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Abstract In the previous chapter, locomotion devices have been described, which
prevent displacements in the real world while a user is walking. In this chapter we
explain different strategies, which allow users to actually move through the real-
world, while these physical displacements are mapped to motions of the camera in
the virtual environment (VE) in order to support unlimited omnidirectional walking.
Transferring a user’s head movements from a physical workspace to a virtual scene
is an essential component of any immersive VE. This chapter describes the pipeline
of transformations from tracked real-world coordinates to coordinates of the VE.
The chapter starts with an overview of different approaches for virtual walking, and
gives an introduction to tracking volumes, coordinate systems and transformations
required to set up a workspace for implementing virtual walking. The chapter con-
tinues with the traditional isometric mapping found in most immersive VEs, with
special emphasis on combining walking in a restricted interaction volume via refer-
ence coordinates with virtual traveling metaphors (e. g., flying). Advanced mappings
are then introduced with user-centric coordinates, which provide a basis to guide
users on different paths in the physical workspace than what they experience in the
virtual world.

1 Introduction

Using sophisticated hard- and software technology, immersive virtual environments
(VEs) provide users with a multisensory medium for exploring and interacting with
computer-generated three-dimensional environments. In particular, ego-centric per-
spectives and natural interaction metaphors can provide users with a compelling ex-
perience similar to interactions in the real world, which cannot be simulated using
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any other existing technology. In this context, the most natural technique for explor-
ing a virtual world is real walking, which provides a greater sense of presence than
other virtual traveling techniques [4, 24], such as flying or walking in-place [36],
and naturally stimulates human spatial wayfinding and cognitive map building [27].
As described in Part 1, walking is a form of natural locomotion, which encompasses
repetitive motions of legs or body for active self-propulsion [9], such that users in
immersive VEs receive proprioceptive, kinesthetic and efferent copy signals from
their physical movements, supporting the perception of self-motion in the virtual
world.

In order to provide users with an unimpaired sense of place and plausibility dur-
ing self-motions [29], virtual reality (VR) applications have to maintain simultane-
ous awareness of coordinate systems and transformations in both the real and virtual
world. In this chapter, we describe the basic transformations that can be used to im-
plement real walking user interfaces in VR laboratory workspaces. In particular, we
show how the sense of moving in computer graphics environments can be stimu-
lated with sequences of frame to frame changes of the position and orientation of a
user in a VR workspace. If the changes from one frame to the next are large, we talk
of teleportation, whereas if the changes are considerable small, the feedback from
the virtual world causes a sensory flow (e. g., optic flow [15] or acoustic flow [30]),
which engenders the sense of continuous motion.

We distinguish between two main characteristics of real walking user interfaces:

• Isometric transformations describe mappings that preserve motion distances and
angles when movements of a tracked user in the physical workspace are mapped
to changes of a virtual representation.

• Nonisometric transformations, in contrast, describe different mapping approaches
to introduce a discrepancy between user movements and virtual feedback.

It is generally assumed that human spatial perception and cognition in virtual
worlds is optimally supported in isometric user interfaces, since sensory motion
feedback from the user’s physical movements (e. g., proprioceptive and vestibular
motion cues) match feedback from the virtual world (e. g., optic and acoustic flow).
However, isometric user interfaces have a severe practical problem: With such map-
pings the size of the physical workspace limits the size of the virtual scene that a
user can explore by natural walking. We show how such limitations can be alle-
viated with multimodal interfaces that combine walking over short distances with
traveling over long distances. We introduce nonisometric mapping strategies that
provide a different solution to the problem of unrestricted omnidirectional walking
by guiding users on a different path in the real world than experienced in the virtual
scene. Nonisometric mappings for walking user interfaces are encompassed under
the term redirected walking [23].

The remainder of this chapter is structured as follows. Section 2 gives a short
introduction to workspaces and coordinate systems in VR laboratories. In Section 3
we present the basic math and algorithms necessary to implement isometric virtual
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walking, and then show with reference coordinates how limitations of virtual inter-
action space can be alleviated with traveling techniques. In Section 4 we describe
nonisometric transformations for redirected walking, give an overview of the basic
algorithms with user-centric coordinates, and go into detail on linear and angular
scaling transformations, as well as curvature mappings. We present a simple algo-
rithm that allows practitioners to implement unrestricted redirected walking in VR
workspaces. Section 5 concludes the chapter.

2 Virtual Reality Workspaces

In order to support real walking, user movements in a VR laboratory have to be
tracked and mapped to motions in a three-dimensional virtual scene. In particular,
movements of the user’s head position in the physical workspace have to be mea-
sured and transferred to motions of camera objects in the virtual space in order to
provide ego-centric visual feedback to the user’s eyes from the virtual world1.

Physical workspaces in VR laboratories incorporate tracking systems to measure
the position and/or orientation of objects located in the tracking space. Such track-
ing systems can differ in underlying technology, accuracy and precision of tracking
data, as well as how the user is instrumented. In particular, some VR laboratories
incorporate separate tracking systems for position and orientation measurements,
such as optical marker tracking systems that measure the head position and iner-
tial orientation sensors that measure the head orientation. The coordinate systems in
which tracking systems provide position and orientation data are not standardized,
such that usually the tracking coordinates have to be transformed into the coordi-
nate system used for the virtual scene [8]. In the following, for convenience, we
assume that virtual and physical coordinate systems are calibrated and represented
in right-handed OpenGL coordinates [28]. Therefore, the y-axis is oriented in in-
verse gravitation direction, whereas the x- and z-axis are orthogonal to the y-axis
and each other, thus defining the ground plane. These coordinates can easily be de-
rived from arbitrary tracking coordinates by reassigning the x-, y- and z-axes, or
multiplying the z-coordinate with −1 for changing the handedness.

Figure 1 illustrates such a coordinate system in a tracked workspace in a VR
laboratory. Position and orientation of tracked objects can be described as a trans-
formation from a specified origin of the tracking volume to the object’s local co-
ordinate system. Tracking systems often provide position data as a translation vec-
tor (xr,yr,zr) ∈ R3, and orientation data as yaw, pitch and roll angles (ỹr, p̃r, r̃r) ∈
[0,360)3, describing three subsequently applied rotational transformations2. Al-
though the axes and order of yaw, pitch and roll transformations are not standardized

1 While most immersive VEs implement head tracking for visual feedback, some laboratories also
implement tracking of other body parts to provide virtual body feedback or interaction methods.
2 Some tracking systems use quaternions as their native reporting format, which provides an alter-
native representation of the transformations, and can be converted from and to the angular notation
used in this chapter [21].
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Fig. 1 Illustration of (a) three-dimensional tracking coordinates in a VR laboratory with a user’s
tracked local head coordinate system as defined by positional and orientational tracking data, and
(b) virtual scene coordinates with interaction volume defined by reference coordinates.

among tracking systems, practitioners tend to represent orientations first with yaw
rotations around the y-axis, followed by pitch rotations around the x-axis, and roll
rotations around the z-axis [35]. For instance, assuming the user’s head position and
orientation is tracked with a local coordinate system that is defined with the z-axis
for the (inverse) look-direction, the y-axis in up-direction, and the x-axis in strafe-
direction (see Figure 1(a)), then yaw, pitch and roll rotations correspond to turning
the head to the left or right, up or down, or around the view axis, respectively. In the
following, we assume tracked head orientations to be provided using this represen-
tation.

In order to provide a user with visual feedback by rendering the three-dimensional
scene onto one or more VR display surfaces, we have to consider a virtual analog
of the user’s head in the VE3. We assume virtual camera coordinates are repre-
sented with the triple of orthogonal axes as used for physical head tracking coor-
dinates [8], with transformations from the origin of the virtual scene to the camera
coordinates defined by a translation vector (xv,yv,zv) ∈ R3, and yaw, pitch and roll
angles (ỹv, p̃v, r̃v)∈ [0,360)3. Figure 1(b) illustrates local camera coordinates in vir-
tual scene coordinates.

3 Depending on the display system (e. g., head-mounted displays or immersive projection technolo-
gies) the actual positions or orientations of computer graphics camera objects are usually specified
relative to these head coordinates, such as transformations from the head center to the eye dis-
plays [25].
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3 Isometric Virtual Walking

In this section we present the basic math and algorithms to implement isometric
real walking transformations, i. e., mappings that preserve distances and angles of a
user’s movements.

3.1 One-to-one Mappings

Assuming the real and virtual workspaces are defined using the coordinate systems
introduced in Section 2, basic one-to-one mappings can be implemented by using
the tracked position and orientation of a user’s head in the laboratory to define the
position and orientation of a corresponding virtual camera object for each rendering
frame. In particular, a tracked change of one unit (e. g., meter or degree) in the phys-
ical workspace is mapped to a translation or rotation of one unit in the virtual scene.
Examples of such mappings are often found when displaying a virtual replica of a
virtual reality laboratory to users in head-mounted display environments [12, 33], or
in architectural passive haptics environments, in which real and virtual objects are
registered to provide users with haptic feedback when touching virtual objects [10].
In such environments, one-to-one mappings can be implemented using the follow-
ing simple pseudo code:

Algorithm 1 One-to-one mapping from tracked head to camera coordinates
for all rendering frames n ∈ N0 do

// Get current head tracking state:
(x(n)r ,y(n)r ,z(n)r )← tracked head position (in R3)
(ỹ(n)r , p̃(n)r , r̃(n)r )← tracked head orientation (in [0,360)3)

// Set virtual camera state:
(x(n)v ,y(n)v ,z(n)v )← (x(n)r ,y(n)r ,z(n)r ) // position
(ỹ(n)v , p̃(n)v , r̃(n)v )← (ỹ(n)r , p̃(n)r , r̃(n)r ) // orientation

end for

In the pseudo code, (x(n)r ,y(n)r ,z(n)r ) ∈ R3 denotes the current three-dimensional po-
sition, and (ỹ(n)r , p̃(n)r , r̃(n)r ) ∈ [0,360)3 the current yaw, pitch and roll orientation of
the user’s head in the physical workspace as provided by the tracking system for
rendering frames n ∈N0, as well as (x(n)v ,y(n)v ,z(n)v ) ∈R3 the computed new position
and (ỹ(n)v , p̃(n)v , r̃(n)v ) ∈ [0,360)3 the new orientation of the camera object that is used
as the basis for rendering the current frame to be displayed to the user.
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3.2 Reference Coordinates

A simple extension of isometric mappings is to introduce virtual reference coor-
dinates. Since one-to-one mappings only allow a user to explore a volume in the
virtual scene that is exactly as large as the interaction volume in the laboratory, it
becomes important to map the user’s movements to specific regions of interest in the
virtual scene. This can be accomplished by introducing an intermediate reference
coordinate system when transferring position and orientation data from tracking
coordinates to virtual scene coordinates. Introducing such virtual reference coordi-
nates, the corresponding pseudo code in Section 3.1 changes to:

Algorithm 2 Isometric mapping with reference coordinates
for all rendering frames n ∈ N0 do

// Get current head tracking state:
(x(n)r ,y(n)r ,z(n)r )← tracked head position (in R3)
(ỹ(n)r , p̃(n)r , r̃(n)r )← tracked head orientation (in [0,360)3)

// Set virtual camera state:

(x(n)v ,y(n)v ,z(n)v ,1)T←


r(n)xx r(n)yx r(n)zx r(n)px

r(n)xy r(n)yy r(n)zy r(n)py

r(n)xz r(n)yz r(n)zz r(n)pz

0 0 0 1

 · (x(n)r ,y(n)r ,z(n)r ,1)T // position

(ỹ(n)v , p̃(n)v , r̃(n)v )← (ỹ(n)r , p̃(n)r , r̃(n)r ) // orientation
end for

In the pseudo code, the 4×4 transformation matrix for homogenous coordinates
defines a reference position r(n)p = (r(n)px ,r

(n)
py ,r

(n)
pz ) ∈ R3 in the virtual scene, as

well as coordinate axes with the direction vectors r(n)x = (r(n)xx ,r(n)xy ,r(n)xz ) ∈ R3,

r(n)y = (r(n)yx ,r(n)yy ,r(n)yz ) ∈ R3, and r(n)z = (r(n)zx ,r(n)zy ,r(n)zz ) ∈ R3 along the transformed
x-, y- and z-axes of the reference coordinates. The virtual yaw, pitch and roll trans-
formations are applied to the reference coordinate axes. Figure 1 illustrates reference
coordinates that are used to move the virtual interaction volume (limited by the size
of the laboratory workspace (labx, laby, labz) ∈ R3) to regions of interest.

To account for changing regions of interest in the virtual scene, reference co-
ordinates can be changed at run time. In particular, teleportation of the user’s vir-
tual viewpoint can be implemented by abrupt changes of the reference coordinates,
whereas continuous traveling can be implemented by iterative changes in reference
positions and orientations [3, 18, 24].
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3.3 Virtual Traveling

Instead of just implementing natural walking, many immersive VEs make use of a
hybrid walking-and-flying metaphor, in which the user’s head is tracked in a limited
interaction space, whereas the user can change the reference position or orientation
in the virtual environment by using a hand-held controller. This interaction tech-
nique can easily be grasped by users when introduced as a flying carpet [40], i. e.,
the user can naturally walk over a limited carpet region, while the carpet itself can
be flown through the virtual world. In contrast to real walking, which is identified
by natural locomotion in the physical workspace, flying and steering techniques are
denoted as virtual traveling [3]. A traditional implementation of virtual traveling is
view-directed flying [3, 18, 24], which refers to user-initiated changes of reference
coordinates relative to the user’s virtual view, i. e., the coordinates of the virtual
camera object. With view-directed flying in immersive virtual environments usually
only the reference position is changed, whereas the orientation of reference coor-
dinates is not affected, such that the virtual interaction volume remains level to the
real world [18].

A basic virtual flying controller can be implemented using the following simple
approach. For each rendering frame n ∈ N we compute the current view-direction
(v(n)vx ,v(n)vy ,v(n)vz ) ∈ R3, the strafe-direction (s(n)vx ,s(n)vy ,s(n)vz ) ∈ R3, and the up-direction

(u(n)vx ,u(n)vy ,u(n)vz )∈R3 of the camera object in the VE (see Section 2). Providing com-
modity input hardware to the user, such as a keyboard, the user can initiate changes
in reference coordinates by pressing different keys. For instance, if we detect that
the user has pressed the up- or down-key on a keyboard, we compute the reference
position for the next rendering frame as

(r(n)px ,r
(n)
py ,r

(n)
pz ) = (r(n−1)

px ,r(n−1)
py ,r(n−1)

pz )+(v(n)vx ,v(n)vy ,v(n)vz ) ·g(n)v ,

with g(n)v ∈ R defining a speed factor for virtual traveling in view direction, e. g.,
with g(n)v > 0 for forward motions if the user pressed the up-key, and g(n)v < 0 for
backward motions if the user pressed the down-key on the keyboard. In particular,
this means that the user can turn the head towards a target in the virtual scene, and
fly towards the virtual target by pressing the up-key. Using corresponding keys and
speed factors, we can allow the user to change the reference position in the virtual
scene not only in view-direction, but also in strafe-direction (s(n)vx ,s(n)vy ,s(n)vz ), and up-

direction (u(n)vx ,u(n)vy ,u(n)vz ). The speed factors may be as simple as a constant or a
more sophisticated function based on sensor inputs.
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4 Nonisometric Virtual Walking

Isometric mappings enable users to explore a virtual region by real walking. How-
ever, since with isometric mappings the virtual interaction space is limited, virtual
traveling techniques have to be used to cover larger distances in the VE, which im-
pair the user’s sense of being able to explore a VE like the real world, and can
significantly degrade spatial perception and task performance [27, 36]. To allevi-
ate such problems, researchers proposed nonisometric mappings, which have the
potential to enable unrestricted omnidirectional walking. In order to describe such
mappings, we introduce relative user-centric coordinates.

4.1 User-Centric Coordinates

Instead of mapping position and orientation data from the tracking volume in the
laboratory for each rendering frame to their respective absolute position and ori-
entation in a fixed virtual interaction volume, redirection techniques are based on
relative mappings, in which each change in position or orientation from one ren-
dering frame to the next is addressed separately [32]. Using user-centric relative
coordinates requires more transformations and may introduce numerical error prop-
agation, but allows more sophisticated mapping strategies.

From Absolute Position and Orientation to Relative Changes

For each rendering frame the change in position and orientation of the user’s head
is measured in coordinates of the tracking volume. Changes can be computed as the
difference of the current tracking data at rendering frame n ∈ N from the previous
state at rendering frame n−1, defined by tuples consisting of the previous position
(x(n−1)

r ,y(n−1)
r ,z(n−1)

r ) ∈ R3 and orientation (ỹ(n−1)
r , p̃(n−1)

r , r̃(n−1)
r ) ∈ [0,360)3, and

the current position (x(n)r ,y(n)r ,z(n)r ) ∈ R3 and orientation (ỹ(n)r , p̃(n)r , r̃(n)r ) ∈ [0,360)3

in the real-world tracking volume. The three-dimensional head position change
(∆x(n)r ,∆y(n)r ,∆z(n)r ) ∈ R3, as well as the changes in yaw, pitch and roll head ori-
entation angles (∆ ỹ(n)r ,∆ p̃(n)r ,∆ r̃(n)r ) ∈ [−180,180)3 result as:


∆x(n)r = x(n)r − x(n−1)

r ,

∆y(n)r = y(n)r − y(n−1)
r ,

∆z(n)r = z(n)r − z(n−1)
r ,
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∆ ỹ(n)r = atan2( sin(ỹ(n)r − ỹ(n−1)

r ), cos(ỹ(n)r − ỹ(n−1)
r ) ),

∆ p̃(n)r = atan2( sin(p̃(n)r − p̃(n−1)
r ), cos(p̃(n)r − p̃(n−1)

r ) ),

∆ r̃(n)r = atan2( sin(r̃(n)r − r̃(n−1)
r ), cos(r̃(n)r − r̃(n−1)

r ) ).

It should be noted that computing the angular difference from one frame to the next
is not trivial. In this computation we assume that the user’s head rotation between the
previous and current frame did not exceed 180 degrees in each dimension, which is a
reasonable assumption in real-time simulations. Therefore, we compute the smaller
of the two angles in each direction that can lead from the previous orientation angle
to the current angle (i. e., rotating clockwise or counterclockwise). The computed
∆ ỹ(n)r , ∆ p̃(n)r and ∆ r̃(n)r angles are in the interval [−180,180).

Mapping Relative Changes

Linear and angular changes of the user’s head pose in tracking coordinates have
to be mapped to the virtual environment for each rendering frame, i. e., the virtual
position and orientation result from accumulation of relative differences measured
in the physical tracking volume. We can describe a one-to-one relative mapping for
all linear and angular movements from the tracking volume to virtual coordinates in
pseudo code as follows:

Algorithm 3 Relative mapping from tracked head to camera coordinates
for all rendering frames n ∈ N do

// Get current head tracking state:
(x(n)r ,y(n)r ,z(n)r )← tracked head position (in R3)
(ỹ(n)r , p̃(n)r , r̃(n)r )← tracked head orientation (in [0,360)3)

// Compute relative changes:
(∆x(n)r ,∆y(n)r ,∆z(n)r )← head position change (in R3)
(∆ ỹ(n)r ,∆ p̃(n)r ,∆ r̃(n)r )← head orientation change (in [−180,180)3)

// Set virtual camera state:
(x(n)v ,y(n)v ,z(n)v )← (x(n−1)

v ,y(n−1)
v ,z(n−1)

v )+(∆x(n)r ,∆y(n)r ,∆z(n)r ) // position
(ỹ(n)v , p̃(n)v , r̃(n)v )← (ỹ(n−1)

v , p̃(n−1)
v , r̃(n−1)

v )+(∆ ỹ(n)r ,∆ p̃(n)r ,∆ r̃(n)r ) // orientation
end for

This approach describes relative transformations from one rendering frame to the
next, i. e., it is reasonable to initialize the virtual position and orientation of the user
at the beginning of the VR experience with the identical state as in the tracking
volume, or to define an initial offset using reference coordinates as described for
isometric mappings (see Section 3.2).
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Local Frames of Reference

In contrast to the absolute position and orientation of the user in tracking coordi-
nates, such relative changes are independent of a specific origin defined in the track-
ing volume. However, the relative changes are not independent of the specific axes
defined in the tracking space. In particular, a movement of a user’s head is described
as a position change for frame n ∈ N as (∆x(n)r ,∆y(n)r ,∆z(n)r ) ∈ R3 along the x-, y-
and z-axes of the tracking volume. Most advanced redirection techniques, however,
manipulate position or orientation changes relative to specific coordinates (e. g., de-
termined from the user’s head or body state) in the real and virtual world. We can
account for such frames of reference by introducing local coordinate transforms, for
which the virtual camera transformation at frame n ∈ N changes to:

x(n)v

y(n)v

z(n)v
1

=


1 0 0 x(n−1)

v

0 1 0 y(n−1)
v

0 0 1 z(n−1)
v

0 0 0 1

 ·Mv ·Mr ·


∆x(n)r

∆y(n)r

∆z(n)r
1

 ,

with homogeneous coordinates and 4×4 matrices Mr and Mv defining local coor-
dinate transformations in real and virtual coordinates, respectively. An example of
such transformations is discussed in the following section.

4.2 Scaling Self-Motions

The most often found redirection techniques are based on nonisometric mappings
of user-centric translations or rotations to virtual camera motions. Such mappings
can be described by self-motion gains, which define ratios between real and virtual
self-motions. Two types of self-motion gains are distinguished in immersive virtual
environments, i. e., rotation gains and translation gains.

Rotation Gains

Rotation gains define the ratio between physical head turns and virtual camera ro-
tations [32, 16]. Assuming a relative change in the orientation of the user’s head
has been determined for frame n ∈ N as (∆ ỹ(n)r ,∆ p̃(n)r ,∆ r̃(n)r ) ∈ R3, rotation gains
gR = (gR[ỹ],gR[p̃],gR[r̃]) ∈ R3 define the resulting virtual camera rotation, which
changes to: ỹ(n)v

p̃(n)v

r̃(n)v

=

ỹ(n−1)
v

p̃(n−1)
v

r̃(n−1)
v

+

gR[ỹ] 0 0
0 gR[p̃] 0
0 0 gR[r̃]

 ·
∆ ỹ(n)r

∆ p̃(n)r

∆ r̃(n)r
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Most redirection techniques focus on scaling yaw rotations [13, 22, 23], for which
an applied rotation gain gR[ỹ] ∈R causes a tracked real-world head rotation ∆ ỹ(n)r to

cause a virtual camera rotation of gR[ỹ] ·∆ ỹ(n)r , instead of ∆ ỹ(n)r . This means that
if gR[ỹ]=1 the virtual scene remains stable considering a user’s head orientation
change. In case of gR[ỹ]>1 the virtual scene appears to rotate against the direction of
the head turn, whereas a gain gR[ỹ]<1 causes the scene to rotate with the direction
of the head turn [13]. For instance, if a user rotates the head by a yaw angle of 90
degrees, a gain gR[ỹ]=1 maps this motion one-to-one to a 90 degrees rotation of the
virtual camera in the VE. Applying a gain of gR[ỹ]=0.5 results in the user having to
rotate the head by 180 degrees physically in order to achieve a 90 degrees virtual
rotation. A gain of gR[ỹ]=2 results in the user having to rotate the head by only 45
degrees physically in order to achieve a 90 degrees virtual rotation.

In case such rotation gains cause differences between a user’s head orientation in
tracking coordinates, and a camera orientation in virtual scene coordinates, this re-
quires us to adapt the direction of subsequent translational movements to the offset
between the real and virtual head orientation. We can account for such offsets by in-
troducing user-centric reference coordinates for translational movements in the real
and virtual environment (see Section 4.1). For instance, in the example above, we
can account for offsets between real and virtual yaw orientation angles by defining
local coordinate transforms for position changes:

x(n)v

y(n)v

z(n)v
1

=


1 0 0 x(n−1)

v

0 1 0 y(n−1)
v

0 0 1 z(n−1)
v

0 0 0 1

 ·


cos(ỹ(n−1)
v ) 0 sin(ỹ(n−1)

v ) 0
0 1 0 0

−sin(ỹ(n−1)
v ) 0 cos(ỹ(n−1)

v ) 0
0 0 0 1

 ·


cos(−ỹ(n−1)
r ) 0 sin(−ỹ(n−1)

r ) 0
0 1 0 0

−sin(−ỹ(n−1)
r ) 0 cos(−ỹ(n−1)

r ) 0
0 0 0 1

 ·


∆x(n)r

∆y(n)r

∆z(n)r
1

 ,

in which head position changes in tracking coordinates are first transformed into a
local coordinate system relative to the yaw orientation angle of the user’s head in
the previous rendering frame, and then transformed into the local coordinate system
relative to the yaw orientation angle of the camera object in virtual coordinates at
the previous rendering frame. Using this simple coordinate transformation, we can
apply yaw rotation gains without changing the mapping of head translations relative
to the user’s head orientation. At this point it should be noted that similar transfor-
mations can be applied for pitch and roll transformations, e. g., to simulate virtual
slopes [17]. However, since pitch and roll angles are usually applied sequentially
relative to the virtual camera yaw angle (see Section 2), in most cases it is not nec-
essary to introduce such coordinate transformations to account for applied pitch or
roll gains (cf. [2]).
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Translation Gains

Translation gains define the ratio between real and virtual head translations [32].
Similar to rotation gains, scaled translations can be described with translation gains
gT = (gT [x],gT [y],gT [z]) ∈ R3, which are applied to relative changes in the position

of the user’s head (∆x(n)r ,∆y(n)r ,∆z(n)r ) ∈ R3 for frame n ∈ N:
x(n)v

y(n)v

z(n)v
1

=


1 0 0 x(n−1)

v

0 1 0 y(n−1)
v

0 0 1 z(n−1)
v

0 0 0 1

 ·


gT [x] 0 0 0
0 gT [y] 0 0
0 0 gT [z] 0
0 0 0 1

 ·


∆x(n)r

∆y(n)r

∆z(n)r
1


For instance, uniform scalings in horizontal walking directions are often applied in
immersive virtual environments allowing users to cover a larger distance in the VE
when walking in the physical workspace [37], which can be described with transla-
tions gains gT [x]=gT [z]>1, and gT [y]=1 (see Figure 2). This causes a position change

of the user’s head in the real world (∆x(n)r ,∆y(n)r ,∆z(n)r ) ∈ R3 to be transferred to
the VE as (gT [x] ·∆x(n)r ,∆y(n)r ,gT [x] ·∆z(n)r ), i. e., horizontal movements along the x-
and z-axes are scaled uniformly, whereas vertical head bobbing movements along
the y-axis are unaffected.

However, this approach still results in the problem that lateral head movements
are scaled while a user walks, which can be distracting for the user [11]. Instead of
scaling all horizontal motions with a translation gain, Interrante et al. [11] proposed
scaling translations only in a user-specified walking direction (i. e., the seven league
boots metaphor). Using a similar approach, Steinicke et al. [32] proposed using the
yaw orientation of the user’s head as approximation of walking direction [1] to scale
translational movements. The latter approach can be implemented even without ad-
ditional user instrumentation by changing the mapping to:

x(n)v

y(n)v

z(n)v
1

=


1 0 0 x(n−1)

v

0 1 0 y(n−1)
v

0 0 1 z(n−1)
v

0 0 0 1

 ·


cos(ỹ(n−1)
v ) 0 sin(ỹ(n−1)

v ) 0
0 1 0 0

−sin(ỹ(n−1)
v ) 0 cos(ỹ(n−1)

v ) 0
0 0 0 1

 ·


gT [x] 0 0 0
0 gT [y] 0 0
0 0 gT [z] 0
0 0 0 1

 ·


cos(−ỹ(n−1)
r ) 0 sin(−ỹ(n−1)

r ) 0
0 1 0 0

−sin(−ỹ(n−1)
r ) 0 cos(−ỹ(n−1)

r ) 0
0 0 0 1

 ·


∆x(n)r

∆y(n)r

∆z(n)r
1

 ,

which allows to scale head position changes with separate gains relative to the user’s
locomotion state. In particular, walking distances in the virtual heading direction can
be scaled with a gain gT [z] ∈R, lateral distances can be scaled with a gain gT [x] ∈R,
and vertical distances can be scaled with a gain gT [y] ∈ R.
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Fig. 2 Illustration of translation gains: (a) physical interaction volume in the virtual reality labo-
ratory with size (labx, laby, labz) ∈ R3, and (b) virtual environment interaction volume with size
(gT [x] · labx,gT [y] · laby,gT [z] · labz) ∈ R3 scaled by translation gains.

4.3 Redirected Walking

Although scaling self-motions as introduced in Section 4.2 can be used to redirect
a user, e. g., by scaling head rotations to reorient the user away from an obstacle in
the physical workspace, the approach has practical limitations. In particular, assum-
ing the user walks straight ahead in the laboratory workspace without performing
head rotations, then the virtual travel distance can be scaled relative to the physical
walking distance, but at some point the user will eventually reach the end of the
physical workspace, and potentially collide with an obstacle. To avoid this problem,
researchers proposed various solutions [7, 14, 19, 20, 22, 23, 26, 32, 34, 38, 39],
including techniques based on instructing the user to stop walking and start rotat-
ing the head, such that rotation gains can be applied to reorient the user away from
physical obstacles [22, 38]. However, the most prominent solution for unrestricted
walking was presented by Razzaque et al. [23], who proposed to use subtle vir-
tual camera rotations while a user performs translational movements in the physical
laboratory workspace. This causes the user to change the heading direction when
walking in the real world according to the rotations in the virtual environment. The
approach can be implemented with curvature gains.

Curvature Gains

Curvature gains define ratios between position changes of the user’s head in the
real world and virtual camera rotations [32]. For example, when the user walks
straight ahead in the physical workspace, a curvature gain that causes reasonably
small iterative camera yaw rotations to one side forces the user to walk along a
curved path in the opposite direction in the real world in order to stay on a straight
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path in the virtual world. If the injected manipulations are reasonably small, the user
will compensate for the virtual camera rotations without being able to consciously
detect the manipulations. Curvature gains gC ∈R+

0 denote the resulting bending of a
user’s path in the physical workspace, which is determined as gC = 1/r for a circular
arc with radius r ∈R+. In case no curvature is applied, i. e., r = ∞, this corresponds
to a curvature gain gC = 0. If an applied curvature gain causes the user to rotate by
90 degrees after Π

2 m walking distance, then the user has covered a quarter circle
with radius r = 1, which corresponds to a curvature gain gC = 1.

Curvature mappings can be described using the following pseudo code:

Algorithm 4 Curvature mapping from tracked head to camera coordinates
for all rendering frames n ∈ N do

// Get current head tracking state:
(x(n)r ,y(n)r ,z(n)r )← tracked head position (in R3)
(ỹ(n)r , p̃(n)r , r̃(n)r )← tracked head orientation (in [0,360)3)

// Compute relative changes:
(∆x(n)r ,∆y(n)r ,∆z(n)r )← head position change (in R3)
(∆ ỹ(n)r ,∆ p̃(n)r ,∆ r̃(n)r )← head orientation change (in [−180,180)3)

// Compute changes relative to curvature:
(∆d(n)

r ,∆s(n)r )← straight and strafe motion (in R2)
∆α

(n)
ỹr
← arc angle (in R)

// Set virtual camera state:x(n)v

y(n)v

z(n)v

←
x(n−1)

v

y(n−1)
v

z(n−1)
v

+

v(n−1)
vx ·∆d(n)

r + v(n−1)
vz ·∆s(n)r

∆y(n)r

v(n−1)
vz ·∆d(n)

r − v(n−1)
vx ·∆s(n)r

 // position

ỹ(n)v

p̃(n)v

r̃(n)v

←
ỹ(n−1)

v

p̃(n−1)
v

r̃(n−1)
v

+

∆ ỹ(n)r −∆α
(n)
ỹr

∆ p̃(n)r

∆ r̃(n)r

 // orientation

end for

In the pseudo code, ∆d(n)
r ∈ R denotes the arc length of the traveled circular path

along the two-dimensional ground plane in the physical workspace, and ∆s(n)r ∈ R
the strafe distance relative to the center of the circular path, with ∆α

(n)
ỹr
∈ R the

corresponding arc angle as shown in Figure 3(a). Figure 3(b) illustrates mapping
of the arc length to a straight motion in the virtual environment, whereas if the
user strays from the circular path in the physical workspace, this is mapped to a
strafe motion in the VE. In this example, user movements are mapped relative to the
user’s real and virtual two-dimensional view direction, denoted as view direction
along the xz-plane (v(n)rx ,v(n)rz ) ∈R2 with ‖ (v(n)rx ,v(n)rz )‖= 1 in the physical workspace
shown in Figure 3(a), as well as (v(n)vx ,v(n)vz )∈R2 with ‖ (v(n)vx ,v(n)vz )‖= 1 in the virtual
workspace shown in Figure 3(b). Other implementations may use arbitrarily placed
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(a) physical movement (b) virtual motion

Fig. 3 Illustration of two-dimensional mappings in the xz-plane from (a) tracking coordinates to
(b) virtual coordinates for an applied curvature gain gC = 1/r with radius r ∈ R+.

curvatures in the physical workspace, e. g., based on real and virtual path planning
and transformations [20, 26, 34]. Figure 4 shows an example of a predicted straight
motion in the VE being mapped to a circular path in the physical workspace.

It is important to note that curvature transformations are based on the assumption
that the user will adapt to induced virtual rotations by changing the walking direction
in the physical workspace. In particular, if the manipulations are overt, the user has
to consciously follow the induced virtual rotations. If the user does not adapt to an
induced rotation in the virtual environment, e. g., if the user is walking with eyes
closed, or does not have a target in the virtual scene, it is possible that the user may
stray off the path planned with curvature gains.

In general, such curvature gains can be applied not only to yaw rotations, but also
to pitch and roll rotations, e. g., to simulate slopes in a virtual scene [17]. Moreover,
such virtual camera rotations can be applied time-dependently, i. e., not caused by
translational or rotational movements of the user in the VR laboratory, which can be
described as a simple extension of the above mapping. However, anecdotal evidence
suggests that virtual rotations that are not coupled to self-motions are usually easily
detectable by users, and potentially distracting [23, 32].

A Basic Redirection Controller

Sophisticated implementations of unrestricted virtual walking with redirection tech-
niques, i. e., redirection controllers, are usually based on information about the ex-
tents of the physical workspace, the structure of the virtual scene, and assumptions
about typical user behavior. For instance, if a user is turning towards a door in a vir-
tual building model, redirection controllers may predict the user’s future virtual path
to determine how to optimally scale rotations and compress distances, as well as to
apply curvature gains, such that the user will be able to walk through the virtual door,
without being able to detect applied manipulations [5, 20, 34]. However, in many
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Fig. 4 Illustration of (a) path redirection with curvature gains in the physical workspace, for (b) a
predicted virtual straight path.

cases such optimizations with virtual path prediction are not possible, e. g., when
no information about the virtual scene is available. Some redirection controllers can
be adapted to such cases, including works by the research groups of Razzaque et
al. [23], Field and Vamplew [7], Peck et al. [22], Williams et al. [38, 39], Steinicke
et al. [34], and Nitzsche et al. [20, 26].

A basic redirection controller can be implemented using only curvature gains.
For each rendering frame n ∈ N we read the current two-dimensional head po-
sition (x(n)r ,z(n)r ) ∈ R2, and compute the current two-dimensional view direction
(v(n)rx ,v(n)rz ) ∈ R2 with ‖ (v(n)rx ,v(n)rz )‖= 1 in the physical workspace (see Figure 3).
Based on the prediction that the user will walk in the virtual view direction [1], we
try to map the user’s real movements onto a circular path in the physical workspace
with largest possible radius, in order to minimize applied curvature manipulations.
We accomplish that by computing the strafe view direction (v(n)rz ,−v(n)rx ) ∈ R2 in
the physical workspace, and solving the optimization problem of finding the point
(x(n)r ,z(n)r )−r ·(v(n)rz ,−v(n)rx ), with r ∈R that is located within the physical workspace
and provides the largest circle through the current user position (x(n)r ,z(n)r ), while
maintaining at least the same distance to all boundaries of the interaction space, and
all obstacles in the laboratory (including a small safety offset, see Figure 4). Map-
ping user movements onto this computed maximal circle in the physical workspace
corresponds to applying a curvature gain of gC = 1/r, using the formulas described
above. That means, for each frame the user is redirected onto the optimal circle in
the physical workspace, assuming the user will walk straight in the computed view
direction. This simple approach allows practitioners to implement a reasonable map-
ping, which enables users to explore infinite virtual scenes by real walking, and does
not require information about the virtual scene. If more information about the user’s
movements is available, the prediction based on the view direction can be replaced
by more sophisticated strategies.
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5 Conclusion

In this chapter we have described the basic math required to set up real walking
user interfaces in immersive VEs. We have shown how isometric and nonisometric
transformations can be used to map user movements from a physical workspace to
a virtual scene. While isometric transformations provide natural feedback to physi-
cal user movements, they limit the virtual space a user can explore by real walking
to the size of the tracked physical workspace. We have described how this limita-
tion can be alleviated by combining walking in a limited interaction volume with
other traveling techniques (e. g., flying). With nonisometric angular, linear, and cur-
vature transformations we have described how the limitations of interaction space
can be broken to support unlimited omnidirectional walking, although this freedom
is bought with less natural feedback to physical user movements.

Practitioners interested in implementing real walking user interfaces may follow
these rough guidelines:

• If the virtual interaction space is smaller or equal to the tracked physical work-
space, isometric transformations should be used, since these will provide optimal
self-motion feedback.

• If the virtual places of interest are rather small, but considerably spaced apart in
the virtual scene, isometric mappings should be combined with traveling tech-
niques based on additional devices or sensors.

• If the virtual scene consists of one large area of interest that could be explored by
walking, then redirected walking with nonisometric mappings is recommended.

As explained above when using nonisometric mappings, the virtual view moves
in a different way than the user’s head in the tracked physical environment. One
interesting question is how much deviation between these motions is tolerated by
the user. Recently, several experiments have been reported which have identified
detection thresholds for these nonisometric mappings. Interested readers may refer
to works by Steinicke et al. [31, 32], Neth et al. [19] and Engel et al. [6].

In summary, movements of a user in immersive VEs have to be transferred to
a virtual scene to provide the user with virtual feedback about self-motions, which
can be a faithful simulation of real-world movements, or manipulated using different
approaches. Since each of the approaches has different advantages and limitations,
it depends on the structure of the virtual scene and the application as to which ap-
proach is best suited. In the next chapter, these approaches are discussed in more
detail.
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26. P. Rößler, F. Beutler, and U. D. Hanebeck. A framework for telepresent game-play in large vir-
tual environments. In Proceedings of the International Conference on Informatics in Control,
Automation and Robotics (ICINCO), pages 150–155, 2005.

27. R. A. Ruddle and S. Lessels. The benefits of using a walking interface to navigate virtual
environments. ACM Transactions on Computer-Human Interaction (TOCHI), 16:1–18, 2009.

28. D. Shreiner. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions
3.0 and 3.1 (7th Edition). Addison-Wesley, 2009.

29. M. Slater. Place illusion and plausibility can lead to realistic behaviour in immersive vir-
tual environments. Philosophical Transactions of the Royal Society B: Biological Sciences,
364(1535):3549–3557, 2009.

30. J. M. Speigle and J. M. Loomis. Auditory distance perception by translating observers. In
Proceedings of the Symposium on Research Frontiers in Virtual Reality. IEEE Press, 1993.

31. F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Analyses of human sensitivity
to redirected walking. In Proceedings of the Symposium on Virtual Reality Software and
Technology (VRST), pages 149–156. ACM Press, 2008.

32. F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation of detection thresh-
olds for redirected walking techniques. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 16(1):17–27, 2010.

33. F. Steinicke, G. Bruder, B. Ries, K. H. Hinrichs, M. Lappe, and V. Interrante. Transitional en-
vironments enhance distance perception in immersive virtual reality systems. In Proceedings
of the Symposium on Applied Perception in Graphics and Visualization (APGV), pages 19–26.
ACM Press, 2009.

34. F. Steinicke, H. Weltzel, G. Bruder, and K. H. Hinrichs. A user guidance approach for passive
haptic environments. In Short Paper and Poster Proceedings of the Eurographics Symposium
on Virtual Environments (EGVE), pages 31–34, 2008.

35. R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T. Helser. VRPN: A
device-independent, network-transparent VR peripheral system. In Proceedings of the Sym-
posium on Virtual Reality Software and Technology (VRST), pages 55–61. ACM Press, 2001.

36. M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater, and F. Brooks. Walking
> walking-in-place > flying, in virtual environments. In Proceedings of SIGGRAPH, pages
359–364. ACM Press, 1999.

37. B. Williams, G. Narasimham, T. P. McNamara, T. H. Carr, J. J. Rieser, and B. Bodenheimer.
Updating orientation in large virtual environments using scaled translational gain. In Proceed-
ings of the Symposium on Applied Perception in Graphics and Visualization (APGV), pages
21–28. ACM Press, 2006.

38. B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr, J. Rieser, and B. Boden-
heimer. Exploring large virtual environments with an HMD when physical space is limited. In
Proceedings of the Symposium on Applied Perception in Graphics and Visualization (APGV),
pages 41–48. ACM Press, 2007.

39. X. Xie, Q. Lin, H. Wu, G. Narasimham, T. P. McNamara, J. Rieser, and B. Bodenheimer.
A system for exploring large virtual environments that combines scaled translational gain



20 Gerd Bruder and Frank Steinicke

and interventions. In Proceedings of the Symposium on Applied Perception in Graphics and
Visualization (APGV), pages 65–72. ACM Press, 2010.

40. G. Zachmann. A language for describing behavior of and interaction with virtual worlds.
In Proceedings of the Symposium on Virtual Reality Software and Technology (VRST), pages
143–150. ACM Press, 1996.


