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ABSTRACT
We introduce a general method for evaluating and comparing the
expected performance of sensing systems for interactive computer
graphics. Example applications include head tracking systems for
virtual environments, motion capture systems for movies, and even
multi-camera 3D vision systems for image-based visual hulls.

Our approach is to estimate the asymptotic position and/or ori-
entation uncertainty at many points throughout the desired working
volume, and to visualize the results graphically. This global perfor-
mance estimation can provide both a quantitative assessment of the
expected performance, and intuition about the type and arrange-
ment of sources and sensors, in the context of the desired working
volume and expected scene dynamics.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism — Virtual reality; I.4.4 [Image Processing and Computer
Vision]: Restoration — Kalman filtering; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis — Sensor fusion; I.4.8
[Image Processing and Computer Vision]: Scene Analysis —
Motion; I.4.8 [Image Processing and Computer Vision]: Scene
Analysis — Tracking; G.3 [Probability and Statistics]: Stochastic
processes

General Terms
Measurement, Performance, Design

Keywords
virtual environments, tracking, motion capture, sensor fusion, co-
variance analysis, information visualization, computer vision
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Figure 1: An example showing global steady-state estimation
to evaluate a simple range-based acoustic tracking system. The
four red spheres at the top represent acoustic transmitters, and
the volume visualization depicts the fundamental uncertainty
in the estimated position of an acoustic sensor throughout the
0.4× 0.4 meter working volume. The darker areas near the
transmitters reflect lower uncertainty (better expected perfor-
mance), while the brighter areas near the floor indicate greater
uncertainty (worse expected performance).

1. INTRODUCTION
By definition,interactivecomputer graphics applications include

some system for estimating the position and/or orientation of real
targets over time. Typical examples include head tracking systems
for virtual environments and motion capture systems for movies.
While the estimation circumstances and performance requirements
vary with each application, the fundamental source of information
is the same: the estimates are derived from electrical measurements
of devices such as mechanical, inertial, optical, acoustic, and mag-
netic source/sensors [31]. Each type of device has fundamental
limitations related to the physical medium, practical limitations im-
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posed by the measurement systems, and application-specific limi-
tations related to the motion characteristics of the target being ob-
served. These limitations affect the quantity and quality of the in-
formation throughout the desired working volume for a given sys-
tem configuration, and they do so in a complex and often unclear
way. As such, despite the best practices of experienced engineers,
many design choices end up being based on subtle intuition devel-
oped over many years, as opposed to specific, quantifiable design
assessments. And once a system appears to work, people hesitate
to change it, for fear of negatively impacting performance in some
unforeseen manner.

Despite (or because of) these difficulties, tracking and motion
capture for interactive computer graphics have been explored for
over 35 years [26]. Complete historical surveys include [22, 4, 20,
31]. Commercial and research teams have explored mechanical,
magnetic, acoustic, inertial, and optical technologies. For example,
commercial magnetic tracking systems from Ascension and Polhe-
mus have historically enjoyed popularity as a result of a small user-
worn component, relative ease of use, and robustness for many ap-
plications. Optical systems include the HiBall-3000TM system by
3rdTech, the FlashPoint and PixsysTM systems by Image Guided
Technologies, and the laserBIRDTM system by Ascension Technol-
ogy. Foxlin et al. at Intersense in particular have had tremendous
success developing hybrid systems that combine inertial measure-
ments with acoustic signals [10, 11, 12], and more recently with
passive optical signals [10]. Similarly optical systems for 3D mo-
tion capture have a long history, having been explored for over 30
years [32]. Today companies like Vicon, Motion Analysis, and As-
cension make turn-key optical systems that are used, for example,
in human and animal motion analysis, movies, and industrial appli-
cations. Much work has also been done on vision-based approaches
to motion capture [21].

Yet many users and designers would like to reduce or better con-
figure their tracking and motion capture infrastructure, while main-
taining or even improving the level of performance. The problem is
that both reduction and reconfiguration of such systems can be very
difficult, as complex interactions or dependencies between devices
are difficult to understand. For example, what would be the likely
effect of removing or re-arranging a tracking system’s optical or
acoustic beacons? How and where will the addition of nearby light
or sound-occluding objects affect the performance? How will mov-
ing or redirecting one motion capture camera affect the precision?
Will it help to add another camera? How many do you need? What
happens if you change the lenses?

1.1 System Design
Historically, designers have relied on educated intuition and ex-

perience when making design choices. As illustrated on the left
side of Figure 2, they begin with requirements for working vol-
ume, expected user motion (dynamics), and infrastructure. These
requirements are coupled with a candidate design(s) that includes a
tracking medium (or hybrid combination of mediums), associated
source/sensor devices (hardware), and some algorithm (software)
for combining the information from the devices. Once the algo-
rithm is chosen, a designer can run simulations (using any method
of choice) and build prototypes for in-situ testing. In this way, an
estimate of system performance can be found. However, simula-
tions and prototyping rely on a specific algorithm, a specific motion
path and, in the case of prototyping, demand a working system.

Long before algorithm selection and hardware fabrication, it is
the choice and configuration of the source/sensor devices that are
critical for most systems. No estimation algorithm can overcome
poor choices of devices, parameters, or geometric arrangement. If

Figure 2: The tracking system design process showing the his-
torical process on the left with the proposed method on the right
(in red) for interaction with hardware choices.

the necessary information is not available at a sufficient rate and
quality throughout the desired working volume, the performance is
inherently limited in those areas. In effect the device choices set an
upper bound on how well the system as a whole will perform.

Ideally one could specify desired performance goals through-
out the working volume, and have a computer search the entire
space and present the optimal design. However for all but the
most trivial systems the design space is so large as to render the
search intractable, making automatic optimization impractical if
not impossible, except in relatively restricted circumstances [23].
There is work available that addresses efficient allocation of cam-
eras for tracking systems [7] and accuracy prediction for marker-
based tracking [9] but this research is restricted strictly to camera-
based systems in specific contexts.

We believe a useful alternative to suchartificial intelligenceis
the notion ofintelligence amplification[3, 2]. The idea is to de-
velop methods and tools that provide a human with insight into
variations in the expected performance throughout the desired work-
ing volume for aparticular design choice, as well as the relative
global effects of variationsbetweencandidate designs, independent
of the tracking algorithm chosen for the real system.

1.2 Our Approach
Specifically our goal has been to develop general methods and

tools to allow one to interact with a candidate hardware system,
varying the types and configurations of devices and graphically vi-
sualizing the corresponding effects on the global performance. This
value-added step in the design process is shown on the right (in red)
in Figure 2. Similar to fluid or air-flow visualizations, our goal is to
make “invisible” sensor information “visible” throughout a work-
ing volume, so that a designer can develop insights into the effects
of their design choices. While such visualizations have been done
before for specific systems [11, 18, 25, 17], we present a general
framework that will accommodate virtually any tracking or motion
capture system, including multi-camera setups for image-based vi-
sual hulls [19].

Our approach is to use a stochastic framework for estimating the
asymptotic performance of a candidate design, and then to produce
surface or volumetric visualizations of the results. The stochastic
framework integrates descriptions of the devices, the bounds of the

202



desired working volume, and a model for the expected user motion,
to produce a graphical depiction of the expected position and/or ori-
entation uncertainty throughout the working volume as illustrated
in Figure 1. One can then alter device parameters and repeat the
visualization, to see how it affects the expected performance.

Our goal with this paper is to convey the fundamental concepts,
and to explain the general approach so that motivated readers will
be able to use the techniques on their own to evaluate (for example)
alternative tracking, motion capture, and image-based visual hull
setups. Ultimately we hope to develop and make available tools and
models that might transform the way people approach the typical
design process, putting what is often times an ad hoc process on
more solid theoretical foundations, and giving people the tools to
explore what is otherwise an intractable design space.

1.3 This Paper
In Section 2 we describe the basic approach and the specific

mathematical framework we use to quantify the global uncertainty
corresponding to a candidate design. In Section 3 we present some
experiments aimed at validating the use of asymptotic estimates and
visualizations, and some concrete examples of the approach being
used to evaluate other systems. Finally in Section 4 we summarize
and discuss our future plans for the work.

Throughout the paper we use lower-case variables with over-bars
to denote a vector and upper-case variables to denote matrices. We
use the termdesignerto refer to the engineer or researcher evalu-
ating the system, and the termtarget to refer to the object actually
being tracked/captured. Example targets include a sensor on a per-
son’s head, a retroreflective sphere on a joint or limb, and potential
3D surface points that one wants to reconstruct using cameras and
image/vision-based techniques.

Finally, throughout the paper we use a simple acoustic 3D posi-
tion tracking system to provide a concrete basis for discussion. (In
Section 3 we look at more realistic systems.) This acoustic system
is depicted in Figure 3, and a corresponding visualization of the es-
timated performance is shown in Figure 1. There are four speakers
permanently mounted in the corners of the ceiling, and a micro-
phone (the tracking target) mounted on the moving user. The curve
in the middle represents an example target motion path through the
3D space over time, and the point ¯x(t) ∈ ℜ3 represents the 3D po-
sition orstateof the target at timet.

2. PERFORMANCE ESTIMATION
There are many possible quantitative metrics for performance

estimation. For example one might be concerned about resolution
or precision, noise, static accuracy, dynamic accuracy, latency, or
some combination. See [1, 6, 15] for more examples and general
discussion of performance.

Our approach to is to use a stochastic estimate of the asymp-
totic or steady-stateerror covariance throughout the working vol-
ume. Consider our example acoustic 3D position tracking system.
At a representative set of 3D points{x̄1, x̄2, . . . , x̄p} throughout the
working volume we can estimate and graphically depict

P∞
i = lim

t→∞
E

{
(x̄i(t)− x̃i(t))(x̄i(t)− x̃i(t))T

}
,1≤ i ≤ p (1)

where x̄i and x̃i represent thetrue and estimatedstates (respec-
tively) at point i, andE denotes statistical expectation. Note that
we do not actually attempt to estimate ¯xi or x̃i . Instead we estimate
P∞ directly from state-space models of the system and stochastic
estimates of the various noise sources, as described below in the
remainder of this section.

A stochastic steady-state approach is attractive for many reasons.

Figure 3: A simple acoustic 3D position tracker example.

For one it nicely accounts for measurement noise, sampling rates,
measurement sensitivities, and expected target motion dynamics.
Furthermore virtually any tracking or motion capture system can
be described in a stochastic form1, and there are relatively well-
understood methods for estimating the corresponding steady-state
performance. And while the absolute accuracy of the uncertainty
estimates will depend on several factors, including the accuracy
of the input and models provided to the system, we believe that
most designers would likely have (or have access to) reasonably
appropriate noise and device models.

2.1 System Models
To estimate the steady-state error covariance we being by mathe-

matically describing the measurement system and the expected tar-
get motion. We do so using state-space models [14] that will look
familiar to anyone acquainted with the Kalman filter [16, 27]. In
fact it might at first appear that we are describing a Kalman filter-
based tracking algorithm as in [11] or [28]. However the math-
ematics of steady-state estimation conceptually reverse the signal
direction we would normally think about in a tracking or motion
capture system. Normally we would think about propagating a sig-
nal from a point in the working volume, through a noisy sensor,
and into an estimation algorithm. Instead the steady-state estimate
in effect propagates estimated measurement noise signals through
models of the measurement systems, back into the working volume
(the state space), combines them with expectations for the target
motion dynamics, and produces an estimate of thefundamentalun-
certainty (error covarianceP∞) at a particular point.

We begin with a general description of the appropriate state-
space models, and then provide some concrete examples. Given
ann-dimensional state ¯x(t), the target motion over timeδ t can typ-
ically be modeled as a first-order dynamic process:

x̄(t) = Ax̄(t−δ t)+Gw̄(t−δ t) (2)

whereA is ann×n state transition matrix, w̄ is a zero-mean and
spectrally whiten×1 random signal known as theprocess noise,
andG is ann×n noise shaping matrix. In addition it is common to
model them-dimensional device measurements ¯z at timet as

z̄(t) = Hx̄(t)+ v̄(t) (3)

whereH is anm×n matrix relating then-dimensional state to the
m-dimensional measurements, and ¯v represents zero-mean, white
measurement noise, presumed to be uncorrelated with ¯w.

1Such stochastic frameworks make assumptions about noise char-
acteristics, etc. Even if these assumptions are not completely accu-
rate they are often adopted for simplicity or lack of a better model.
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Equations (2) and (3) are often referred to respectively as the
process modeland themeasurement model, and they serve in some
form as the basis for most stochastic estimation methods. In the
case of tracking, the former models the target’s motion over time,
while the latter models the outputs of the devices (sensors) used to
estimate the target’s position.

In practice the actual noise signals ¯w andv̄ are not known or esti-
mated as part of a stochastic estimator. Instead designers typically
model the process and measurements as

x̄(t) = Ax̄(t−δ t), (4)

z̄(t) = Hx̄(t), (5)

then estimate the process and measurement noise covariancesQ
andR of the presumed normal distributions ¯w∼ N(0,Q) and v̄∼
N(0,R), and use those covariances to weight the measurements and
to estimate the state uncertainty. It is the parametersA, H, Q and
R (as described below) that the designer must “know” (specify) to
perform a steady-state analysis.

In cases where the process and/or measurement models are non-
linear, equations (4) and (5) would be written as

x̄(t) = f (x̄(t−δ t)) , (6)

z̄(t) = h(x̄(t)) . (7)

These non-linear functions can be linearized about the point of in-
terest ¯x in the state space. To do so one would compute the Jaco-
bians of the respective functions,

A =
∂

∂ x̄
f̄ (x̄)

∣∣∣∣
x̄

(8)

H =
∂

∂ x̄
h̄(x̄)

∣∣∣∣
x̄

(9)

and use them in place of their corresponding matrices in equations
(4) and (5). In fact this is what we typically do. While such lin-
earizations can lead to sub-optimal results, they provide a compu-
tationally efficient means for estimation, and in most cases should
offer a reasonable basis for comparison of steady-state results.2 For
linear models, the designer would write functions that implementA
andH (linear functions in matrix form) from equations (4) and (5).
For non-linear models, the designer would instead write functions
that implement the respective Jacobians from equations (8) and (9).

2.1.1 The Process Model
In the process model described by Equation (2), the state transi-

tion matrixAand noise shaping matrixGeach play a role in moving
the user’s state forward over some (typically small) interval of time.
The termAx̄ models the deterministic portion of the process, while
the termGw̄ and corresponding covarianceQ model the random
portion of the user’s motion.3

Here we use our acoustic tracker example to provide a more con-
crete notion of the process model parametersA andQ. To begin
with, let us expand our 3D state ¯x introduced earlier to include the
target position andderivatives(velocities) of the target. The six-
dimensional state would then be

x̄ =
[

x y z ẋ ẏ ż
]T

. (10)

To move the single elementx of the state vector ¯x forward over
time δ t one would compute the new positionx as a function of the

2If there is concern, one can carry out a separate analysis of the
likely linearization error.
3Here and in subsequent expressions we will omit the time param-
eterst andδ t from variables when possible to reduce complexity.

previous valuex(t−δ t), the corresponding velocity element ˙x, and
the timeδ t since the last update:x(t) = x(t − δ t) + ẋ(t − δ t)×
δ t. The complete corresponding state transition matrixA, which is
actually a function ofδ t, would be

A =


1 0 0 δ t 0 0
0 1 0 0 δ t 0
0 0 1 0 0 δ t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (11)

Now consider the random component of the process given by
Equation (2). The process noise ¯w is presumed to be a normally-
distributed, zero-mean, spectrally white random variable with dis-
tribution w̄ ∼ N(0,Q). If we assume the process noise “flows”
through (is shaped by) the same system of integrators represented
by Equation (11), then the covarianceQ can be described as

Q[i, i] = q
(δ t)3

3
(12)

Q[i, j] = Q(δ t)[ j, i] = q
(δ t)2

2
(13)

Q[ j, j] = qδ t (14)

for each pair(i, j) ∈ {(1,4),(2,5),(3,6)} and some noise magni-
tudeq. The above derivation ofQ can be found in [5], and discus-
sion about choosingq can be found in [29].

It is worth noting here that while one might imagine the need for
many different process (target motion) models, our experience indi-
cates that the above position-velocity model is a reasonable match
for the average human motion. If one expected the target to be pri-
marily still, one might want to eliminate the velocity states in ¯x.
Similarly if one expected the target to undergo coherent accelera-
tions, one could add acceleration states.

2.1.2 The Measurement Model
In the measurement model described by Equation (3) themea-

surement matrix Hdetermines the relationship between the state
and the measurements. Each type of device (combination sen-
sor and/or source) would typically require a different measurement
model. In our acoustic example (see Figure 3) there are four speak-
ers fixed in the environment, and the target is a single moving mi-
crophone. Our “candidate” example tracking system will contin-
ually measure the range from the microphone to each of the four
speakers using a time-of-flight approach. In this casem = 4 and
the measurement function would be

z̄[i] = h̄i(x̄) =
√

(x̄[x]− t̄[i,x])2 +(x̄[y]− t̄[i,y])2 +(x̄[z]− t̄[i,z])2

for each transmitter 1≤ i ≤ 4, wheret̄[i,∗] represents the position
of transmitteri. Because our acoustic system uses four scalar range
measurements and its state vector is six-dimensional, the measure-
ment matrixH must be a 4×6 matrix. In fact because our measure-
ment function is non-linear, we would have to use the linear approx-
imation given by the measurement Jacobian as in Equation (7). For
example, the Jacobian element corresponding to transmitter num-
ber one and thex element of the state would be

H1,x =
x̄x− t̄1,x√

(x̄[x]− t̄[i,x])2 +(x̄[y]− t̄[i,y])2 +(x̄[z]− t̄[i,z])2
.

Referring back to Equation (3), the measurement noise ¯v is a normally-
distributed, zero-mean, spectrally white, random variable with prob-
ability distributionv̄∼N(0,R). The magnitude of the covarianceR
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represents the expected measurement noise for the given combina-
tion of sources and sensors. Unlike the process noiseq in in (12)–
(14), the measurement noise has concrete origins, and in practice
R can be estimated with relative ease. For example, one can ar-
range a real source/sensor pair in a lab, and gather statistics on the
measurement variance under representative conditions, then later
fit a function to those gathered statistics and use this function in
the asymptotic analysis. Or one can simply estimate the form and
magnitude of the noise based on past experience or simulation as
in [8]. For our acoustic tracker example,R is the expected variance
in the range measurements, which is a function of the range itself.

2.2 Steady-State Solution
The Discrete Algebraic Riccati Equation (DARE) represents a

closed-form solution to the steady-state covarianceP∞ [13]. As-
suming the process and measurement noise elements are uncorre-
lated the DARE can be written as

P∞ = APAT +Q−AP∞HT
(

R+HP∞HT
)−1

HP∞AT.

We use the MacFarlane–Potter–Fath “Eigenstructure Method” [13]
to calculate the DARE solutionP∞ as follows. Given the model
parametersA, Q, H, andR from Section 2.1 we first calculate the
2n×2n discrete-time Hamiltonian matrixΨ as

Ψ =
[

A+QA−THTR−1H QA−T

A−THTR−1H A−T

]
. (15)

We then form [
B
C

]
= [ē1, ē2, . . . , ēn] (16)

from then characteristic eigenvectors[ē1, ē2, . . . , ēn] of Ψ, and fi-
nally usingB andC we compute the steady-state covariance as

P∞ = BC−1. (17)

As described in the next section we do this at a representative set of
points{x̄1, x̄2, . . . , x̄p} throughout the working volume, computing
H andRat each point, and using the sameA andQ throughout.

Note that one can also compute thedecay time constantτ(A,Q,H,R)
corresponding toP∞ [13]. This indicates the time it would take any
algorithm to converge on an estimate at ¯xi , with steady-state uncer-
taintyP∞, given the available measurements. This is in some sense
a lower bound on the latency of the system at point ¯xi .

2.3 Complete Steady-State Computation
In the preceding section we provided a general solution toP∞.

Here we illustrate the process we use to computeP∞ for all of the
desired points in the working volume.

To begin with one has to define theprocess model. In particular
one must decide on the form ofA(δ t) andQ(δ t), for example as in
equations (11)–(14). Note that we include theδ t parameters here
to emphasize thatA andQ are functions ofδ t.

Next one needs to define distinctmeasurement modelsand cor-
respondingH andR matrices (functions) for each device type. For
our example acoustic tracking system, one could think of four sepa-
rate measurement models or a single parametric model. If using the
latter approach,H andR are functions of ¯x and any other parame-
ters of interest (e.g., electrical biases, focal length, etc.). In a hybrid
system one would typically have multiple parametric measurement
models, e.g., one for acoustic devices and one for cameras as in
the hybrid example we present in Section 3. In any case the func-
tion that implements each measurement model must handle device-
specific processing (e.g., beacon selection) and exceptions such as

limited fields of view or occlusions. Any measurement model can
be defined to test for occlusion and include its effects in its calcu-
lation. This is the case with the system described in Section3.1.1
and, while not included in the analysis presented here, [7] presents
a probabilistic model for dynamic self-occlusion that could also be
incorporated into a measurement model.

It is important to note that the sample timeδ t used throughout
the paper, for example inA(δ t) andQ(δ t), is defined by themea-
surement devices. If the candidate devices provide measurements at
100 Hz, thenδ t = 0.01 seconds. If there are multiple devices with
different measurement rates, then there are multiple corresponding
δ t values, with corresponding instances ofA(δ t) andQ(δ t).

Finally one has to decide at what points{x̄1, x̄2, . . . , x̄p} to evalu-
ateP∞. One could choose a set of points on a surface in the working
volume, or a set that spans some 3D volume, perhaps on a regular
3D grid. We present examples of both in Section 3.

We illustrate the overall process with pseudo-code. Notice how
the contributions from each device are similarly fused at every point,
no matter what type of device (or combination of devices). This is
what makes the approach so general.

For eachn-dimensional point ¯xi ∈ {x̄1, x̄2, . . . , x̄p}
ΨΣ = zeros(2n,2n)
For each device

Determineδ t for the device
EvaluateA with thatδ t using (11)
EvaluateQ with thatδ t using (12)–(14)
EvaluateH at x̄i
EvaluateRat x̄i
ComputeΨ using (15)
ΨΣ = ΨΣ +Ψ

Compute then eigenvectors ofΨΣ as in (16)
ComputeP∞

i as in (17)

Note that theH andRmust be evaluated with the appropriate mea-
surement (or Jacobian) function for the device.

Finally one can use surface or volume visualization techniques
to render the complete set of pointsP∞

i for 1≤ i ≤ p. We show
examples of both in the following section.

3. RESULTS
The results presented in this section and throughout this paper

are the product of both MatlabTM simulations and our working
system prototype, Artemis. Artemis is written in Interactive Data
LanguageTM (IDL), a development environment targeted for data
analysis and visualization applications. We chose IDL because
of its built-in image processing, matrix math, GUI builder, and
cross-platform portability. While Artemis was developed in the
Windows environment, IDL’s Virtual Machine allows deployment
across multiple platforms including Mac OS X and Linux.

3.1 Evaluation
Our approach to evaluating estimated expected performance was

twofold. First, we compared our steady-state predictions to the
measurement error reported in [30] using a HiBall-3000TM opti-
cal tracking system. Second, we performed a series of controlled
experiments (again using the HiBall-3000TM), estimated the ac-
tual performance over a wide area, and compared the results to the
steady-state predictions.

Figure 5 shows our experimental setup in which we moved the
HiBall sensor along a series of paths mechanically constrained along
a rigid rail. 3rdTech engineers graciously provided us with low-
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Figure 4: P∞ estimates at Left: 1.9 meter “head” height, and Right: 1.0 meter “waist” height

level access to the system, so we were able to log HiBall data at a
very high rate (1–3 KHz). We then used the data to compare with
steady-state estimates. In particular, we fitted curves to the “rail
path” data, then looked at deviations from those curves.

Our experimental rail rig was approximately seven feet (1.4 m)
long, with a constant height of approximately 1.9 meters. In order
to perform a wide-area comparison, we positioned the rig along 28
paths crisscrossing the area, forming a grid that ranged from 3.0 to
6.0 meters in thex-direction and 5.5 to 10.0 meters iny. We in-
tentionally arranged the grid to extend beyond one ceiling edge by
about one meter, allowing for a region of potentially deteriorating
performance where the HiBall is starved for measurements.

3.1.1 The HiBallTM System
The HiBall-3000TM system estimates the sensor (target) pose by

sighting a two-dimensional array of ceiling-mounted light emit-
ting diodes (LEDs). For our steady-state estimates we modeled
the HiBall using the same process model the system uses, and a
single 1000 Hz measurement model. In the measurement model,
we specified a grid of beacons identical to an actual installation,
spaced 10 cm apart across a 6.3 m by 9.0 m ceiling. Just as the ac-
tual system continually chooses a set of nearby LEDs for tracking,
our measurement model chooses a subset of visible LEDs for per-
formance analysis. Further, both measurement models incorporate
occlusion testing in order to choose visible LEDs.

In 1999, the developers of the HiBall tracking system reported
estimation errors of 0.2 mm “for nearly all of the working volume”
and 0.5 mm at a height of approximately 1 meter [30]. We modeled
this setup for comparison and Figure 4 shows the resulting surface
plots of P∞ analysis at 1.9 meters (head height) and at 1.0 meter
(waist height) across an area at the corner of our current HiBall
ceiling. At 1.9 meters, theP∞ estimates are around 0.20 to 0.22 mm
(-3.6 to -3.7 log meters). Note the peaks and valleys in performance
corresponding to the location of the LED strips in the ceiling. At
first glance, it would seem that theP∞ estimates at 1.0 meter predict
better than the reported 0.5 mm (-3.0 log meters) with the more
ceiling-central estimates at or around 0.3 mm (-3.5 log meters).
However, upon reexamination of [30], we determined that the test
setup had been positioned at the ceilingedgeand not in the better-

performing center area. Performance estimates in the far corner
of the surface show values of 0.45 to 0.50 mm (-3.30 to -3.35 log
meters).

Figures 6 and 7 show some numerical results from the HiBall rail
experiments depicted in Figure 5. The plot on the left in Figure 6
shows the “jitter” of the real system’s individual position estimates
(deviation from a curve fit to the data) and the plot on the right
shows the estimated steady-state covariance (P∞). During our ini-
tial analysis of the real system’s deviation from a line fit we came
to three realizations. First, we realized that the rail was sagging
several millimeters as a result of its own weight and the load of the
HiBall. Second, we realized that in the real system there is inherent
noise (uncertainty) in both the HiBall camera models and the LED
positions. Third, we realized that we were adding mechanical noise
(friction, gait, etc.) as we walked the HiBall sensor along the rails.
To address the first problem we computed the deviation of the real
data from adeflection curveas described in [24]. To address the
second and third problems we increased the expected measurement
noise slightly. The results are shown in Figure 6. Both actual and
estimated system performance are qualitatively and quantitatively
consistent under the ceiling. The performance degrades similarly
in both the actual and estimated data as the HiBall sensor moves
out from under the ceiling LEDs. At most points where the real
system lost tracking, our performance method indicated very high
or infiniteP∞ if there was no solution.

3.1.2 A Sparse HiBallTM System
To further validate the performance estimation method, we dis-

abled every other row of LEDs in the ceiling, effectively doubling
the distance between rows. We did this both in the actual sys-
tem, and in our steady-state models. Here again (Figure 7) we
find the performance estimates are similar to the actual system
performance. While the overall “sparse” system performance re-
mains very good with the standard deviation range increasing only
slightly, the performance is less consistent with clear peaks and
valleys of accuracy that map directly to the alternating enabled or
disabled rows of LEDs.
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Figure 5: Experimental setup. Left: shows the LED strips on ceiling, the precision 80/20TM rail, the mobile rail supports, and the
sliding HiBall TM fixture (see also the inset). Right: the tape on the floor marks the 28 different linear rail paths that collectively form
a grid intended to span the edge of the ceiling (dashed red line) and some portion of the interior.

Figure 6: Comparison of actual HiBallTM position stddev with P∞ estimates. Left position stddev (from curve fit) of the real system.
The surface is interpolated over the stddev values. The blue circles indicate actual values. Right:P∞ estimates over a plane fit to the
rail data. The semi-transparent vertical planes in both plots marks the edge of the “ceiling” (the LED array) around 9 meters iny.

Figure 7: Comparison of actual HiBallTM position stddev (left) with P∞ estimates (right) when alternating rows of LEDs are disabled.
See also caption for Figure 6. Note that the data off the “ceiling” was excluded from both plots to increase the dynamic range.
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3.2 An Acoustic Example
Figure 1 shows the results from the performance estimation for

our hypothetical acoustic system. The red spheres at the top mark
the positions of the four transmitters (speakers). The system is
modeled with a constant update rate of 50 Hz (δ t = 0.02 seconds).
The Q matrix is a 6× 6 matrix of the form (12)–(14) withqx =
qy= 0.395 andqz= 0.107. The measurement covariance matrix is
a 4×4 diagonal matrix withR[i, i] = 0.005z̄[i]2 for 1≤ i ≤ 4, where
z̄ is the range given in Section2.1.2. For simplicity, we chose a
measurement model covariance formula that is a quadratic function
of distance. We do not claim that this is the best noise model avail-
able and suggest that the measurement model can be modified to
represent any function desired.

3.3 A Multi-Camera Acquisition System
We modeled an existing eight-camera acquisition rig that we use

for 3D computer vision-based scene reconstruction research. (See
Figure 8.) A current goal related to that research is to determine
how to rearrange cameras, and we are using our tools to evaluate
different configurations.

Figure 8: A volume rendering of a P∞ analysis of an 8-camera
vision-based acquisition rig. The grey camera icons st the top
indicate accurate positions and rotations of the cameras.

The process model we used was the same as in the preceding
acoustic example, with an update rate of 30 Hz. For the measure-
ment function we used a simple pinhole camera model based on
the Point Grey DragonflyTM camera specifications used (6 mm fo-
cal length, 640x480 resolution), where the image coordinates are
given by [

u
v

]
=

[
x̄′[1]/x̄′[3]
x̄′[2]/x̄′[3]

]

wherex̄′ = R(x̄i − c̄), R is a camera rotation matrix, ¯xi is the 3D
point where we are computingP∞, and c̄ is the camera position
vector. Since our measurement function is non-linear, we used the
linear approximation given by the measurement Jacobian,

H =

[
∂u

∂ x̄i [1]
∂u

∂ x̄i [2]
∂u

∂ x̄i [3]
∂v

∂ x̄i [1]
∂v

∂ x̄i [2]
∂v

∂ x̄i [3]

]

For R we used a function similar to that of the preceding acoustic
example, where the measurement error covariance increases as the
square of the distance.

In Figure 8 one can see that the view frusta of the individual cam-
eras are recognizable, as the performance increases in the overlap-
ping regions. In this configuration, the best performance is located
at the horizontal center at a height of 0.24 meters. The worst per-
formance below the first frusta overlap (0.68 meters) occurs at the
bottom corners of the volume. Note that this figure uses a reverse
color map where better performance (lower uncertainty) is repre-
sented by the brighter areas and lower performance (higher uncer-
tainty) is represented by the darker areas. This color mapping was
chosen for improved visibility.

3.4 Mixed Devices (A Hybrid System)
To illustrate the generality of our approach, we combined the

acoustic model of Section 3.2 with the multi-camera system model
of Section 3.3. Given the pseudo-code at the end of Section 2.3, we
simply added the camera device list and parametric measurement
model to the loop, along with the acoustic devices and model. The
results are shown in Figure 9 (with reverse color map), where one
can see how overallP∞ decreases (performance improves) when
compared to either the acoustic or multi-camera systems alone.
Further, the system can now “see” at heights above 0.68 meters due
to the inclusion of the acoustic sensors. In fact, the region of peak
performance has moved from the horizontal center (camera) and
the points closest to the speakers (acoustic) to the top four corners
of the working volume (height of 0.68 meters). Cf. Figure 1.

Figure 9: A P∞ visualization for a hypothetical hybrid system
with acoustic devices and cameras. Acoustic transmitters and
cameras are depicted with small red and gray icons.
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Figure 10: A hypothetical eight-camera motion capture system. Left: picture depicting the arrangement of the eight cameras in the
room. Center: volume visualization ofP∞ throughout the space. Right: Surface plot at plane of peak performance (z=5.6 feet).

3.5 A Motion Capture System
Optical systems used for human motion capture typically follow

a common paradigm. Cameras are position at fixed locations in
the environment, looking inward toward the capture area, so that
they can observe active or passive (reflective) targets affixed to the
moving human(s). As such the modeling for aP∞ analysis is very
similar to the preceding multi-camera acquisition system.

Figure 10 depicts a hypothetical eight-camera motion capture
system, and a correspondingP∞ visualization. While the absolute
P∞ values may not be accurate in this analysis (and so are not in-
cluded) the relative results from the volume visualization show us
that, as we might expect, there are dead spots in the corners and
better performance in a hexagonally-shaped pillar running through
the center of the volume. Numerical analysis showed that peak
performance occurs at a height of 5.6 feet, between the camera
pairs at heights of 5 feet and 7 feet. A surface visualization at this
height clearly shows that the areas of estimated peak performance
are close to the camera pairs as indicated in Figure 10, andnot in
the center of the capture area.

4. CONCLUSIONS
Our motivation for pursuing this work originated with our own

needs. In our attempts to explore variations of existing systems to
improve performance and/or reduce infrastructure, we found our-
selves unable to develop intuition about the effects different changes
would have. When considering a design we would wonder for ex-
ample, what would happen if we increased the focal length, added
a camera, or combined it with accelerometers. That lack of in-
tuition made even path-dependent simulations of alternatives very
difficult. Such simulations are time consuming, and so you want
to plan/choose carefully. And when you are done, such simula-
tions often produce results that are difficult to compare, or leave
you wondering. For example, you wonder what would happen if
you simulated a different path, turned the target in a slightly differ-
ent way, sped up the motion, etc. And while you might try and use
Monte Carlo methods to explore many different paths, synthesizing
appropriately realistic motion paths is difficult.

Our goal with this paper has been to share our new performance
estimation approach and to convince readers that it is useful and
valid. Further we have presented both the fundamental concepts
and several concrete examples in the hope that readers might be
able to apply the approach on their own.

We continue to improve the Artemis prototype, and to use it our-
selves. While the closed-form solution is faster than iterative ap-

proaches or exhaustive simulations, one of our goals is to reduce
P∞ computation time to allow for rapid real-time interaction with
system design parameters. To this end we are investigating ap-
proaches such as parallel, adaptive, demand-driven computation to
improve the responsiveness of the application. We hope to make
Artemis available to others, along with a repository of process and
measurement models to use as building blocks in system design
and analysis.
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