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ABSTRACT
Animating virtual characters is a complex task, which re-
quires professional animators and performers, expensive mo-
tion capture systems, or considerable amounts of time to
generate convincing results. In this paper we introduce
the SmurVEbox, which is a cost-effective animating system
that encompasses many important aspects of animating vir-
tual characters by providing a novel shared user experience.
SmurVEbox is a collaborative environment for generating
character animations in real time, which has the potential
to enhance the computer animation process. Our setup al-
lows animators and performers to cooperate on the same
virtual animation sequence in real time. Performers are able
to communicate with the animator in the real space while
simultaneously perceiving the effects of their actions on the
virtual character in the virtual space. The animator can re-
fine actions of a performer in real time so that both collabo-
rate together on the same animation of a virtual character.
We describe the setup and present a simple application.
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1. INTRODUCTION
Three-dimensional (3D) computer animation is the pro-

cess by which sequences of computer-generated images of
3D scenes are created, which give the illusion of moving ob-
jects when viewed sequentially [15]. In essence, computer
animation is a digital successor to the stop motion tech-
niques used in traditional animation with 3D models and
frame-by-frame animation of 2D illustrations. Computer-
generated animations provide more control and more flexi-
bility at the cost of increased complexity of specifying the
movement of objects through a scene [15]. In this context,
the importance of real-time animation of virtual character
has increased considerably over the past decade. However,
defining animations of virtual characters is still a complex
task. Usually, professional animators and performers work
in and with expensive setups, e. g., motion capture systems,
and professional software, resulting in a considerable amount
of time until a realistic motion of a virtual character can be
achieved [15, 19]. Although photorealism is often not neces-
sary, many different aspects of behavior need to be consid-
ered if a virtual character should appear recognizably natu-
ral in expression [19].

Humans are adept at recognizing physically plausible move-
ments and behavior, so the actions and appearance of a
virtual character must match the expectations of the ob-
server [17]. Hence, movements of a virtual character must
be natural as well as contextually appropriate in such a way
that they respond with the appropriate reaction and in the
proper time frame to stimuli [19]. There is a large body of
research on how various aspects of character animation, such
as locomotion and facial animation, can be generated from
an algorithmic perspective [9, 15]. However, the integration
of all movement and behavior aspects into one animation
leads to enormous complexities. 3D scenes and virtual char-
acters are modeled traditionally with dedicated 3D modeling
and animation applications and 3D models are rigged with
virtual skeletons, and animated via keyframing or motion
capture approaches [15]. The resulting motion sequences
are usually refined and improved by the animator to com-
plete the illusion of natural motion [29]. Although several
3D modeling applications provide sophisticated interfaces
for specifying the models and their movements, describing
animations is still a very time-consuming task [9, 15, 19].

In this paper we introduce the SmurVEbox, which pro-
vides a novel user experience for animators as well as per-
formers and supports them while defining computer anima-
tions of virtual characters. The SmurVEbox is a collabo-



rative environment for generating computer animations in
real time, which has the potential to enhance the computer
animation process as well as the naturalness of a character’s
actions and movements within a virtual environment (VE).
This approach is realized by combining several cost-effective
technologies and techniques. For instance, movements of a
performer are tracked by a Kinect-based interface, streamed
and mapped onto rigged virtual characters within a VE. The
interactions of a second performer or operator are captured
via a touch-based interface and are applied to the virtual
characters within the same VE. All users receive real-time
audio-visual feedback via different virtual reality (VR) dis-
plays and can review their actions or movements in a shared
virtual space.

The remainder of this paper is structured as follows. Sec-
tion 2 resumes background information and related work.
Section 3 introduces the SmurVEbox framework. Section 4
describes a use case of our setup. Section 5 concludes the
paper and gives an overview of future work.

2. BACKGROUND
In this section we resume background information on tech-

niques and technologies for generating and obtaining realis-
tic computer animations of virtual characters.

2.1 Virtual Characters
For specifying 3D computer animations of virtual charac-

ters, usually the animator has to create a simplified represen-
tation of a character’s anatomy. This process is referred to
as rigging. The resulting hierarchical set of interconnected
bones is called skeleton or rig [4, 7, 15]. Skeletal animation
is the technique in which the virtual character is represented
in two parts: (i) a surface representation used to draw the
character (called skin or mesh) and (ii) the skeleton used to
animate this mesh [2]. For virtual characters, parts of the
skeletal model may correspond to actual bones, but skeletal
animation is also used to animate other objects and param-
eters, such as facial features [16].

In addition there are a number of approaches for smooth-
binding the skin objects to the underlying skeleton joints [12].
This process needs to be done prior to object animation,
whether by hand or automated via software algorithms.

Thereafter, the position and orientation of each segment of
the skeletal model is controlled by animation variables (so-
called avars) [15]. The computer uses the skeletal model to
compute the exact position and orientation of the character
based on the values of the avars. Thus, by changing the
values over time, the animator can specify motions of the
character from frame to frame. Typical characters use up
to 1000 avars, which often result in rather complex control
procedures [15].

2.2 Computer Animation Techniques
Traditionally, animators set the avars directly, either for

every frame or at strategic points (keyframes) in time and
let the computer interpolate or “tween” between them, a
process called keyframing. In order to specify the anima-
tion states, forward kinematics can be applied, in which the
poses of parts of the model are calculated from hierarchi-
cal joint information of an articulated model. In contrast,
with inverse kinematics the orientation of articulated parts
is calculated from the desired pose of end-effectors in the

model hierarchy. An alternative or supplement to keyfram-
ing is called motion capture, which makes use of live action
tracking. When computer animation is driven by motion
capture, a real performer acts out the scene as if he or she
were the character to be animated. The performer’s mo-
tions are recorded and applied to the virtual character. Both
keyframing and motion capture have advantages and limita-
tions. Keyframe animation can produce motions that would
be difficult or impossible to act out, while motion capture
can reproduce the subtleties of a particular actor. Thus mo-
tion capture is appropriate in situations where believable,
realistic behavior and action is required.

Since both methods – keyframing and motion capture –
require trained professionals and various efforts in setting up
the production environment, more intuitive workflows were
evolved [26]. With this software-implementation artists are
able to produce results without the need for time-consuming
training. More recent approaches in simplifying the ani-
mation procedure via interactive systems were for example
in the fields of manipulating shapes in two-dimensional im-
ages [10] or by setting up postures in three-dimensional space
and interactively animate the already set-up character with
a control cursor [11].

2.3 Motion Capture
Motion capture has established itself as the dominant tech-

nique for computer animations in movie and game produc-
tion. In order to capture physical movements of a performer,
different full-body tracking technologies can be exploited.
Motion capture technologies can be classified into inside-in
(e. g., [13]), inside-out (e. g., [20]) or outside-in (e. g, [30])
systems. At the moment, the most popular method are op-
tical outside-in tracking systems, which can be very precise,
although they suffer from occlusion issues, are often expen-
sive and usually not portable. Recent advances in the field
of markerless outside-in tracking technologies, e. g., the Mi-
crosoft Kinect, lead to new possibilities for low-cost real-
time performance tracking. While professional tracking sys-
tems provide superior precision and accuracy [18], with the
markerless, inexpensive full-body skeleton tracking of the
Microsoft Kinect it is now possible to get real-time 3D data
about a performer’s body and its pose that allows anima-
tors to capture natural and realistic 3D movements. More-
over, multiple users can simultaneously be tracked and dis-
tinguished by the Kinect, which provides new possibilities
for computer animation environments.

2.4 Stereoscopy and Multi-Touch
Interactive design and review of 3D models and charac-

ter animations requires accurate spatial perception of 3D
geometry, which is often not sufficiently supported in tra-
ditional Desktop environments [8, 21], and results in a low
learning curve for new modelers and animators. Head track-
ing and stereoscopic visualization have often been found to
improve spatial perception and interaction in 3D VEs [25],
but introduce challenges when interacting with 2D mouse
input [22, 24]. Multi-touch interaction has recently received
considerable attention due to the potential of intuitive and
near-natural interaction with mono- and stereoscopic objects
relative to display surfaces [5]. Multi-touch surfaces support
input with multiple fingers and/or hands, which can be re-
alized with various technologies, such as capacitive sensing
or analysis of infrared (IR) or color images [1]. Although



Kinect

Performer

Animator Performer‘s View

HMD

SmurVEbox

Stereoglasses

Figure 1: Illustration of the SmurVEbox setup: A performer is immersed in the virtual world and perceives his
actions from an ego-referenced perspective on a head-mounted display (HMD). The performer’s view is also
displayed on a projection screen for the animator’s reference. The animator interacts with the SmurVEbox
via multi-touch gestures to initiate or control animations of characters or objects in the virtual scene.

touch-input is limited by the physical constraints of the
touch surface, users do not have to use obstructive devices
for interaction, such that these technologies can provide an
unencumbered solution for intuitive and natural interaction.
The ability to directly touch graphical elements while get-
ting passive haptic feedback with collocated or augmented
visual-motor responses about touch interactions from the
touch surface has been shown to be very appealing for novice
as well as expert users, and has the potential to improve in-
teraction in virtual and mixed reality setups [27].

3. SMART COLLABORATIVE REAL-TIME
ANIMATION SYSTEM

This section describes the hard- and software setup used
for the implementation of the developed collaborative real-
time animation setup.

3.1 Design Decisions
The basic considerations for the development of our col-

laborative animation system were:

• The setup should allow animators as well as performers
to collaborate in the same setup, supporting interac-
tions and assignments of duties between them for the
collaborative generation of complex character anima-
tions in a single virtual interaction space.

• Live motion capture and preview should be supported
to map biomechanical motion onto one of multiple vir-
tual characters. Additionally, animations should not
be limited to motion capture, but provide artistic free-
dom to integrate additional interaction modes, e. g.,
based on direct touch interactions.

• Live feedback should be provided to performers as well
as animators such that they can evaluate and readapt
their performance in response to dynamically changing
VEs in real time.

• Following a rapid prototyping approach instead of aim-
ing for highest accuracy and precision of animation
recording, inexpensive hard- and software solutions are
preferred over professional integrated solutions.

Basically, there are two different paradigms for the anima-
tion system. First, the animator can specify “global” anima-
tion parameters of characters or the scene on the SmurVE-
box, whereas a performer can define motions of a virtual
character on a “local” basis (see Figure 1). The SmurVEbox
is based on the smARTbox approach [6], which combines
stereoscopic visualization with multi-touch interaction in a
portable box. In the following sections we describe all ex-
tensions that we applied to the hardware setup as well as
the software implementations with which we addressed the
design considerations described above.

3.2 Hardware Setup
This section describes the hardware components of the

SmurVEbox. The entire setup was built at a total cost of
less than USD 5,000.

3.2.1 Stereoscopic Visualization
The top side of the SmurVEbox consists of a 62 cm × 112

cm back projection screen with a gain of 1.6. For stereo-
scopic display we use an Optoma GT720 projector with a
resolution of 1280 × 800 pixels at a refresh rate of 120Hz,
which supports active stereoscopic display with inexpensive
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Figure 2: Examples for skeleton re-targeting with (a) joint positions tracked by a Microsoft Kinect, as well
as rigged virtual character models of (b) a smurf and (c) a raven.

DLP-based shutter glasses. The projector has a wide-angle
converter lens. The image is projected from the projector
in the base of the table to the back projection screen via a
mirror that is mounted at an angle of 45 degrees. The left
and right eye of a user receive different views to the same
virtual scene rendered from slightly different perspectives
which are generated from the eye positions of the viewer
in front of the display surface. We either use a Microsoft
Kinect to track the user’s head pose while interacting with
the SmurVEbox, or switch to a marker-based iotracker opti-
cal tracking system for improved performance. Using active
shutter glasses, the images are displayed frame-sequentially
to the eyes of a user with a rate of 60Hz per eye. Virtual
content can be displayed with different stereoscopic parallax,
i. e., negative, zero or positive parallax, resulting in objects
appearing in front, on top, or behind the display surface,
which enables out-of-box interaction concepts as described
in Section 4. The virtual environment is rendered on an In-
tel Core i7 computer with 3.40GHz processors, 8GB of main
memory, and an nVidia Quadro 4000 graphics card.

3.2.2 Multi-Touch Detection
We converted the back projection screen at the top of the

SmurVEbox to a touch-sensitive input surface using Rear
Diffused Illumination (Rear-DI) [14]. Six clusters of high-
power IR LEDs illuminate the entire screen from below.
The acrylic glass surface serves as diffusing layer. In the
case an object comes in contact with the surface, e. g., a fin-
ger or palm, it reflects the IR light back to the base of the
SmurVEbox. The reflected light is captured by a PointGrey
Dragonfly 2 camera, which we equipped with an IR band-
pass filter and a wide-angle lens. The camera captures 8-bit
monochrome images with a resolution of 1024 × 768 pixels
at a rate of 30 frames per second. We make use of a modi-
fied version of NUI Group’s Community Core Vision (CCV)
software1, which receives the video stream from the camera
to detect touch points. Detected touch points of one or mul-
tiple finger as well as fiducials are provided to applications
via the TUIO2 protocol, which is widely used with tangible
multi-touch surfaces.

3.2.3 Motion Capture with Kinect

1http://ccv.nuigroup.com/
2http://www.tuio.org/

As illustrated in Figure 1, we make use of a Microsoft
Kinect for real-time tracking of performers interacting with
the setup. The Kinect provides full-body tracking data at
a frequency of 30Hz. This allows us to track the approxi-
mated head position and orientation of one or multiple users
wearing Sony HMZ-T1 HMDs or using a stereoscopic pro-
jection screen as reference. The tracked head pose can then
be used to provide head-coupled rendering and the genera-
tion of stereoscopic views. Full-body skeletal information of
the performers immersed in the virtual scene is tracked via
the Kinect and mapped to virtual characters displayed on
the SmurVEbox to provide an animator with the ability to
develop animations based on scene-aware virtual characters,
i. e., reacting and responding to actions in the VE and the
state of a user’s body in the real world.

3.3 Software Implementation
The software implementation of the SmurVEbox is based

on Microsoft Windows 7 and a compilation of software li-
braries and frameworks, which are explained in the following
sections.

3.3.1 Virtual Environment
We make use of Unity Technologies’ proprietary Unity 3D

game engine for the generation and audio-visual rendering
of virtual environments to be used in the SmurVEbox setup.
Unity 3D provides a simple development environment for
virtual scenes, animations and interactions, which supports
multiple cameras and viewports, as well as a broad range of
game assets, dynamic geometry and rigged characters. In
order to synchronize virtual camera objects with the move-
ments of animators or performers using the physical setup,
we integrated the MiddleVR for Unity software framework3.
MiddleVR supports streaming of full-body Kinect tracking
data to Unity 3D, as well as streaming of optical marker
tracking information from our iotracker system using the
Virtual Reality Peripheral Network (VRPN) protocol [23].
Head-coupled rendering parameters are computed by Mid-
dleVR and streamed via a plugin to Unity 3D for each user’s
virtual scene cameras.

3.3.2 Touch Interaction
We map multi-touch gestures from the responsive touch

surface of the SmurVEbox setup to Unity 3D by using the

3http://www.imin-vr.com/middlevr/



community edition of xTUIO’s uniTUIO4, which is a simple
script library for streaming TUIO events. The library inter-
prets received TUIO touch events and maps the correspond-
ing touch coordinates into the screen space of the Unity 3D
game environment. We implemented single-finger touches to
initiate object selections and translations in the virtual 3D
scene, as well as two-finger pinch gestures for rotations and
scalings (see Figure 3). By controlling multiple degrees-of-
freedom continuously and simultaneously using multi-finger
and multi-hand input, users can animate multiple virtual
objects at the same time.

3.3.3 Full-Body Animations
We use the Microsoft Kinect for Windows SDK for mark-

erless skeletal tracking of one or multiple performers in the
SmurVEbox environment. To access this data from within
the Unity 3D virtual environment, we integrated the Kinect
Wrapper Package that was released by the Entertainment
Technology Center of Carnegie Mellon University. We gen-
erated and adapted rigged virtual characters using the Au-
todesk Maya software by placing Joint-Deformer Objects to
shape a Bipedal Skeleton and by binding the mesh geometry
to the appropriate joints via smooth skinning (see Figure 2).
We imported the resulting rigged characters as assets into
Unity 3D and mapped the Kinect’s skeleton information to
the joints of animated scene characters in real time.

4. USE CASES: ANIMATING VIRTUAL
CHARACTERS

In this section we report observations that we made while
animators and performers used our setup for generating sev-
eral animations of virtual characters such as a smurf or a
bird.

4.1 Procedure
As illustrated in Figures 2 and 3 we tested our setup for

specifying a simple character animation sequence in a vir-
tual environment. A performer and an animator collaborate
during the generation of the animation. The role of the
performer is to act and gesture in front of a Kinect device
while receiving immediate feedback of his or her body move-
ments and the animator’s actions on the virtual character.
We choose a third person’s view or so-called “over-shoulder”
perspective behind the virtual character for the performer’s
view. Thus the performer is able to initiate, correct and
adapt character movements in real time, and even to per-
form simple interactions with scene objects as supported by
the Unity 3D game engine. The performer can switch the
perspective to a head-centered ego-centric view if desired.
The tracked user can perform any kind of movements such as
walking, jumping or crawling, and convey different styles or
behavior if desired. The animator in front of the SmurVE-
box receives an overview of the entire scene from a bird’s
eye perspective. Both can interact with the virtual charac-
ter and other game objects dynamically through multi-touch
gestures like pan, zoom or rotate gestures, and they can, for
instance, move and rotate objects within the scene. Anima-
tor and performer can explore the scene in a collaborative
way and can communicate with each other in order to agree
on different decision about the animation process.

4http://www.xtuio.com/

Figure 3: Multi-touch interaction performed by an
animator who can specify position, orientation and
scale of objects (a smurf in this case) in the VE,
while motions of the character can be simultaneously
defined by a performer.

4.1.1 Animating a Smurf
Two-legged and -armed characters are commonly known

as bipeds [7], which can range from faithful representations
of human avatars to fictional characters, such as the smurf
which we chose to use as a near-human test character. Since
the smurf character supports similar forms of locomotion
and interaction, e. g., walking upright or the ability to touch
objects with both hands, we assumed that animating the
smurf would be a straightforward process. We provided the
scene with various objects for the smurf to interact with.

4.1.2 Animating a Bird
Non-bipedal characters like quadrupeds or even more dis-

tinguished skeleton systems can sometimes be treated analo-
gous to bipedal behavior, e. g. four-legged characters behave
and move similar to two synchronized bipeds [28, 29]. In our
setup we tested to what degree the skeletal system of a bird
can be broken down to this basic approach. We manually
fitted a raven-like polygonal model with the same skeleton
structure and naming convention as applied for the smurf
model, but altered the pose and scale of the joints according
to the form of the bird model (see Figure 2).

4.2 Feedback
We informally collected feedback from three animators

and performers, who have tested our system for about 1
hour. We used the think-aloud protocol as well as inter-
views. The most striking feedback of using our setup was
that it was“really fun and engaging to use the setup”. When
synchronizing the action in the scene both the animator and
the performer were communicating extensively. With that
tasks could be split up between animator and performer;
both were experiencing the scene individually and collab-
orated effectively. Artistic freedom of the animator was
maintained since there were no constraints regarding restric-
tion of movements, e. g., through the fitted Kinect rig. We
found that only a small space was required and actually
used for acting and interacting with the scene. Of course,
the Kinect provides only very limited motion tracking ca-



pabilities. However, tracking of limbs was stable even in
situations when performers were pointing towards the track-
ing sensor. Overall, the performers acknowledged that they
were surprised about the range of freedom they had for act-
ing. The real-time capacity of the whole system turned out
satisfactory so that live action could be adapted and cor-
rected where necessary. Setting up an additional projector,
which displayed the performer’s view to the animator, was
evaluated as beneficial for both, in particular, since this pro-
jection was often used even by the animator. For future
work we plan to incorporate this view into the view on the
SmurVEbox such that the animator can see the performer’s
view without averting the gaze from the SmurVEbox. As
expected, the visual feedback of the animated character on
the SmurVEbox was evaluated as very responsive and help-
ful by the animator. The choice of the performer’s scene
camera angle from a third-person’s view turned out to be
more helpful compared to a first-person’s view after infor-
mal tests, since according to a performer, it was much easier
to evaluate the action than from an ego-centric view.

5. CONCLUSION
In this paper we introduced the SmurVEbox collabora-

tive virtual environment for generating computer anima-
tions in real time. We described the hardware setup as
well as the software implementation of our shared interac-
tion space, and presented a use case that benefits from the
ability of a performer and an operator to collaborate in the
same environment when generating computer animations.
Initial feedback collected from a few animators and perform-
ers was throughout positive. In particular, users acknowl-
edged the immediate feedback and the collaborative work
supported by the framework. With the current setup, ani-
mators and performers can design and sketch rough anima-
tion prototypes for further development using professional
3D Desktop-based animation software. In the future, we
aim to improve animation export capabilities of our system.
Moreover, we plan to reduce occlusion issues and improve
the motion tracking in our setup using a setup consisting of
multiple Kinects (cf. [3]).
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