimate of the real measurement Z, H

represents the linear observation function that relates the state of the system to its

measurements, and V is the measurement noise. W and V are assumed to be normally

distributed with covariances Q and R respectively (used below), spectrally white, and

independent of each other. In addition to estimating the system state X̂, the filter

also estimates the error covariance P . Similar to (C-1) it is assumed the a priori error

covariance P− can be modeled (predicted) using P from the previous step as

P−
t = APt−1A

T + Q (C-3)

A Kalman filter performs system state estimation using a prediction-correction mech-

anism. At each frame, the filter predicts X̂− and Ẑ using the deterministic portions

of (C-1) and (C-2), and P− using (C-6). It then corrects the state by subtracting the

estimated from the real observations, and factoring the residual back into the estimated

state. The a posteriori state and error covariance then serves as the basis for the next
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step. The measurement update equations can be written as

Kt = P−
t HT

t (HtP
−
t HT

t + R)−1 (C-4)

X̂t = X̂−
t + Kt(Zt −HtX̂

−
t ) (C-5)

Pt = (I −KtHt)P
−
t (C-6)

The Kalman gain Kt computed in (C-4) provides the optimal weighting of the observa-

tion residual in (C-5), minimizing the mean of the diagonal of P .

While (C-1)–(C-6) model linear systems, the filter can be reformulated to accommo-

date a nonlinear process function a(X) and/or observation function h(X) using linear

approximations around X̂. In this extended Kalman filter (EKF) formulation the matri-

ces A and H in (C-1) and (C-2) are replaced by the Jacobian matrices A = ∂a/∂X̂ and

H = ∂h/∂X̂ respectively. Note that our model-based object tracking system uses an

EKF, where the Jacobian matrix H is computed from local appearance samples. More

complete description about KF/EKF can be found in (WB95).

132



Bibliography

[Alt92] T. Alter. 3d pose from three corresponding points under weak-perspective pro-
jection. Technical Report AIM-1378, Massachusetts Institute of Technology, 1992.
13

[Ana89] P. Anandan. A computational framework and an algorithm for the measure-
ment of visual motion. International Journal of Computer Vision, 2:283–310,
1989. 11, 21

[BA96] M. Black and P. Anandan. The robust estimation of multiple motions: paramet-
ric and piecewise-smooth flow fields. Computer Vision and Image Understanding,
63(1):75–104, 1996. 85

[BFB94] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow tech-
niques. International Journal of Computer Vision, 12:43–77, 1994. 11, 20

[BH83] A. Bruss and B. Horn. Passive navigation. Computer Vision, Graphics and
Image Process, 21, 1983. 22

[Bis84] G. Bishop. The Self-Tracker: A Smart Optical Sensor on Silicon. PhD thesis,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1984. 14

[BJ98] M. Black and A. Jepson. Eigentracking: Robust matching and tracking of artic-
ulated objects using a view-based representation. International Journal of Com-
puter Vision, 26(1):63–84, 1998. 27

[BN95] M. Bajura and U. Neumann. Dynamic registration correction in video-based
augmented reality systems. IEEE Computer Graphics and Applications, 15(5),
1995. 13

[Bou08] J. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguet/calib_doc/, 2008. 40

[BRS+07] S. Baker, S. Roth, D. Scharstein, M. Black, J. Lewis, and R. Szeliski. A
database and evaluation methodology for optical flow. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1–8, 2007. 20

[Can86] J. Canny. A computational approach to edge detection. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 8:679–714, 1986. 11

[CC01] Y. Chang and Y. Chen. Robust head pose estimation using textured polygonal
model with local correlation measure. In PCM ’01: Proceedings of the Second
IEEE Pacific Rim Conference on Multimedia, pages 245–252, 2001. 24, 25

133



[CK95] J. Costeira and T. Kanade. A multi-body factorization method for motion anal-
ysis. In Proceedings of the IEEE International Conference on Computer Vision,
page 1071, 1995. 86, 92
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