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Abstract—For decades, state estimation has been a fundamen-
tal aspect of power systems. However for large-scale and wide-
area interconnected power systems, the required computation
makes real-time on-line estimation a major challenge. In this
paper we present a new method we call Lower Dimensional
Measurement-space (LoDiM) state estimation. LoDiM is based on
the Extended Kalman filter—popular because of its efficiency, ro-
bustness, and typical accuracy. LoDiM, which can take advantage
of modern parallel computation techniques, may be useful for
other large-scale, real-time on-line and computationally-intensive
state tracking systems beyond the power systems, such as weather
forecasting or gas-pipeline state estimation. Although LoDiM is
presented in the context of the Kalman filter, the associated
measurement selection procedure is not filter-specific, i.e. it can
be used with other state estimation methods such as particle and
unscented filters. If desired, robust estimation techniques can also
be employed to detect and eliminate outlier measurements.

Index Terms—Power systems, State Estimation Algorithms,
Dynamic Measurement Selection, Power system simulation,
Kalman Filter, Parallel Compuatation

I. INTRODUCTION

STATE estimation plays a basic yet very important role
in modern industries. Particularly in the power systems,

state estimation generates critical input data for driving other
operation functions including real-time security monitoring,
load-forecasting, economic despatch, load-frequency control,
etc..

During state estimation, typically, a state estimator receives
telemetered measurements from a Supervisory Control And
Data Acquisition (SCADA) system, and generates a set of
state variables that reflect a best estimate of the system
conditions. Traditional SCADA measurements are updated
every 3-5 seconds; innovative devices such as PMUs [5]
can deliver 30 measurements per second. On the contrary,
state estimator updates the estimates at every 3-5 minutes.
Due to the tremendously increasing size and complexity of
the interconnected power networks, tedious computations in
state estimation remain obstacles to overcome. Even with
modern supercomputers, the massive data processing is still
time consuming and memory challenging.

In our previous research [2], a tracking method called
single-constraint-at-a-time (SCAAT) was proposed. The idea
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behind the SCAAT approach is to use of a Kalman filter to es-
timate a globally observable system using only measurements
from locally unobservable systems. In each filtering cycle,
SCAAT deals with much lower dimensional measurement
data. Although SCAAT was first developed for optoelectronic
3D tracking systems, it inspired us to design LoDiM [3],
a SCAAT-based algorithm featuring dynamic measurement
selection to reduce the computational burden, for state tracking
of large-scale systems, e.g. power system, weather forecast
system, etc.. In this paper, we present a comprehensive study
and proof of LoDiM, including the trade-offs and optimal
number of measurements to be selected. Furthermore, our
method is expected to significantly facilitate power system
operations, and integrate with the powerful tool of hierar-
chical, distributed estimation as well as parallel computation
techniques for more improvement.

The remainder of this paper is organized as follows.
Section II introduces the background. In Section III, we
present our new approach to perform Kalman filtering upon
dynamically selected measurements, in order to reduce the
computation requirement dramatically, without sacrificing the
tracking quality. Our method is tested on two system models
in different sizes in Section IV to demonstrate and analyze
the performance. Finally, conclusions and acknowledgement
are in Section V and Section VI respectively.

II. BACKGROUND AND RELATED WORK

In the modern power systems, measurement devices with
higher accuracy and update rate are increasingly deployed,
setting new requirements for real-time computations. Signif-
icant previous work has attempted to alleviate the computa-
tional load problem. One approach is to explore the potential
computational power: the authors of [7] used Petri net (PN)
theory to achieve the optimum utilization of processors, in a
state estimator based on Kalman filter.

Another attempt is to reduce the computational complexity,
for example, in [8] the authors proposed a method for systems
that have more measurements than states. They described an
equivalent state-space system can be used in which the number
of measurements equals the number of states. The system
model is ideally assumed to be static and linear, and the
preparation overhead was ignored in the complexity analysis.

[9] illustrated the measurement selection procedure in Ex-
tended Kalman filters. Nevertheless, as stated by the authors,
an inherent limitation of the proposed method is that measure-
ment selection is based entirely on the steady-state sensitivity
matrix. The shortcomings of this approach include: (1) the



actual information content of the candidate measurements
under typical operating conditions is not considered; (2) the
measurement rankings obtained are local and dependent on
the steady state chosen as the base case; and (3) dynamic and
nonlinear effects are neglected.

Previously in [2], we presented SCAAT, a Kalman-filter-
based incremental tracking algorithm using incomplete in-
formation. It estimates a globally observable system using
only measurements from locally unobservable systems. The
underlying principle is that the single observations provide
some information about the user’s state, and thus can be
used to incrementally improve a previous estimate. Based
on SCAAT, we proposed LoDiM with more sophisticated
measurement selection procedure [3]. Here we present a more
comprehensive proof and case study to show that the LoDiM
estimation is more stable and reliable, with higher report rates
and lower latency than the classic Kalman filter.

III. LOWER DIMENSIONAL MEASUREMENT-SPACE STATE
ESTIMATION

Kalman filtering techniques are extensively used in power
system state estimations [13], recent study [6] also applied
them in power system bad-data detections. The LoDiM method
employs a Kalman filter but incorporates a lower dimen-
sional measurement-space in each cycle. It conducts a special
measurement selection procedure, in order to strategically
reduce the measurement-space dimension. As a result, it yields
much smaller computational load, lower latency, and most
importantly, reliable performance. In this section, we will first
give a brief introduction to the Kalman filter, then discuss our
dynamic measurement selection method and the structure of
LoDiM.

A. The Kalman Filter

The Kalman filter [4] has been used in a wide range of
applications from radar tracking to weather forcasting. It is an
efficient recursive filter that estimates the state of a process,
in a way that minimizes the mean of the squared error.

An assumed linear system can be modeled as a pair of linear
stochastic process and measurement equations

xk = Axk−1 + wk−1 (1)
zk = Hxk + vk (2)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement
vector, A is a n×n matrix that relates the state at the previous
time step k−1 to the state at the current step k in the absence
of either a driving function or process noise1, and H is a
m × n matrix that relates the state to the measurement zk.
The process noise wk and measurement noise vk are assumed
to be mutually independent random variables, spectrally white,
and with normal probability distributions

p(w) ∼ N(0, Q) (3)
p(v) ∼ N(0, R), (4)

1In practice, the matrix A may change with each time step, but it is assumed
to be constant here.

where the process noise covariance Q and measurement noise
covariance R matrices are often assumed to be constant.

In reality, the process to be estimated and (or) the measure-
ment relationship to the process are often nonlinear. Especially
when our objective is to estimate the dynamic states of the
power system. A nonlinear system can be modeled using
nonlinear stochastic process and measurement equations

xk = a(xk−1, wk−1) (5)
zk = h(xk, vk). (6)

These nonlinear functions can then be linearized about the
point of interest x in the state space. To do so one need to
compute either or both of the Jacobian matrices

A =
∂a(x)
∂x

|x (7)

H =
∂h(x)

∂x
|x (8)

where A and H are the partial derivatives of a and h
(respectively) with respect to x.

The Kalman filter estimates the state by minimizing the a
posteriori estimate error covariance, in a recursive prediction-
correction manner [1]. The prediction step is realized by a set
of time update equations:

Prediction :{
x̂−k = Ax̂k−1

P−k = APk−1A
T + Q

(9)

The time update equations are responsible for projecting
forward (in time) the previous state xk−1 and error covariance
estimates Pk−1 to obtain the a priori estimates for the next
time step k.

The correction step is carried out by a set of measurement
update equations:

Correction :



Kk = P−k HT (HP−k HT + R)−1

x̂k = x̂−k + Kk(zk −Hx̂−k )
Pk = (I −KkH)P−k

(10)

where K is a n×m matrix called the Kalman gain matrix, zk is
the actual measurement at time step k, Hx̂−k is the predicted
measurement at time step k, and (zk − Hx̂−k ) is called the
residual.

K reflects how we trust the actual measurement zk versus
the predicted measurement Hx̂−k . From its expression, one
can tell that larger values of R place more weight on the
predicted value while smaller values of R place more weight
on the measured values. The measurement update equations
are responsible for the feedback, i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved
a posteriori estimate.

B. Principle of Design

As one would expect, performing dynamic state estimation
with KF/EKF (any filter) is a rather computationally intensive
process. For small systems, the computation could be fast
enough for real time control applications. However there are



three factors that increase the computational effort: the size
of the system, the complexity of model components, and the
number of measurements to be processed. In the “Correction”
phase corresponding to equation (10), we have noticed the
expensive cost of calculating the Kalman gain Kk. Because it
involves the inversion of a m×m matrix (HP−k HT +R), with
complexity of O(m3). This makes the computation intractable
when the number of measurements m is too large, which
unfortunately, is true for the modern power systems.

On the other hand, if we can reduce the measurement-
space dimension, i.e., use only a subset of the available
measurements to update (perhaps a subset of) the states during
each Kalman filter cycle, the computation cost could be
reduced dramatically while still maintaining observability over
time and improving accuracy per the SCAAT approach [2].
Specifically we propose using a subset of mσ measurements,
where 1 6 mσ ¿ m. The question is which subset of mσ

measurements to use in each cycle. Previous work suggests
pre-determined measurement subsets, however the dynamic
nature of today’s power systems requires more flexibility.
Performing a principal component analysis (PCA) on the
error covariance P , we can determine the subset of the state
space to be updated most urgently (e.g. with larger estimation
uncertainty than others).

Because covariance matrices are always symmetric and
positive semidefinite, they have several important properties.
Before the measurement update (“Correction” phase (10))
begins, let us consider the PCA of the a priori error covariance
matrix P− = U ·D · UT :

1) There exists an orthonormal basis U (UUT = UT U =
I , where I is the identity matrix), whose columns are
the eigenvectors of P−, such that the error covariance
matrix expressed in this basis is diagonal. The axes of
this new basis are called the Principal Components of
P−.

2) As the off-diagonal elements of this new diagonal co-
variance matrix D are zeros, the new variables defined
by this new basis (the projections of the a priori estimate
error e− = x − x̂− on the Principal Components) are
uncorrelated.

3) The diagonal elements of this new matrix D are the
eigenvalues of P−. So the variances of the projections
of error e− on the Principal Components are equal to
the corresponding eigenvalues of P−.

4) The eigenvalues in D are ordered decreasingly. The mth
eigenvalue corresponds to the mth eigenvector.

The principal components that correspond to the largest
elements of D, indicate the axes in the state space that have
the largest estimation uncertainties. We prefer to target at these
uncertainties first, thus we need to find the set of measurements
that can be used to reduce these uncertainties most efficiently.
For example, in a 3D tracking application example, if we use
several cameras to estimate the location of a certain object, and
we noticed the uncertainty is growing rapidly in one direction,
then in the next cycle of filtering we would ideally use a
camera which is looking in an orthogonal direction.

C. Measurement Selection Procedure

Similar to SCAAT, LoDiM also constrains the unknowns
over time and refines the estimation continually, rather than
waiting for a complete collection of observations to form.
Nonetheless, it is the measurement selection that differentiates
LoDiM from SCAAT. In LoDiM, we select the measurements
that benefit our estimate the most (i.e. reduce estimation
uncertainty most effectively) during each iteration.

After the “Prediction” phase (9) of each Kalman filter
iteration, we have the n× n a priori error covariance matrix

P− = U ·D · UT (11)

where D is the diagonal matrix consisting of the eigenvalues
of P− in decreasing order, and U is the orthonormal basis
whose columns are the corresponding eigenvectors. Notice that
the full PCA can also be a quite time consuming process,
especially if the state space is large. For this reason, in
this paper we only investigate the first eigenvector u1 in U ,
which represents the directions that we are most uncertain
about in the state space. The largest eigenvalue and the
corresponding eigenvector u1 can be conveniently obtained
by existing algorithms such as the power method [11].

Now consider the measurements. We can rewrite the mea-
surement equation as

z = Hx + v = HUUT x + v = (HU)x′ + v = H ′x′ + v
(12)

Where x′ = UT x is the new state vector defined by the new
basis U , H ′ is the corresponding m × n new measurement
Jacobian matrix, and v is the unchanged measurement noise
vector with p(v) ∼ N(0, R). Here we assume R to be a m×m
diagonal covariance matrix, i.e. the measurement noises are
uncorrelated.

Because the basis U are composed of unit vectors, H ′
ij can

also be considered as the magnitude of the projection (i.e. the
scalar projection) of the ith measurement direction vector in
the direction of the jth basis in U . Notice that we now have

Hu1 = [H ′
11 H ′

21 H ′
31 . . . H ′

m1]
T (13)

Intuitively, for the same basis, say u1, the larger H ′
i1 is,

the better the corresponding ith measurement could reduce
the uncertainty in this basis direction. However we should
also keep in mind that different measurements have different
amounts of noise. Thus for u1 we create a “ranking” vector
r1 from H ′ and R using the following adjustment:

r1 = [
H ′2

11

R11

H ′2
21

R22

H ′2
31

R33
. . .

H ′2
m1

Rmm
]T (14)

where R is the measurement noise covariance matrix. The
m×1 vector r1 evaluates the uncertainty calibration abilities of
each measurement regarding the most significant uncertainty
component, scaled by the corresponding measurement noise
level. Now we are going to prove the following:

Lemma 1: The larger H′2
i1

Rii
is, the more effectively the ith

measurement can reduce the uncertainty along direction u1.



Proof: It has been shown in [10] that the error covariance
update in the “Correction” phase (10)

P = (I −KH)P−

= (I − P−HT (HP−HT + R)−1H)P−

= P− − P−HT (HP−HT + R)−1HP− (15)

is equivalent to

P−1 = (P−)−1 + HT R−1H (16)

The inverse of the error covariance, P−1, is often called the
information matrix. According to (11), we have

P−1 = (UDUT )−1 + HT R−1H

= U−T D−1U−1 + U−T UT HT R−1HUU−1

= U−T [D−1 + (HU)T R−1(HU)]U−1

= U−T (D−1 + H ′T R−1H ′)U−1 (17)

Let us denote the matrix (D−1+H ′T R−1H ′) in equation (17)
by Σ, then Σ11 is the “information” we now have regarding
the new state variable in the direction u1, which we were most
uncertain about. This information value is increased/improved
from D−1

11 to Σ11 by

(Hu1)T R−1(Hu1) =
m∑

i=1

H ′2
i1

Rii
(18)

So if we are only willing to incorporate mσ measurements
(instead of the full m measurements) into the measurement
update equation, the ones with the largest H′2

i1
Rii

values would
be our choice.

We are able to easily locate the mσ measurements with the
largest values among these m elements in vector r1 (14). Thus
when our budget of computation time and memory space is
tight, we could use only mσ measurements in the next step
but still achieve stable estimation results. Using this approach
to reduce state estimation uncertainty is similar to fighting the
Hydra in Greek mythology: if we are not able to destroy all
the “heads” at once, at least we can aim at and cut off the
most threatening “head” during each round.

D. LoDiM Architecture

For computational efficiency in large-scale Kalman-filter-
based state estimations, we propose a better realization for our
new method, LoDiM, consisting of algorithm parallelization
and parallel implementation.

To generalize our approach, let us consider a nonlinear
system described by equations (5) and (6), with a huge
measurement space. LoDiM has its main state estimation
process, which is similar to SCAAT algorithm, running on
the foreground:

1) Compute the time ∆t since the previous estimate.
2) Predict the state and error covariance. Share the pre-

dicted error covariance P− with the background process.
{

x̂− = a∆t(x̂t−∆t , 0)
P− = A∆tPt−∆tA

T
∆t

+ Q∆t

(19)

3) If this is the first cycle, choose mσ measurements (which
is a much smaller measurement subset) randomly; oth-
erwise, choose the mσ measurements nominated by
the background process. Predict the measurement and
compute the corresponding Jacobian.

{
ẑ = hσ(x̂−t , 0)
H = Hσ(x̂−t , 0)

(20)

4) Compute the Kalman gain.

K = P−HT (HP−k HT + Rσ,t)−1 (21)

5) Correct the predicted state estimate and error covariance
from (19) using the actual sensor measurement zσ,t.

{
x̂t = x̂− + K(zσ,t − ẑ)
Pt = (I −KH)P− (22)

While at the same time, LoDiM has its auxiliary mea-
surement selection process as described in subsection III-C,
running on the background:

1) Compute the principal component u1 of the error co-
variance P− predicted on the foreground.

2) Compute Hu1 according to (13) and the ranking vector
r1 according to (14).

r1 = (Hu1). ∗ (Hu1)./diag(R) (23)

where .∗ and ./ denote the element-by-element opera-
tions.

3) Select the mσ measurements that correspond to the mσ

largest elements in r1, to be used by the foreground
process.

Overall, the whole LoDiM algorithm process can be expressed
by the flow chart in Figure 1.

KF/EKF (foreground) Measurement Selection 
(background) 

!!

Cycle 1 

Prediction 

Correction  
(Pick        measurements 

randomly) 

Cycle 2 

Prediction 

Correction  
(Pick the selected        

measurements) 

Cycle 3 

Prediction 

Correction  
(Pick the selected        

measurements) 

Select        
measurements as 

described in  
Section III-C 

Same as above 

Same as above 

Fig. 1. The LoDiM algorithm flow chart.



IV. SIMULATION RESULTS

A. Evaluation

In this subsection, we investigate the performance of the
proposed LoDiM state estimation using two different power
system models: a smaller 3-generator 9-bus system, and a
larger 16-generator 68-bus system representing the New Eng-
land/New York interconnected system [15]. We simulate a
large disturbance emergency event: a three-phase fault happens
at t = 1, and is then cleared in 0.15 second.

The state variables (voltage magnitude and phase angle at
every bus) are recorded as the “true” system states. For the
smaller system, there are 36 simulated Phasor Measurement
Unit (PMU) measurements, combined with random noise.
PMUs provide both voltage phasor and current phasor mea-
surements, at a higher frequency and accuracy level [5]. We
will visualize the impact of measurement selections via the
state estimation at bus 2, a generator bus.

In contrast to LoDiM with mσ = 6, we examine the
performance of reduced measurement-space state estimation
with a naive approach: the same number of the measurements
are chosen randomly during each cycle. Fig. 2 provides a close
look at bus 2 voltage magnitude tracking within a 1 second
time period from t = 2 to t = 3: while the true state is still
plotted in black, the magenta dash-dot line and the blue dashed
line represent the estimated states using random measurement
selection and LoDiM respectively.
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Fig. 2. The performance comparison of bus 2 voltage magnitude estimation
using randomly chosen measurements and LoDiM

Similarly in the larger system, we simulated 272 PMU
measurements and compare the estimations at bus 26, a load
bus, with mσ = 70 (Fig. 3). Both figures demonstrate that the
measurement selection procedure significantly improves the
state tracking performance.

B. Optimal Number of Selected Measurements

mσ, the number of measurements to be selected in each
cycle, affects the estimation results. Fig. 4 presents the zoom-
in bus 2 voltage magnitude tracking results for the smaller
system, from t = 2 to t = 3. The true state is recorded
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Fig. 3. The performance comparison of bus 26 voltage magnitude estimation
using randomly chosen measurements and LoDiM

by black solid line. Our LoDiM state estimation method
uses dynamically selected measurements during each cycle
as described in section III-C. The blue dash-dash line plots
the well-estimated state when mσ = 6. If mσ is too small,
e.g. mσ = 2, the estimated state resembles a step function
as shown in green dash-dot line. This is because very little
information is integrated in each cycle, while the speed-up
of the cycle period is not significant enough to capture the
state variation. On the other hand, the red dotted line plots the
estimated state using conventional Kalman filter, where mσ

is too large that the entire measurement set is used as input,
resulting in lower estimation rate.
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Fig. 4. The performance comparison of bus 2 voltage magnitude estimation
with different mσ values

Similar estimation behaviors are observed in the larger
system, as shown in Fig. 5.

Depicted above, the LoDiM performance comparison with
different mσ values reflects an interesting trade-off between
gained information and processing time. This observation
leads us to believe that there exists a sweet spot to achieve
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Fig. 5. The performance comparison of bus 26 voltage magnitude estimation
with different mσ values

optimal performance. To confirm our supposition, we test
LoDiM with all possible mσ’s, i.e. from mσ = 1 to full
measurement-space on both power system models.

We evaluate the performances based on a fair competition.
The mean state estimation error (in percentage) of all buses
using different amount of measurements (also in percentage)
are plotted for these two test systems respectively in Fig. 6
and 7. As a result, the optimal amount of measurement to be
selected during each cycle is 77% for the small system, 26%
for the large system.
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Fig. 6. LoDiM performance with different amount of selected measurements
in the 3-generator 9-bus system.

V. CONCLUSIONS

We presented LoDiM, a novel state estimation algorithm. In
each estimation cycle, compared to traditional KF/EKF state
estimation methods which handle the entire measurement-
space, it deals with a lower dimensional measurement-space.
The smaller measurement-space incorporate less information
each cycle, but has higher reporting rates. We can analyze and
adjust the trade-off to achieve optimal performance.
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Fig. 7. LoDiM performance with different amount of selected measurements
in the 16-generator 68-bus system.

LoDiM features a dynamic measurement selection proce-
dure: a measurement subset which benefits the estimation the
most is dynamically chosen for each cycle. The simulation
results illustrate a promising future of LoDiM in large-scale
dynamic state estimations, for the power systems and beyond.
Moreover, it can be parallelized for further optimizations.

Although LoDiM is presented in the context of the Kalman
filter—popular because of its efficiency, robustness, and typical
accuracy [12] [13] [6], the associated measurement selection
procedure is not filter-specific, i.e. it can be used with other
state estimation methods such as particle and unscented filters.
If desired, robust estimation techniques can also be employed
to detect and eliminate outlier measurements [14].
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