
Viargo - A Generic Virtual Reality Interaction Library
Dimitar Valkov∗, Benjamin Bolte†

Visualization and Computer Graphics (VisCG) Research Group,
University of Münster, Germany

Gerd Bruder‡, Frank Steinicke§

Immersive Media Group (IMG),
University of Würzburg, Germany

ABSTRACT

Traditionally, interaction techniques for virtual reality applications
are implemented in a proprietary way on specific target platforms,
e. g., requiring specific hardware, physics or rendering libraries,
which withholds reusability and portability. Though hardware ab-
straction layers for numerous devices are provided by multiple vir-
tual reality libraries, they are usually tightly bound to a particular
rendering environment.

In this paper we introduce Viargo - a generic virtual reality in-
teraction library, which serves as additional software layer that is
independent from the application and its linked libraries, i. e., a
once developed interaction technique, such as walking with a head-
mounted display or multi-touch interaction, can be ported to dif-
ferent hard- or software environments with minimal code adapta-
tion. We describe the underlying concepts and present examples
on how to integrate Viargo in different graphics engines, thus ex-
tending proprietary graphics libraries with a few lines of code to
easy-to-use virtual reality engines.

Keywords: Virtual reality library, interaction metaphors, abstrac-
tion layers.

Index Terms: H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Artificial, augmented,
and virtual realities; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual reality

1 INTRODUCTION

The field of virtual reality (VR) encompasses research on vari-
ous aspects of semi-immersive or immersive virtual environments
(IVEs), including the development of multimodally integrated in-
teraction, computer graphics techniques as well as hardware tech-
nology. IVEs are often complex hardware and software systems
that require application developers to incorporate knowledge from
different domains such as computer science, engineering and psy-
chology, by integrating libraries or frameworks in extensive soft-
ware engineering projects. Although many applications provide
multimodal, i. e., visual, auditory and haptic rendering, the most
dominant sensation in IVEs is usually the vision. In almost all VR
applications a computer-generated graphical environment is pre-
sented to the user by mapping tracked head movements to cam-
era motions in the virtual world. Though such a setup provides
the least common denominator of all VR applications, the graph-
ical environments and underlying frameworks differ significantly
between and within research groups, being constantly adapted for
shifted research requirements, and often replaced due to rapid de-
velopments in the computer graphics community. Furthermore, in-
teraction techniques in VEs are often implemented on a prototyp-

∗e-mail: dimitar.valkov@uni-muenster.de
†benjamin.bolte@uni-muenster.de
‡gerd.bruder@uni-wuerzburg.de
§frank.steinicke@uni-wuerzburg.de

ing basis for a specific graphical and display environment, tightly
coupled to particular hardware configurations and rendering frame-
works. They are often based on a research group’s locally devel-
oped rendering libraries, developer experience and preference. For
these reasons, VR applications usually lack portability and reusabil-
ity, which hinders collaborative work and progress in the field of
complex interaction techniques, e. g., making it near-impossible
to develop interaction code collaboratively with multiple research
groups and VR laboratories.

Obvious effects of this situation can be observed in numerous
VR demonstrations. Usually, VR systems are based on immersive
or semi-immersive displays and tracking systems combining head
tracking and view-dependent rendering with virtual object interac-
tion via various input devices. While such kinds of multimodal user
interfaces provide compelling immersive experiences, they often
lack state-of-the-art rendering technologies, i. e., the visual appear-
ance of the VE is often antiquated in contrast to current efforts in
the game or cinema industry, which does not reflect the perceptual
importance of visual stimulation in multimodal input and output
environments. Often this can be traced to developers integrating
hardware technology and designed interaction concepts in locally
developed graphics libraries based directly on OpenGL or DirectX,
or open source graphics engines such as OGRE, OSG or IrrLicht.
Many VR libraries and toolkits have been developed on top of these
rendering engines, which allow to abstract the hardware interface
from the application, but cause significant re-implementation when
porting a VR application to another graphics engine. In particu-
lar, to our knowledge none of these commercial or free VR toolkits
provide sufficient support for all current state-of-the-art rendering
systems or game engines such as Crytek’s CryEngine 3, the Unreal
Engine 3, Valve Source Engine or Unity 3D.

In effect, if a VR developer wants to use such a game engine,
she is usually forced to implement the plugin or layer between her
currently used VR toolkit and the engine, which is often not very
stable to changes in the graphics engine. Furthermore, most VR
toolkits [3, 9] are mainly fully integrated frameworks providing
application programming interfaces (APIs) for definition of VEs
and behavior, while hiding the complexity of hardware event han-
dling and visualization processes, i. e., proving difficult and time-
consuming for users to register low-level processes with a state-
of-the-art graphics engine, or adding support for hardware input or
output devices. As a result, migration of VR interaction techniques
from one environment to another usually leads to dropping support
for many of the implementations, causing transfer of interaction
techniques between researchers to be usually limited to general de-
scriptions of the concepts, i. e., being sufficiently simple for easy
re-implementation or causing loss of features on the target system.

In this position paper we introduce Viargo [vi:ô:go:], an interac-
tion subsytem that allows definition of interaction metaphors be-
tween the application layer and low-level tracking or device in-
put, allowing easy transfer of interaction code between different
graphics or game engines, VR laboratories and research groups.
In contrast to other VR toolkits, Viargo does not provide an API
layer to encapsulate the graphical subsystem, but is conceptional
self-contained and provides a localizable interface, i. e., allowing to
synchronize interaction techniques with the application at a single
point.

Figure 1: Block diagram of a typical VR framework and the integration
of the Viargo system.

2 RELATED WORK

For implementations of interactive systems, in particular VR soft-
ware systems, it is important to subdivide the system such that mod-
ifications to one component can be made with minimal impact on
the others. Many VR software systems and VR toolkits have been
proposed to support the development of VR applications. These
systems usually provide interfaces for specification of VEs or in-
teractions, abstracting hardware and device handling from layout
and dynamics of the virtual scene. However, most of these systems
do not providing sufficient modularity for rapid integration of the
currently most advanced rendering systems, and cannot be easily
integrated in existing VR hardware or software environments.

Examples of traditional VR software systems that provide high-
level interfaces for developers are VPL’s Body Electric [1] and
SGI’s Open Inventor [8]. These systems allow users to specify
relations between virtual objects and input or output devices in
a dataflow diagram editor, but limiting program modularity [3],
in particular, not providing a dedicated interface for integrating a
modern rendering engine. Various other VR software systems pro-
vide rapid prototyping environments for creating interactive com-
puter graphics applications without requiring a strong technical
background, but abstracting control of graphics and rendering [11].
Many other VR libraries are focused on specific display technology
or applications, making it difficult to share interaction techniques
developed for one hardware setup with another [5]. For instance,
some libraries are based on specific rendering platforms [14, 4], or
focus on particular areas of virtual or augmented reality, such as the
Studierstube project [12] or ARToolkit [13].

Integrated software systems, such as VRJuggler [3], DI-
VERSE [9], Vizard [18] or Virtools [16], allow building high-end
VR applications and have been designed to overcome the draw-
backs of some of the previous systems. For instance, VRJuggler
establishes a modular architecture for different devices, and pro-
vides a graphics-level API to interface with the virtual scene. Some
of the other systems allow to choose from multiple wrapped ren-
dering frameworks or provide plugins for different libraries. How-
ever, some experience with low-level programming in these envi-
ronments is required for being able to write a plugin for state-of-the-
art graphics rendering or game development environments. More-
over, developed interaction techniques often cannot be shared with
other research groups due to incompatible versions or licensing is-
sues.

As discussed above, these developments often lack standardiza-
tion of VR system components and architecture, but incorporate
abstractions of hardware interaction. Some research was conducted
on flexible abstraction for interaction metaphors or interface defini-
tion, such as VITAL [6], InTml [7] or CHASM [15].

Although many systems are available for creating and develop-
ing VR-based applications, due to compatibility and customiza-
tion issues universities and research institutions tend to write their
own VR-based extensions to open source or commercially avail-
able graphics or game engines. In the next sections we present an
alternative approach for encapsuling VR interaction metaphors in
an easily sharable and integrable interaction subsystem.

3 VIARGO

A common VR application (cf. Figure 1), whenever based on full
integrated framework or composed of different libraries, usually
contains two main components - a graphic engine and an event sys-
tem. In addition, a script or XML parser is often integrated into the
system to provide options for simple customization of its properties
without the need for recompiling the application. The main task of
the event system is to hide the complexity of the hardware compo-
nents and provide transparent abstraction to the sensor data. This is
often done by providing an API layer for accessing the sensor data
or by encapsulating this data into generic structures (events) which
are then broadcasted to the corresponding system components. As
mentioned in Section 1, the interaction metaphors in such systems
are usually integrated into the application with parts of their code
residing in the event system (e. g., filters, event re-processors) and
part of it residing in the graphic engine (e. g., camera manipulators,
object selectors).

The main goal of Viargo is to provide a self-contained system for
specifying interactions, which can be integrated in arbitrary render-
ing engines with minimum effort. The library provides its own set
of hardware abstraction components, and can be combined with a
graphic or game engine extending it to a basic VR framework. Nev-
ertheless, the application is still free to acquire the sensor data by
its own and then inject it into the Viargo core. Viargo could be
driven either by the application’s main rendering loop or by sepa-
rate threads. Furthermore, Viargo provides an internal state system,
which contains structures commonly found in the most graphic en-
gines such as the virtual camera’s position and orientation. This
state system, if synchronized with the rendering engine, is used to
exchange the data between Viargo and the application.

3.1 Architecture

A diagram of the framework components of Viargo is shown in
Figure 2. The core data transfer unit in Viargo is an event. Viargo
events are simple specializations of a common abstract base class
used to transfer data from the device abstraction units, which ac-
quire the sensor data to the interaction processing units, i. e., the
interaction metaphors. The event engine is used to dispatch this
data flow and manage multi-threading or sequencing issues. The
result of the data processing could be either a change of the state
in the state system, or a generation of new events, which enables
multi-level data processing.

3.1.1 Device Abstraction

A characteristic feature of all VR applications is that they use data
from different types of sensors, such as tracking or analog input de-
vices. The type of the used sensors as well as the way the data is
acquired differs considerably from one setup to another, although
the semantics are very similar. For instance, a commercial marker-
based tracking system and a custom face recognition program could
both be used to determine the user’s head position, i. e., provide se-
mantically equivalent data, but the format of the output data (e. g.,
units, coordinate system) and the way it is fed to the application
usually varies significantly. In order to provide unified abstraction
of the sensors Viargo uses the, so called, device units. Device units
are adapters for each sensor or protocol (e. g., VRPN) which trans-
late the acquired data into events and broadcast them to the rest of

Figure 2: Component diagram of the Viargo system.

the system. A single device unit could be used to provide differ-
ent types of events, such as changes of accelerometer data, button
states, etc. However, different device units could also provide the
same type of events, i. e., tracking events from different tracking
systems.

3.1.2 Interaction Metaphors
Interaction metaphors are implemented as event processing units
encapsulated as derivations of a simple abstract class. They receive
events from the core system and process them to change some of
the parameters in the state system, which are then transferred to the
rendering engine by the time of synchronization. Alternatively, a
metaphor could be used as a device unit, to feed back events to the
Viargo core 1 The data processing can be realized at three different
stages: (i) as soon as an event appears, (ii) in the main synchroniza-
tion thread or (iii) after all events have been processed, providing
great flexibility for designing interactions. An example code listing
of a Viargo metaphor is shown in Listing 1.

1

2 c l a s s M y I n t e r a c t i o n M e t a p h o r : p u b l i c Metaphor {
3

4 p u b l i c :
5 / / Every metaphor i n s t a n c e has a un iq ue name
6 M y I n t e r a c t i o n M e t a p h o r (s t r i n g name)
7 : Metaphor (name)
8 {
9 }

10

11 / / [a s y n c h r o n o u s]
12 / / r e a c t on incoming e v e n t when r e c e i v e d
13 boo l onEven tRece ived (Event∗ e)
14 {
15 i f (t y p e i d (∗ e) == t y p e i d (T r a c k i n t E v e n t))
16 {
17 / / pre−p r o c e s s t h e e v e n t
18 / / [. . .]
19 / / . . . and enqueue i t f o r l a t e r

e v a l u a t i o n
20 r e t u r n t r u e ;
21 }
22 e l s e
23 {
24 / / i g n o r e a l l o t h e r e v e n t s
25 r e t u r n f a l s e ;
26 }
27 }

1This could be particularly useful in multi-touch applications, where the
raw touch events are usually only used to detect predefined high-level ges-
tures, which are then mapped to manipulations.

28

29 / / [s y n c h r o n o u s]
30 / / p r o c e s s a l l enqueued e v e n t s
31 vo id onEvent (Event∗ e)
32 {
33 i f (t y p e i d (∗ e) == t y p e i d (T r a c k i n t E v e n t))
34 {
35 T r a c k i n t E v e n t ∗ t e = (T r a c k i n t E v e n t ∗) e ;
36 v e c 3 f t r a c k e d P o s = te −> p o s i t i o n () ;
37 / / do some th ing wi th t h e d a t a
38 / / [. . .]
39

40 / / . . . and m a n i p u l a t e t h e ’ main ’ camera
41 Viargo . camera (" main ") . s e t P o s i t i o n (. . .) ;
42 }
43

44 e l s e i f (. . .) / / p r o c e s s o t h e r e v e n t s
45 {
46 }
47 }
48

49 / / h a n d l e f rame u p d a t e s
50 vo id u p d a t e (f l o a t t i m e S i n c e L a s t U p d a t e)
51 {
52 / / do some th ing
53 }
54 } ;

Listing 1: Example Viargo metaphor.

The function onEventReceived(...) is called asyn-
chronously at the time the event is received in the event engine.
The function returns a boolean value, which decides if the event
should be saved in the metaphors internal event queue for later
evaluation in the main synchronization thread, or if it have to
be discarded (since it is already processed or not needed by the
metaphor). In the main synchronization thread all events previ-
ously saved in the event queues are consequently passed through
the onEvent(...) function for evaluation. The event engine
takes care in this case, that the events are evaluated in the same
temporal sequence, as they are received by the different metaphors.
Finally, after all events in the event queues of all metaphors are
evaluated their update(...) functions are called, providing the
metaphors with an option to perform frame specific actions. For
instance, a metaphor may only save the most actual tracking po-
sition during the execution of the onEvent(...) function and
perform the actual camera manipulations only once per frame, in
the update(...) function.

In addition the metaphors have access to the entire Viargo core,
giving them the opportunity to change the configuration on the fly,
e. g., adding/removing interaction metaphors, or enabling/disabling
device units.

3.1.3 State System and Synchronization

Viargo can be thought of as a VR framework with a null rendering
system, which we call state system. The state system consists of ab-
stractions of components found in all rendering engines, e. g., cam-
eras and scene representations. This architecture enables metaphors
to change the state of the abstract components instead of changing
the state of the graphic engine. The transfer of the abstract com-
ponent’s state to its real counterpart is then made at a single place,
usually just before a new frame is rendered.

Camera Abstraction

An example how a simple synchronization of a single camera could
be implemented in arbitrary graphics engine with open rendering
loop is shown in Listing 2.

1 / / . . . r e n d e r i n g loop
2

3 v e c 3 f p o s i t i o n , t a r g e t , up ;
4 f l o a t l e f t , r i g h t , bottom , top , zNear , zFa r ;
5

6 Viargo . u p d a t e () ;
7 Viargo . camera (" main ") . ge tLookAt (p o s i t i o n , t a r g e t ,

up) ;
8 Viargo . camera (" main ") . g e t F r u s t u m (l e f t , r i g h t ,

bottom , top , zNear , zFa r) ;
9

10 a p p l i c a t i o n C a m e r a . se tLookAt (. . .) ;
11 a p p l i c a t i o n C a m e r a . s e t F r u s t u m (. . .) ;
12

13 / / r e n d e r a l l . . .

Listing 2: Synchronization of Viargo’s main camera with the
application.

In the example code, the event processing is executed with a call to
Viargo.update(), and then the application’s camera is over-
written with Viargo’s main camera representation. This method is
useful if the interaction techniques are only implemented in Viargo,
but leads to overriding interaction techniques implemented in the
application itself. Furthermore, multiple cameras may be needed,
which have to be synchronized. An example showing two-sided
synchronization of multiple cameras is shown in Listing 3.

1 / / . . r e n d e r i n g loop
2

3 v e c 3 f p o s i t i o n , t a r g e t , up ;
4 f l o a t l e f t , r i g h t , bottom , top , zNear , zFa r ;
5

6 / / s y n c h r o n i z e Via rgo wi th a p p l i c a t i o n
7 w h i l e (Via rgo . cameraSystem () . hasNext ()) {
8 v i a r g o : : Camera& vrgCam =
9 Viargo . cameraSystem () . n e x t () ;

10 / / f i n d c o r r e s p o n d i n g
11 / / a p p l i c a t i o n camera
12 appCam . getLookAt (p o s i t i o n , t a r g e t , up) ;
13 appCam . g e t F r u s t u m (l e f t , r i g h t , bottom , top ,

zNear , zFa r) ;
14

15 vrgCam . se tLookAt (. . .) ;
16 vrgCam . s e t F r u s t u m (. . .) ;
17 }
18

19 / / p r o c e s s a l l e v e n t s
20 Viargo . u p d a t e () ;
21

22 / / s y n c h r o n i z e a p p l i c a t i o n wi th Via rgo
23 w h i l e (Via rgo . cameraSystem () . hasNext ()) {
24 v i a r g o : : Camera& vrgCam =
25 Viargo . cameraSystem () . n e x t () ;
26 / / f i n d c o r r e s p o n d i n g
27 / / a p p l i c a t i o n camera
28 vrgCam . getLookAt (p o s i t i o n , t a r g e t , up) ;
29 vrgCam . g e t F r u s t u m (l e f t , r i g h t , bottom , top ,

zNear , zFa r) ;
30

31 appCam . se tLookAt (. . .) ;
32 appCam . s e t F r u s t u m (. . .) ;
33 }
34

35 / / r e n d e r a l l . . .

Listing 3: Two-sided synchronization of multiple cameras.

In this case all cameras specified in Viargo receive the parameters
of their counterparts in the application. Then all received events

are executed and finally the parameters of the cameras of Viargo
are communicated back to the application. In order to simplify
the mapping between the cameras of Viargo and the application,
a property set is integrated in each camera abstraction. A property
set consists of name-value pairs in which different variable types,
such as pointers, names, IDs, etc., can be saved.

Scene Abstraction
The second abstraction currently implemented in Viargo’s state sys-
tem is a general purpose scene graph. All objects relevant for in-
teraction can be added to this scene graph with their relative po-
sition, orientation and properties. In addition, each object has its
own property set, which allows saving arbitrary parameters needed
to be manipulated by the interaction techniques, such as materials,
colors, object type, etc. For instance, consider an interaction tech-
nique, which allows to change the position of a light source. In
this case the application’s light sources could be registered to the
Viargo’s scene interface with a type property identifying it as light.
During the system initialization a new Viargo scene object is cre-
ated with an unique name as shown in the Listing 4.

1 / / . . i n i t i a l i z a t i o n
2 SceneNode∗ node = new SceneNode (" myLight ") ;
3 node−> s e t R e l a t i v e P o s (. . .) ;
4 node−> s e t R e l a t i v e O r i (. . .) ;
5

6 Viargo . s c e n e () . r o o t () . a d d O b j e c t (node) ;
7

8 / / [. . .]

Listing 4: Registering an object to the Viargo scene abstraction.

Furthmore, certain proporties can be as-
signed to each scene objects, for example, via
node->setProperty("ObjectType", ...); or
node->setProperty("Color", ...);

In the rendering method, this object is synchronized with the
applications light source on each frame as shown in Listing 5.

1

2 / / . . r e n d e r i n g loop
3 SceneNode& l i g h t = Via rgo . s c e n e () . f i n d (" myLight ") ;
4

5 a p p L i g h t . s e t P o s i t i o n (l i g h t . g e t R e l a t i v e P o s ()) ;
6 a p p L i g h t . s e t O r i e n t a t i o n (l i g h t . g e t R e l a t i v e O r i ()) ;
7

8 / / r e n d e r a l l

Listing 5: Updating object of the Viargo scene abstraction.

Certain parameters can be modified according to
the specification in the interaction metaphor, e. g.,
appLight.setColor(light.getProperty("Color"));.

Alternatively, a dedicated (recursive) function can be used to
synchronize the entire scene abstraction with the application’s
scene. The geometry of the registered objects in the scene graph
is described as a tree of hierarchical, axis-aligned bounding boxes.
The scene abstraction provides options for searching single or mul-
tiple objects by an application or metaphor specific predicate and to
apply a manipulator function to all objects in the scene.

3.1.4 Implementation
We have designed the Viargo API to be as simple as possible, still
providing great functionality and reduce the amount of code that
has to be written in order to integrate it in the target application.
The library is implemented in C++ with source code and build sys-
tem (CMake) being platform independent. The main component of
the API is the core engine represented by the Viargo singleton
class. The core engine can be initialized with an XML file, which

(a) (b)

Figure 3: Operators using the example applications developed with Viargo within the scope of the (a) AVIGLE project and the (b) LOCUI project.

contains descriptions of all the cameras and their initial parame-
ters, as well as the device components, which have to be loaded and
the initially registered metaphors. All metaphors are implemented
as a derivation from the abstract class viargo::Metaphor, and
have to be registered with a unique name to the core engine. This
allows to retrieve them at any point in the code. In the same
way, all device components have to be derived from the base class
viargo::Device which provides them access to the event en-
gine. Again, all device components have to be registered to the core
engine with a unique name. Finally, the events are specializations
of the base class viargo::Event and can be differentiated using
run-time type identification (RTTI).

In effect, the code additions that have to be made to the targeted
rendering engine are a simple call to Viargo’s initialization function
with the path of the initialization XML file and a synchronization
code akin to the code presented in Listings 2, 3 and 4. This is also
the only code that has to be adapted if migrating from one rendering
engine to another. Further interaction techniques can be developed
entirely within the scope of the Viargo system, and Viargo device
components can be implemented for additional hardware.

3.2 Examples
We use the Viargo library within the scope of our research projects
with open source rendering engines, such as OGRE, IrrLicht and
OSG as well as with state-of-the-art game engines, such as Crytek’s
CryEngine 3 or Unity 3D. In all cases the integration of the library
within the engine was straightforward as explained above.

In the following, we describe two example applications as illus-
tration of the diversity of use cases and setups supported by Viargo.

3.2.1 Multi-Touching Stereoscopic Objects
This test application has been developed in the scope of the
AVIGLE project [17]. The goal of this project is to explore novel
approaches for remote sensing based on a swarm of Miniature Un-
manned Aerial Vehicles (MUAVs). These MUAVs are equipped
with different sensing and network technologies. At the end of
the pipeline the currently available sensor data from the MUAVs
and their status are displayed to a human operator, while new data
continuously arrives. The user interacts with this visualization, for
instance, to change the viewpoint in the VE. In addition, she can
define new positions for each MUAV moving their visual represen-
tation in the VE, as shown in Figure 3 (a). Since MUAVs within
a swarm usually fly at different altitudes, stereoscopic visualization
is essential to provide additional depth cues.

For the initial implementation of the user interface we have used
a passive stereoscopic, multi-touch enabled projection wall and
tracked the user’s head position with an optical tracking system.
The VE was initially implemented with OGRE and later on changed
to the IrrLicht game engine. We use the Viargo framework to pro-
vide position and orientation for stereoscopic rendering based on
head-tracking events. Furthermore, the viewpoint and the virtual
MUAVs were manipulated via multi-touch interaction techniques
developed entirely within the Viargo framework.

3.2.2 Locomotion in IVEs

The second test application implements the so called jumper
metaphor. The application is developed in the scope of the LOCUI
(Locomotion User Interfaces) [10] project. The goal of this project
is to investigate the benefits and limitations of real walking within
IVEs. The jumper metaphor combines natural direct walking with
magical locomotion through large-scale IVEs. The key characteris-
tic of the jumper metaphor is that it supports real walking for short
distances, such that the user can walk around objects, or use small
head movements to explore the environment while perceiving mo-
tion parallax and occlusion effects similar to the real world. To
travel over large distances, the metaphor predicts the planned travel
destination by monitoring the user’s viewing direction. The user
could initiate a virtual jump, which starts a smooth viewpoint an-
imation that transfers her to the corresponding target position (cf.
Figure 3 (b)).

This application was implemented for IVEs based on head-
mounted displays (HMDs). The VE was created and visualized
with Crytek’s CryEngine 3. An optical tracking system was used
for tracking the user’s head position in combination with a gyro-
scope (InterSense’s Wireless InertiaCube3) for tracking the users
head rotations.

4 INITIAL EVALUATION AND FEEDBACK

Since one year we are using Viargo in the context of research
projects, but also student seminars. In the scope of student projects,
several students have used Viargo for developing their applications
using a variety of hardware systems (e. g., CAVEs, HMDs, multi-
touch walls, hand-held devices, Microsoft Kinects, AR drones). To
receive feedback of different users, we encouraged the students
to inform the seminar advisor if they had questions or comments
about the Viargo library. In addition, we performed informal inter-
views and questionnaires with students, who have worked at least

3 months with Viargo. The major observations concerning the de-
mands in terms of ease-of-use, flexibility and performance, as de-
scribed in [2], as well as problems with the use of Viargo are dis-
cussed in the following.

Students were able to modify existing interaction metaphors and
writing simple custom interaction metaphors very efficiently. For
instance, object selection and manipulation (i. e., translation, rota-
tion and scaling) metaphors were implemented as well as camera
manipulation metaphors such as zooming could be implemented
within 2 hours. Furthermore, students stated that Viargo provides
an easy interface to the hardware, i. e., instead of directly process-
ing the low-level data in different formats from various hardware
devices, events containing preprocessed data allow students to use
various hardware without knowing the underlying low-level data
format.

Processing abstract events showed another advantage in terms of
flexibility, as students were able to easily exchange their interaction
metaphors independently of the used hardware. For instance, an
interaction metaphor for mapping a skeletal posture onto a virtual
avatar was transferred from tracking using active LED markers to
tracking using the Microsoft Kinect by adjusting only the coordi-
nate space differences. Moreover, students were able to easily ex-
tent the Viargo library to support new hardware devices using either
the VRPN protocol, which is already supported by Viargo or writ-
ing a custom device using Viargo classes for network communica-
tion. In addition to the flexibility in terms of hardware support, the
integration of Viargo into current state-of-the-art rendering systems
such as Crytek’s CryEngine 3.0 was achieved by the students within
less than 30 minutes. Even their aforementioned initial metaphors
could be easily transferred to work with these rendering systems.

The majority of problems or inconveniences that occured was
caused by difficulties of the students with compiler settings or con-
ceptual ideas. For example, some students placed the code of new
metaphors in the Viargo project, which leads to a necessary rebuild
of both the Viargo library and the application project itself. Further-
more, the integration of the Viargo library into Crytek’s CryEngine
3.0 requires to change the default project compilation settings to
enable run-time type information support. Some students had also
difficulties with the network connection itself, e. g., firewall setting
issues or conceptual issues concerning data formats for data ex-
change, but less with the implementation in Viargo itself. However,
most of these issues were easily fixed by providing the students with
instructions to avoid such pitfalls.

5 CONCLUSIONS AND FUTURE WORK

In this position paper we introduced Viargo which serves as addi-
tional software layer that is independent from the application and
its linked libraries. We explained the architecture and discussed its
benefits. We described how interactions can be implemented and
easily ported to different graphics engines.

Although, the Viargo library is already used in different VR-
based applications, it is still under development and not very well
documented. In the future, we will further evaluate and test the li-
brary in different use-cases in order to identify drawbacks and lim-
itations.

ACKNOWLEDGEMENTS

The work was supported by grants from the Deutsche Forschungs-
gemeinschaft (DFG) in the scope of the iMUTS and LOCUI

projects. We would like to thank all students for their thorough
feedback and evaluation.

REFERENCES

[1] Y. Adachi, T. Kumano, and K. Ogino. Intermediate Representation for
Stiff Virtual Objects. In Proceedings of IEEE VRAIS, pages 195–203,
1995.

[2] A. Bierbaum and C. Just. Software Tools for Virtual Reality Appli-
cation Development. In Course Notes for SIGGRAPH 98 Course 14,
Applied Virtual Reality, 1998.

[3] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. VR Juggler: A Virtual Platform for Virtual Reality Application
Development. In IEEE Proceedings of VR2001, pages 89–96, 2001.

[4] R. Blach, J. Landauer, A. Roesch, and A. Simon. A Flexible Proto-
typing Tool for 3D Real-Time User Interaction. ACM Proceedings of
Eurographics Workshop of Virtual Environments (VE’98), pages 195–
203, 1998.

[5] C. Cruz-Neira. Virtual Reality based on Multiple Projection Screens:
The CAVE and Its Applications to Computational Science and Engi-
neering. PhD thesis, University of Illinois at Chicago, 1995.

[6] M. Csisinko and H. Kaufmann. Vital - the virtual environment inter-
action technique abstraction layer. In Proceedings of the IEEE Virtual
Reality 2010 Workshop: Software Engineering and Architectures for
Realtime Interactive Systems, pages 77–86. Shaker Verlag, 2010. Vor-
trag: IEEE Virtual Reality 2010, Boston, USA; 2010-02-00.

[7] P. Figueroa, W. F. Bischof, P. Boulanger, H. J. Hoover, and R. Taylor.
Intml: A dataflow oriented development system for virtual reality ap-
plications. Presence: Teleoper. Virtual Environ., 17:492–511, October
2008.

[8] O. I. A. Group. Open Inventor C++ Reference Manual. Addison-
Wesley, 2005.

[9] J. Kelso, L. Arsenault, S. Satterfield, and R. Kriz. DIVERSE: A
Framework for Building Extensible and Reconfigurable Device Inde-
pendent Virtual Environments. In Proceedings of Virtual Reality 2002
Conference, pages 183–190. IEEE, 2002.

[10] locui.uni muenster.de. Locui - virtual locomotion user interfaces.
2011.

[11] R. Pausch, T. Burnette, A. C. Capehar, M. Conway, D. Cosgrove,
R. DeLine, J. Durbin, R. Gossweiler, S. Koga, and J. White. A Brief
Architectural Overview of Alice, a Rapid Prototyping System for Vir-
tual Reality. In IEEE Computer Graphics and Applications, pages
195–203, 1995.

[12] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, M. Encar-
naçǎo, M. Gervautz, and W. Purgathofer. The Studierstube Aug-
mented Reality Project. In PRESENCE - Teleoperators and Virtual
Environments 11(1), pages 32–45, 2002.

[13] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled Simulation in
Virtual Reality with the MR Toolkit. ACM Transactions on Informa-
tion Systems, 11(3):287–317, 1993.

[14] H. Tramberend. AVANGO: A distributed virtual reality framework.
In Proceedings of the IEEE Virtual Reality ’99, 1999.

[15] C. Wingrave and D. Bowman. Tiered developer-centric representa-
tions for 3d interfaces: Concept-oriented design in chasm. In IEEE
Virtual Reality Conference VR ’08, pages 193–200, 2008.

[16] www.3dviavirtools.com. 3dvia virtools vr library. 2011.
[17] www.avigle.de. Avigle - avionic digital service platform. 2011.
[18] www.worldviz.com/products/vizard. Vizard vr toolkit - rapid proto-

typing for novices. 2011.

