
Real-Time Consensus-Based Scene Reconstruction
using Commodity Graphics Hardware

Ruigang Yang, Greg Welch, Gary Bishop
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

We present a novel use of commodity graphics hardware
that effectively combines a plane-sweeping algorithm with
view synthesis for real-time, on-line 3D scene acquisition
and view synthesis. Using real-time imagery from a few
calibrated cameras, our method can generate new images
from nearby viewpoints, estimate a dense depth map from
the current viewpoint, or create a textured triangular mesh.
We can do each of these without any prior geometric infor-
mation or requiring any user interaction, in real time and on
line. The heart of our method is to use programmable Pixel
Shader technology to square intensity differences between
reference image pixels, and then to choose final colors (or
depths) that correspond to the minimum difference, i.e. the
most consistent color.

In this paper we describe the method, place it in the con-
text of related work in computer graphics and computer vi-
sion, and present some results.

1 Introduction

This work is motivated by our long standing interest in
tele-collabration, in particular 3D tele-immersion. We want
to display high-fidelity 3D views of a remote environment
in real time to create the illusion of actually looking through
a large window into a collaborator’s room.

One can think of the possible real-time approaches as
covering a spectrum, with geometric or polygonal ap-
proaches at one end, and Light-Field Rendering [19, 8]
at the other. For real scenes, geometric approaches offer
tremendous challenges in terms of creating, representing,
and transmitting a model. Even for static regions of a scene,
it would be impractical for an individual to model manu-
ally every piece of paper, pen and pencil, and pile of junk
on a typical desk. As such, researchers pursuing geometric
methods have explored automated approaches, for example
using computer vision techniques. Typically one constructs

Figure 1. Example setup for 15 frame-per-
second online reconstruction using five cam-
eras (also see Figure 8 in color plate).

a 3D geometric model of the scene, and then renders the
model from any desired view. However robust recovery of
3D geometry from 2D images remains an open computer vi-
sion problem. Many algorithms exist, yet they are relatively
specialized or fragile, and too computationally expensive
for real-time applications.

Rather than striving to understand or reproduce a geo-
metric model of a scene, Light-Field Rendering uses a col-
lection of 2D image samples to reconstruct a function that
completely characterizes the flow of light through unob-
structed space [19]. With the function in hand, view synthe-
sis becomes a simple table lookup. Photo-realistic results
can be rendered at interactive rates on inexpensive personal
computers. However collecting, transmitting, and process-
ing such dense samples from a real environment, in real
time, is impractical.

We present a novel use of commodity graphics hardware
that effectively combines a plane-sweeping algorithm with

view synthesis for real-time, online 3D scene acquisition
and view synthesis. Using real-time imagery from a few
calibrated cameras, our method can generate new images
from nearby viewpoints, estimate a dense depth map from
the current viewpoint, or create a textured triangular mesh.
We can do each of these without any prior geometric infor-
mation or requiring any user interaction, and thanks to the
parallelization and tremendous performance of commodity
graphics hardware, we can do them interactively, in real
time and on line.

In this paper we describe the method, place it in the con-
text of related work in computer graphics and computer vi-
sion, and present some results. When describing the method
we keep open the choice of either estimating color or depth,
and perhaps corresponding geometry.

2 Related Work

Here we discuss some related work in image-based ren-
dering and real-time reconstruction/rendering systems. We
also discuss some related work in Section 3 where appro-
priate.

2.1 Vision-based Methods
Virtualized RealityTM System [23, 30]. Kanade’s Vir-

tualized Reality system uses a sea of cameras in conjunc-
tion with vision techniques to extract models of dynamic
scenes. These methods require significant off-line process-
ing, so strictly speaking, it is not a real-time system yet. Re-
cently, they are exploring to use special-purpose hardware
to speed up the computation.

Real-time Depth from Stereo. Depth from stereo tech-
niques [6] seem to be the most available option for comput-
ing depth from images because of their unobtrusive nature
and the ease of data acquisition. However, these techniques
are computationally intensive and typically require special
hardware to operate in real time [13, 31, 15]. Recently, Mul-
ligan and Daniilidis proposed a new trinocular stereo algo-
rithm in software [22]. They used a number of techniques
to accelerate the computation, such as motion prediction
and assembly level instruction optimization. However, the
stereo matching part is still the bottleneck in their method
(1-2 frames/second).

2.2 Image-based Methods
Image-based Visual Hull. Matusik et. al. presented an

efficient method for real-time rendering of a dynamic scene
[21]. They used an image-based method to compute and
shade visual hulls [18] from silhouette images. A visual
hull is constructed by using the visible silhouette informa-
tion from a series of reference images to determine a con-
servative shell that progressively encloses the actual object.
Unlike previously published methods, they constructed the
visual hulls in the reference image space and used an effi-
cient pixel traversing scheme to reduce the computational

complexity to O(n2), where n2 is the number of pixels in a
reference image. Their system uses a few cameras (four in
their demonstration) to cover a very wide field of view and
is very effective in capturing the dynamic motion of objects.
However, their method, like any other silhouette-based ap-
proach, cannot handle concave objects, which makes close-
up views of concave objects less satisfactory.

Hardware-assisted Visual Hull. Based on the same vi-
sual hull principle, Lok proposed a novel technique that
leverages the tremendous capability of modern graphics
hardware [20]. The 3D volume is discretized into a num-
ber of parallel planes, the segmented reference images are
projected onto these planes using projective textures. Then,
he makes clever use of the stencil buffer to rapidly deter-
mine which volume samples lie within the visual hull. His
system benefits from the rapid advances in graphics hard-
ware and the main CPU is librated for other high-level tasks.
However, this approach suffers from a major limitation – the
computational complexity of his algorithm is O(n3). Thus
it is difficult to judge if his approach will prove to be faster
than a software-based method with O(n2) complexity.

Generalized Lumigraph with Real-time Depth. Schir-
macher et. al. introduced a system for reconstructing ar-
bitrary views from multiple source images on the fly[26].
The basis of their work is the two-plane parameterized Lu-
migraph with per-pixel depth information. The depth in-
formation is computed on the fly using a depth-from-stereo
algorithm in software. With a dense depth map, they can
model both concave and convex objects. Their current sys-
tem is primarily limited by the quality and the speed of the
stereo algorithm (1-2 frames/second).

3 Our Method

We believe that our method combines the advantages of
previously published real-time methods in Section 2, while
avoiding some of their limitations as follows.

• We achieve real-time performance without using any
special-purpose hardware.

• We can deal with arbitrary objects, both concave and
convex.

• We do not use silhouette information, so there is no
need for image segmentation, which is not always pos-
sible in a real environment.

• We use graphics hardware to accelerate the computa-
tion without increasing the symbolic complexity; our
method is O(n3) while the lower bound of depth-from-
stereo algorithms is also O(n3).

• Our proposed method is more versatile. A number
of systems listed here, such as the Virtualized-Reality
system and the generalized lumigraph system, could
benefit from our method since we can rapidly compute
a geometric model using the graphics hardware.

Figure 2. A
configuration
where there
are five input
cameras, the red
dot represents
the new view
point. Spaces
are discretized
into a number of
parallel planes.

Figure 3. Depth plane images from step 0, 14,
43, 49, from left to right; The scene, which
contains a teapot and a background plane, is
discretized into 50 planes.

3.1 Overview

We want to synthesize new views given calibrated input
images. We can discretize the 3D space into parallel planes.
For each plane Di, we project the calibrated input images
onto it, as shown in Figure 2. If there is indeed a surface
on Di, the projected images on that spot should be the same
color if two assumptions are satisfied: (A) the surface is
visible, i.e. there is no occluder between the surface and the
images; and (B) the surface is diffuse, so the reflected light
does not depend on the 3D position of the input images.

If we choose to accept that two above assumptions are
satisfied, the color consistency on plane Di is a measure if
there is a surface on Di. If we know the surface position,
then we can trivially render it from any new view point.

So here is our proposed method to render new views
from calibrated input images. For a desired new view Cn

(the red dot in Figure 2), we discretize the 3D space into
planes parallel to the image plane of Cn. Then we step
through the planes. For each plane Di, we project the in-
put images on these planes, and render the textured plane
on the image plane of Cn to get a image (Ii) of Di. While
it is easy to conceptually think of these as two separate op-
erations, we can combine them into a single homography
(planar-to-planar) transformation. In Figure 3, we show a
number of images from different depth planes. Note that
each of these images contains the projections from all input
images, and the area corresponding to the intersection of

objects and the depth plane remains sharp. For each pixel
location (u,v) in Ii, we compute the mean and variance of
the projected colors. The final color of (u,v) is the color
with minimum variance in {Ii}, or the color most consis-
tent among all camera views.

The concept of sweeping a plane through a discretized
space is not new, it has been used in a number of computer
vision algorithms [4, 27, 16, 29] for scene reconstruction.
However, we have developed a means to combine scene re-
construction and view synthesis into a single step. We do
so using the programmable Pixel Shader technology typi-
cally available on modern graphics hardware. The use of
graphics hardware for real-time online acquisition, recon-
struction, and rendering is central to this paper.

3.2 Relationship with other Techniques

Stereo Techniques. From a computer vision perspec-
tive, our method is implicitly computing a depth map from
the new viewpoint Cn (readers who are unfamiliar with
computer vision terms are referred to Faugeras’ textbook
[7]). If we only use two reference cameras and make Cn

the same as one of them, say the first one, we can consider
our method as combining depth-from-stereo and 3D image
warping in a single step. The projection of the view ray
P (u, v) into the second camera is the epipolar line (its pro-
jection in the first camera reduces to a single point). If we
clip the ray P (u, v) by the near and the far plane, then its
projection defines the disparity search range in the second
camera’s image. Thus stepping along P (u, v) is equivalent
to stepping along the epipolar line on the second camera,
and computing the color variance is similar to computing
the Sum-of-Squared-Difference (SSD) over a 1 × 1 win-
dow in the second camera. Typically, the SSD score over a
single pixel support window does not provide sufficient dis-
ambiguating power, so it is essential for our method to use
several cameras. As such our method can be considered in
effect a multi-baseline stereo algorithm [25] operating with
a 1 × 1 support window, with the goal being the best color
estimate rather than depth.

Conceptually, our method distributes the correlation sup-
port among input cameras. In binocular stereo, the support
is distributed around the neighborhood of the pixel of inter-
est within a image. And in multi-baseline stereo, the sup-
port is distributed both among cameras and within images.
There are certain tradeoffs among these choices. While a
big support area in the input images is more economical, it
does make a strong assumption about surface smoothness
and favors frontal-parallel surfaces. On the other hand, a
small support size requires more cameras to provide reli-
able estimates.

Light Field Rendering. Isaksen et. al. introduced the
idea of dynamically re-parameterizing the light field func-

tion that allows the user to select a single depth value for
all the view rays[12]. We extend this dynamic parameteri-
zation to the extreme–we allow each ray to have an implicit
depth value that our method automatically estimates on the
fly.

Space Carving. Our consensus function using inter-
camera variance is similar to the photo-consistency check
first proposed by Seitz et. al. [27, 16]. However, they used it
to create a volumetric model of a static scene, while we ap-
ply it directly for view synthesis. We believe our approach
brings a number of advantages. First, the photo-consistency
check is ambiguous in textureless (uniformly colored) re-
gions, which usually leads to errors in the volumetric model.
But such situations are generally fine for view synthesis,
since using any color in the textureless region (in fact they
are all the same) will create the correct image. Secondly,
since we know the new view point and the desired output
image resolution at the time of synthesis, we could use the
method in [3] to select the minimum number of depth steps
needed. Thus, we do the minimum amount of work to gen-
erate a image. For a low resolution image, we could use
fewer depth steps. This ”lazy evaluation” is best suited for
real-time applications. We also reduce the quantization ar-
tifacts since the space is implicitly quantized according to
the output resolution.

3.3 Hardware Acceleration

While it is straightforward to use texture mapping func-
tionalities in graphics hardware to project the input im-
ages on to the depth planes, our hardware acceleration
scheme does not stop there. Modern graphic cards, such
as the NVIDIAs GeForce series [24], provide a program-
able means for per-pixel fragment coloring through the use
of Register Combiner [14]. We exploit this programmabil-
ity, together with the texture mapping functions, to carry out
the entire computation on the graphics board.

3.3.1 Real-time View Synthesis

In our hardware-accelerated renderer, we step through the
depth planes from near to far. At each step (i), there are two
stages of operations, scoring and selection. In the scoring
stage, we set up the transformation according to the new
view point. We then project the reference images onto the
depth plane Di. The textured Di is rendered into the image
plane (the frame buffer).

We would like to program the Pixel Shader to compute
the RGB mean and a luminance “variance” per pixel. Com-
puting the true variance requires two variables per pixel.
Since the current hardware is limited to four channels and
not five, we opt to compute the RGB mean and a single-
variable approximation to the variance. The latter is ap-

proximated by the sum-of-squared-difference (SSD), that is

SSD =
∑

i

(Yi − Ybase)2 (1)

where Yi is the luminance from an input image and Ybase is
the luminance from a base reference image selected as the
input image that is closest to the new viewpoint. This allows
us to compute the SSD score sequentially, an image pair at a
time. In this stage, the frame buffer acts as an accumulation
buffer to keep the mean color (in the RGB channel) and the
SSD score (in the alpha channel) for Di. In Figure 4, we
show the SSD score images (the alpha channel of the frame
buffer) at different depth steps. The corresponding color
channels are shown in Figure 3.

In the next selection stage, we need to select the mean
color with the smallest SSD score. The content of the frame
buffer is copied to a temporary texture (Texwork), while
another texture (Texframe) holds the mean color and min-
imum SSD score from the previous depth step. These two
textures are rendered again into the frame buffer through
orthogonal projection. We reconfigure the Pixel Shader
to compare the alpha values on a per pixel basis, the out-
put color is selected from the one with the minimum alpha
(SSD) value. Finally the updated frame buffer’s content is
copied to Texframe for use in the next depth step. The
complete pseudo code for our hardware-accelerated render
is provided here. Details about the settings of the Pixel
Shader are in Appendix A. Note that once the input images
are transferred to the texture memory, all the computations
are performed on the graphics board. There is no expensive
copy between the host memory and the graphics broad, and
the host CPU is essentially idle except for executing a few
OpenGL commands.

createTex(workingTexture);
createTex(frameBufferTexture);
for (i = 0; i< steps; i++) {

// the scoring stage;
setupPerspectiveProjection();
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
setupPixelShaderForSDD();
for (j = 0; j< inputImageNumber; j++)
projectImage(j, baseReferenceImage);

// the selection stage;
if (i == 0) {
copyFrameToTexture(frameBufferTexture);
continue;
} else
copyFrameToTexture(workingTexture);

setupPixelShaderForMinMax();
setupOrthogonalProjection();

Figure 4. SSD scores (encoded in the alpha
channel) for different depth planes in the first
scoring stage. We use the same setup as in
Figure 3. From left to right, the corresponding
depth steps are 0, 14, 43, 49.

renderTex(workingTexture,
frameBufferTexture);

copyFrameToTexture(frameBufferTexture);
}

3.3.2 Real Time Depth

As explained in Section 3.2, our technique is implicitly com-
puting a depth map from a desired view point, we just
choose to keep the best color estimate for the purpose of
view synthesis. If we choose to trade color estimation for
depth estimation, we can use almost the same method above
(Section 3.3.1) to compute a depth map in real-time, and lib-
erate the CPU for other high level tasks. The only change
necessary is to configure the graphics hardware to keep the
depth information instead of the color information. The
color information can then be obtained by re-projecting the
reconstructed 3D points into input images. From an imple-
mentation standpoint, we can encode the depth information
in the RGB portion of the texture image.

It should be noted that it is not robust to estimate the
depth information based on the variance of a single pixel,
especially for real images in which there is camera noise,
errors in the calibration, or surfaces which are not perfectly
diffuse. That is why most stereo algorithms use an area-
based approach to aggregate support spatially by summing
over a window in the disparity (image) space. The latest of-
ficial OpenGL Specification (Version 1.3) [1] has an Imag-
ing Subset that supports convolution functions. By convolv-
ing the frame buffer with a blurring filter, we can sum up the
SSD scores from neighboring pixels to make the depth esti-
mate more robust. This can be done after the scoring stage,
during the first copy from the frame buffer to the texture
memory(copyFrameToTexture()).

glEnable(GL_CONVOLUTION_2D);
copyFrameToTexture(workingTexture)
glDisable(GL_CONVOLUTION_2D);

If the convolution function is implemented in hardware,
there will be little performance penalty since the convolu-

tion is already a part of the pixel transfer pipeline. Unfor-
tunately, hardware-accelerated convolutions are only avail-
able on expensive graphics workstations such as SGI’s
Oynx21, but these expensive workstations do not have a pro-
gramable pixel shader . Given the tremendous advances in
commodity graphics hardware in recent years, we are op-
timistic that new hardware that supports both the complete
function set of OpenGL 1.3 and programmable shaders will
soon emerge. When this becomes true, our algorithm pro-
vides a practical and inexpensive way for real-time stereo
vision, which to date has only been achieved by using either
special hardware [13, 31, 15], or highly optimized software
at a very limited resolution.

Real-time Depth Postprocessing Without hardware
support for convolution functions, the depth map computed
from real data with 1-pixel kernels can be quite noisy. How-
ever, we can filter out the majority of outliers in software
(the CPU is otherwise idle). This postprocessing involves
three steps: (I) the depth data with their SSD scores are read
back into the main memory; (II) SSD Test: Any point with
a SSD score larger than a threshold (Tssd) is rejected; (III)
Correlation Test: If a point passes the SSD test, it will be
projected into input images. For each pair between the base
reference images and the others, we compute a normalized
correlation score over a small window. If the average of
the correlation scores is smaller than a threshold (Tnc), that
depth point will be rejected.

When dealing with real data, we observed that not many
points will survive after the postprocessing. However, the
survived points contain very few outliers. In fact, we can
use the filtered depth map to create a textured mesh model
using Delaunay triangulation.

Although this optional postprocessing falls back to the
difficult problem of reconstructing a 3D model, it does have
a few advantages:

• It decouples the modeling and the rendering loop. The
textured geometric model can be rendered at a faster
rate, using the same graphics hardware.

• The model can be used with traditional compute graph-
ics objects, or as input to other image-based rendering
methods, such as [5, 2, 8], to provide more compelling
results.

• We have observed that view extrapolation deteriorates
rapidly, which seems to concur with the report by
Szeliski [28]. The textured model extends the effec-
tive view volume, even allowing oblique views from
the reference images.

• It is more efficient for stereo viewing. Furthermore, a
geometric representation that is consistent between left

1There are ways for performing convolution using PC hardware. One
could use multiple textures, one for each of the neighboring pixels; or ren-
der the scene in multiple passes and perturb the texture coordinate in each
pass. However these tricks significantly decrease the speed.

and right-eye views makes stereo fusion easier for the
human visual system.

3.4 Tradeoffs Using the Graphics Hardware

There are certain tradeoffs we have to make when using
the graphics hardware. The lack of hardware accelerated
convolution functions is one of them. Another common
complaint about current graphics hardware is the limited
arithmetic resolution. Our method, however, is less affected
by this limitation. Computing the SSD scores is the central
task of our method. SSD scores are always non-negative,
so they are not affected by the unsigned nature of the frame
buffer. (The computation of SSD is actually performed in
signed floating point on the latest graphics card, such as the
GeForce4 from NVIDIA.) A large SSD score means there
is a small likelihood that the color/depth estimate is correct.
So it does not matter if a very large SSD score is clamped,
it is not going to affect the estimate anyway.

A major limitation of our hardware acceleration scheme
is the inability to handle occlusions. In software, we could
use the method introduced in the Space Carving algorithm
[16] to mark off pixels in the input images, however, there
is no such “feedback” channel in the graphics hardware. To
address this problem in practice, we use a small baseline
between cameras, a design adopted by many multi-baseline
stereo algorithms. However, this limits the effective view
volume, especially for direct view synthesis. Our prelim-
inary experiments indicate that a large support size (more
filtering) could successfully address this problem in prac-
tice.

The bottleneck in our hardware acceleration scheme is
the fill rate. This limitation is also reported by Lok in his
hardware-accelerated visual hull computation [20]. More
detailed analysis can be found there.

4 System Implementation and Results

We have implemented a distributed system using four
PCs and five calibrated 1394 digital cameras (SONY DFW-
V500). Camera exposure is synchronized by use of an
external trigger. Three PCs are used to capture the video
streams and correct for lens distortions. The corrected im-
ages are then compressed and sent over a 100Mb/s network
to the rendering PC with a graphics accelerator. We have
tested our algorithm on two NVIDIA cards, a Quadro2 Pro
and GeForce3. Performance comparisons are presented in
Table 1. On average, the GeForce3 is about 75 percent faster
than Quadro2 Pro for our application.

We discussed in Section 3.3.2 how the support size plays
an important role in the quality of reconstruction. Our ex-
periments show that even a small support size (3×3 or 5×5)
can improve the results substantially (Figure 5). Note that

1282 2562 5122

20 16, 40 31, 55 82, 156
50 31, 85 70, 130 211, 365

100 62, 140 133, 235 406, 720

Table 1. Rendering time per frame in millisec-
onds (number of depth planes vs output reso-
lutions). The first number in each cell is from
GeForce3; the second from Quadro2 Pro. All
numbers are measured with five 320×240 in-
put images.

Figure 5. Impact of support size on the depth
and color reconstruction; Left: 1×1 support
(real-time results); Right: 5×5 support (also
in color plate).

Figure 6. An live view directly captured from
the screen.

Figure 7. A dynamic mesh model of the man-
nequin is evaluated and rendered with a static
3D background.

these test results are not based on software simulation; they
are obtained using OpenGL functions on real hardware.
These results further demonstrate the viability and potential
of our method.

Figure 6 shows a live image computed online in real
time. More lives images can be found in the color plate.
Figure 7 shows a textured, mesh model (foreground man-
nequin) created in real time from postprocessing the raw
depth map. The mesh model is rendered with a static 3D
background model.

5 Conclusions

As stated in the introduction, this work is motivated by
our long standing interest in 3D tele-immersion. An inverse
or image-based approach to view-dependent rendering or
scene reconstruction has appeal to us for this particular ap-
plication for several reasons. For one, the finite and likely
limited inter-site bandwidth motivates us to consider meth-
ods that “pull” only the necessary scene samples from a re-
mote to a local site, rather than attempting to compute and
“push” geometry from a remote to a local site. In addition
we would like to be able to leverage existing video compres-
sion schemes, so would like our view/scene reconstruction
to be as robust to sample artifacts (resulting from compres-
sion for example) as possible. We are working with sys-

tems and networking collaborators to explore new encoding
schemes aimed specifically at this sort of reconstruction.

We look forward to wider implementation of the
OpenGL extensions that facilitate hardware accelerated
convolution filters on commodity hardware. In any case
we intend to explore higher-order or larger-support convolu-
tion using hardware as in [9]. We are considering extending
our method to allow for likelihood-based global constraints.
For example we would like to allow for the likelihood of a
surface along one ray to affect the likelihoods of individ-
ual samples along other rays, to support transparencies, etc.
We are also thinking about formulating the reconstruction
more in 3D, perhaps leveraging work in 3D convolution us-
ing graphics hardware [10].

Like other recent work that makes use of increasingly
powerful graphics hardware for unusual purposes [17, 11]
we hope that our method inspires further thinking and addi-
tional new methods.

6 Acknowledgement

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0121657, “Elec-
tronic Books for the Tele-Immersion Age”. We made use of
equipment provided by DOE under contract B519834, and
personal computers donated by the Intel corporation.

We also acknowledge the support of our close collabora-
tors at UNC-CH (www.cs.unc.edu/˜stc/office/index.html),
in particular we thank Herman Towles for his continuous
leadership and gracious support. We thank John Thomas
and Jim Mahaney for their engineering assistance, and Scott
Larsen and Deepak Bandyopadhyay for their help in shoot-
ing video.

References

[1] OpenGL Specification 1.3, August 2001.
http://www.opengl.org/developers/
documentation/version13/glspec13.
pdf; accessed January 8, 2002.

[2] Chris Buehler, Michael Bosse, Leonard McMillan,
Steven Gortler, and Michael Cohen. Unstructured Lu-
migraph Rendering. In Proceedings of SIGGRAPH
2001, Los Angeles, August 2001.

[3] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and
Heung-Yeung Shum. Plenoptic Sampling. In Proceed-
ings of SIGGRAPH 2000, page 307318, New Orleans,
August 2000.

[4] R. T. Collins. A Space-Sweep Approach to True
Multi-image Matching. In Proceedings of Conference

on Computer Vision and Pattern Recognition, pages
358–363, June 1996.

[5] P. Debevec, C. Taylor, and J. Malik. Modeling and
Rendering Architecture from Photographs. In Pro-
ceedings of SIGGRAPH 1996, Annual Conference Se-
ries, pages 11–20, New Orleans, Louisiana, August
1996. ACM SIGGRAPH, Addison Wesley.

[6] U. Dhond and J. Aggrawal. Structure from stereo: a
review. IEEE Transactions on Systems, Man, and Cy-
bernetics, 19(6):14891510, 1989.

[7] O. Faugeras. Three-Dimensional Computer Vision: A
Geometric Viewpoint. MIT Press, 1993.

[8] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen. The Lumigraph. In Proceedings of SIGGRAPH
1996, pages 43–54, New Orleans, August 1996.

[9] Markus Hadwiger, Thomas Theul, Helwig Hauser,
and Eduard Grller. Hardware-Accelerated Hiqh-
Quality Filtering on PC Graphics Hardware. In Pro-
ceedings of Vision, Modeling, and Visualization 2001,
Stuttgart, Germany, November 2001.

[10] Matthias Hopf and Thomas Ertl. Accelerating 3D
Convolution using Graphics Hardware. In Proceed-
ings of IEEE Visualization 99, San Francisco, USA,
October 1999.

[11] Kenneth E. Hoff III, Andrew Zaferakis, Ming Lin,
and Dinesh Manocha. Fast and Simple 2D Geomet-
ric Proximity Queries Using Graphics Hardware. In
Proceedings of ACM Symposium on Interactive 3D
Graphics, March 2001.

[12] Aaron Isaksen, Leonard McMillan, and Steven J.
Gortler. Dynamically Reparameterized Light Fields.
In Proceedings of SIGGRAPH 2000, pages 297–306,
August 2000.

[13] T. Kanade, A. Yoshida, K. Oda, H. Kano, and
M. Tanaka. A Stereo Engine for Video-rate Dense
Depth Mapping and Its New Applications. In Pro-
ceedings of Conference on Computer Vision and Pat-
tern Recognition, pages 196–202, June 1996.

[14] Mark J. Kilgard. A Practical and Robust Bump-
mapping Technique for Today’s GPUs. In Game
Developers Conference 2000, San Jose, California,
March 2000.

[15] K. Konolige. Small Vision Systems: Hardware and
Implementation. In Proceedings of the 8th Interna-
tional Symposium in Robotic Research, page 203212.
Springer-Verlag, 1998.

[16] K. Kutulakos and S. Seitz. A Theory of Shape by
Space Carving. Technical Report TR692, Computer
Science Dept., U. Rochester, 1998.

[17] Scott Larsen and David McAllister. Fast Matrix Mul-
tiplies using Graphics Hardware. In Proceedings
of ACM Supercomputing 2001, Denver, CO, USA,
November 2001.

[18] A. Laurentini. The Visual Hull Concept for Sil-
houette Based Image Understanding. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
16(2):150–162, February 1994.

[19] M. Levoy and P. Hanrahan. Light Field Rendering. In
Proceedings of SIGGRAPH 1996, pages 31–42, New
Orleans, August 1996.

[20] B. Lok. Online Model Reconstruction for Interac-
tive Virtual Environments. In Proceedings 2001 Sym-
posium on Interactive 3D Graphics, pages 69–72,
Chapel Hill, North Carolina, March 2001.

[21] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and
L. McMillan. Image-Based Visual Hulls. In Proceed-
ings of SIGGRAPH 2000, pages 369–374, New Or-
leans, August 2000.

[22] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular
stereo: A new algorithm and its evaluation. to appear
in International Journal of Computer Vision, Special
Issue on Multi-baseline Stereo, 2002.

[23] P. Narayanan, P. Rander, and T. Kanade. Constructing
Virtual Worlds using Dense Stereo. In Proceedings of
International Conference on Computer Vision, pages
3–10, June 1998.

[24] Nvidia. http://www.nvidia.com.

[25] M. Okutomi and T. Kanade. A Multi-baseline Stereo.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(4):353–363, April 1993.

[26] Hartmut Schirmacher, Li Ming, and Hans-Peter Sei-
del. On-the-Fly Processing of Generalized Lumi-
graphs. EUROGRAPHICS 2001, 20(3), 2001.

[27] S. M. Seitz and C. R. Dyer. Photorealistic Scene Re-
construction by Voxel Coloring. In Proceedings of
CVPR 1998, pages 1067–1073, 1997.

[28] R. Szeliski. Prediction Error as a Quality Metric for
Motion and Stereo. In Proceedings of International
Conference on Computer Vision, pages 781–788, Sept
1999.

[29] R. Szeliski and P. Golland. Stereo Matching with
Transparency and Matting. In Proceedings of Inter-
national Conference on Computer Vision, pages 517–
524, Sept 1998.

[30] Sundar Vedulay, Simon Baker, Peter Randeryz, Robert
Collinsy, and Takeo Kanadey. Three Dimensional
Scene Flow. In Proceedings of International Confer-
ence on Computer Vision, pages 722–729, Sept 1999.

[31] John Woodfill and Brian Von Herzen. Real-time stereo
vision on the PARTS reconfigurable computer. In
Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE
Symposium on FPGAs for Custom Computing Ma-
chines, pages 201–210, Los Alamitos, CA, 1997.
IEEE Computer Society Press.

A Pixel Shader Pseudo Code

The following code is written roughly following the syn-
tax of nvparser, a generalized compiler for NVIDIA ex-
tensions. Documentation about nvparser can be found
on NVIDIA’s web site at http://www.nvidia.com.

A.1 Code to compute the squared difference

This piece of code assumes that there are m input im-
ages. The alpha channel of the input images contains a
gray scale copy of the image, and the base reference im-
age is stored in tex0. The squared difference is computed
on the gray scale images. The scales in the code are nec-
essary because the unsigned char values are converted to
floating point values between [0, 1] within Pixel Shader. If
no scale is applied, the output squared value (in unsigned
char) will be floor((a − b)2/256), where a and b are the in-
put values (in unsigned char). In our implementation, we
use a combined scale factor of 32, effectively computing
floor((a − b)2/32).

const1 = {1/m, 1/m, 1/m, 1};
// the base reference image
// will be added
// m-1 times more than
// the other images;
const0 = {1/((m)(m-1)), 1/((m)(m-1)),

1/((m)(m-1)), 1};

// **** combiner stage 0;
{

rgb {
spare0 = tex1*const1

+ tex0*const0;
}
alpha {

spare0 = tex1 - tex0;
scale_by_four ();

}
}
// **** combiner stage 1
{

alpha{
spare0 = spare0*spare0;
scale_by_four ();

}
}
// **** final output
{

out.rgb = spare0.rgb;
out.alpha = spare0;

}

A.2 Code to do the minimum alpha test

This piece of code assumes that the mean colors are
stored in the RGB channel while the SSD scores are stored
in the alpha channel.

// **** combiner stage 0;
{

alpha {
// spare0 = tex1 - tex0 + 0.5

spare0 = tex1 - half_bias(tex0);
}

}
// **** combiner stage 1
{

rgb{
// select the color with
// the smaller alpha;
// spare0 =
// (spare0.alpha < 0.5) ?
// (tex1) : (tex0);

spare0 = mux();
}
alpha{
// select the smaller
// alpha value

spare0 = mux();
}

}
// **** final output
{ out = spare0; }

Real-Time Consensus-Based Scene Reconstruction
using Commodity Graphics Hardware

Figure 8. Example setup for 15 frame-per-second online reconstruction using five cameras.

Figure 9. Impact of support size on the depth and color reconstruction; For each pair, the one on
the left uses a 1×1 support window (real-time results) while the one on the right uses a 5×5 support
window.

Figure 10. Red-blue stereo images from a live sequence. Use red-blue eyeglasses for stereo viewing.

