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ABSTRACT

We introduce a general method for evaluating and comparing the
expected performance of sensing systems for interactive computer
graphics. Example applications include head tracking systems for
virtual environments, motion capture systems for movies, and even
multi-camera 3D vision systems for image-based visual hulls.

Our approach is to estimate the asymptotic position and/or ori-
entation uncertainty at many points throughout the desired working
volume, and to visualize the results graphically. This global perfor-
mance estimation can provide both a quantitative assessment of the
expected performance, and intuition about the type and arrange-
ment of sources and sensors, in the context of the desired working
volume and expected scene dynamics.

Categories and Subject Descriptors

1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism — Virtual reality; 1.4.4 [mage Processing and Computer
Vision]: Restoration — Kalman filtering; 1.4.8rhage Processing
and Computer Vision]: Scene Analysis — Sensor fusion; 1.4.8
[Image Processing and Computer Visioh Scene Analysis —
Motion; 1.4.8 Image Processing and Computer Visioh Scene
Analysis — Tracking; G.3Probability and Statistics]: Stochastic
processes

General Terms
Measurement, Performance, Design
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Figure 1: An example showing global steady-state estimation
to evaluate a simple range-based acoustic tracking system. The
four red spheres at the top represent acoustic transmitters, and
the volume visualization depicts the fundamental uncertainty
in the estimated position of an acoustic sensor throughout the
0.4 x 0.4 meter working volume. The darker areas near the
transmitters reflect lower uncertainty (better expected perfor-
mance), while the brighter areas near the floor indicate greater
uncertainty (worse expected performance).

1. INTRODUCTION

By definition,interactivecomputer graphics applications include
some system for estimating the position and/or orientation of real
targets over time. Typical examples include head tracking systems
for virtual environments and motion capture systems for movies.
While the estimation circumstances and performance requirements
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of devices such as mechanical, inertial, optical, acoustic, and mag-
netic source/sensors [31]. Each type of device has fundamental
limitations related to the physical medium, practical limitations im-



posed by the measurement systems, and application-specific limi- Requirements
tations related to the motion characteristics of the target being ob-

served. These limitations affect the quantity and quality of the in-
formation throughout the desired working volume for a given sys-
tem configuration, and they do so in a complex and often unclear
way. As such, despite the best practices of experienced engineers,
many design choices end up being based on subtle intuition devel-
oped over many years, as opposed to specific, quantifiable design I
assessments. And once a system appears to work, people hesitate
to change it, for fear of negatively impacting performance in some
unforeseen manner.

Candidate Design

Devices (Hardware)

Asymptotic Analysis

Expected Performance

Designer

Despite (Qr beca_use of) these diffiCL_llties, tracking and motion
capture for interactive computer graphics have been explored for
over 35 years [26]. Complete historical surveys include [22, 4, 20, *
31]. Commercial and research teams have explored mechanical,
magnetlc,_ acoustic, _|nert|al,_ and optical technolog|es_. For example, Simulate > Prototype > Final
commercial magnetic tracking systems from Ascension and Polhe- Operation System

mus have historically enjoyed popularity as a result of a small user-
worn component, relative ease of use, and robustness for many ap
plications. Optical systems include the HiBall-3080system by
3rdTech, the FlashPoint and Pix&}ssystems by Image Guided
Technologies, and the laserBIRM system by Ascension Technol-
ogy. Foxlin et al. at Intersense in particular have had tremendous
success developing hybrid systems that combine inertial measures necessary information is not available at a sufficient rate and
ments with acoustic signals [10, 11, 12], and more recently with q,,5jity throughout the desired working volume, the performance is
passive optical signals [10]. Similarly optical systems for 3D m0- jynerently limited in those areas. In effect the device choices set an
tion capture have a long history, having been explored for over 30 upper bound on how well the system as a whole will perform.

years [32]. Today companies like Vicon, Motion Analysis, and As- Ideally one could specify desired performance goals through-
cension make turn-key optical systems that are used, for example, t the working volume, and have a computer search the entire
in human and animal motion analysis, movie_s,_ and industrial appli- space and present the optimal design. However for all but the
cations. Much work has also been done on vision-based approaches, st trivial systems the design space is so large as to render the

to motion capture [21]. , search intractable, making automatic optimization impractical if
Yet many users and designers would like to reduce or better con- n o+ imnossible, except in relatively restricted circumstances [23].

figure their tracking and motion capture infrastructure, while main- a6 is work available that addresses efficient allocation of cam-
taining or even improving the level of performance. The problemis o oq for tracking systems [7] and accuracy prediction for marker-

that both reduction and reconfiguration of such systems can be verypaseq tracking [9] but this research is restricted strictly to camera-
difficult, as complex interactions or dependencies between devices), cqq systems in specific contexts.

are difficult to understand. For example, what would be the likely —\ye pelieve a useful alternative to suattificial intelligenceis

effect of removin% or re-arranging a tracking system's optical or yhe notion ofintelligence amplificatior3, 2]. The idea is to de-
acoustic beacon_s. Ho_w and where will the addltlog of near_by light velop methods and tools that provide a human with insight into
or sound-occluding objects affect the performance? How will mov- 4 iations in the expected performance throughout the desired work-
ing or redirecting one motion capture camera affect the precision? ;

= A 5 ing volume for aparticular design choice, as well as the relative
Will it help to add another camera? How many do you need? What g5 effects of variationsetweercandidate designs, independent
happens if you change the lenses?

of the tracking algorithm chosen for the real system.

Figure 2: The tracking system design process showing the his-
torical process on the left with the proposed method on the right
(in red) for interaction with hardware choices.

1.1 System Design 1.2 Our Approach

Historically, designers have relied on educated intuition and ex-  Specifically our goal has been to develop general methods and
perience when making design choices. As illustrated on the left tools to allow one to interact with a candidate hardware system,
side of Figure 2, they begin with requirements for working vol- varying the types and configurations of devices and graphically vi-
ume, expected user motion (dynamics), and infrastructure. Thesesualizing the corresponding effects on the global performance. This
requirements are coupled with a candidate design(s) that includes avalue-added step in the design process is shown on the right (in red)
tracking medium (or hybrid combination of mediums), associated in Figure 2. Similar to fluid or air-flow visualizations, our goal is to
source/sensor devices (hardware), and some algorithm (software)make “invisible” sensor information “visible” throughout a work-
for combining the information from the devices. Once the algo- ing volume, so that a designer can develop insights into the effects
rithm is chosen, a designer can run simulations (using any methodof their design choices. While such visualizations have been done
of choice) and build prototypes for in-situ testing. In this way, an before for specific systems [11, 18, 25, 17], we present a general
estimate of system performance can be found. However, simula-framework that will accommodate virtually any tracking or motion
tions and prototyping rely on a specific algorithm, a specific motion capture system, including multi-camera setups for image-based vi-
path and, in the case of prototyping, demand a working system.  sual hulls [19].

Long before algorithm selection and hardware fabrication, itis ~ Our approach is to use a stochastic framework for estimating the
the choice and configuration of the source/sensor devices that areasymptotic performance of a candidate design, and then to produce
critical for most systems. No estimation algorithm can overcome surface or volumetric visualizations of the results. The stochastic
poor choices of devices, parameters, or geometric arrangement. Ifframework integrates descriptions of the devices, the bounds of the
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desired working volume, and a model for the expected user motion,
to produce a graphical depiction of the expected position and/or ori-
entation uncertainty throughout the working volume as illustrated
in Figure 1. One can then alter device parameters and repeat the
visualization, to see how it affects the expected performance.

Our goal with this paper is to convey the fundamental concepts,
and to explain the general approach so that motivated readers will
be able to use the techniques on their own to evaluate (for example)
alternative tracking, motion capture, and image-based visual hull
setups. Ultimately we hope to develop and make available tools and
models that might transform the way people approach the typical
design process, putting what is often times an ad hoc process on
more solid theoretical foundations, and giving people the tools to front X >
explore what is otherwise an intractable design space.

1.3 This Paper

In Section 2 we describe the basic approach and the specific o ) )
mathematical framework we use to quantify the global uncertainty For one it nicely accounts for measurement noise, sampling rates,
corresponding to a candidate design. In Section 3 we present somdneasurement sensitivities, and expected target motion dynamics.
experiments aimed at validating the use of asymptotic estimates and-urthermore virtually any tracking or motion capture system can
visualizations, and some concrete examples of the approach being?e described in a stochastic fofmand there are relatively well-
used to evaluate other systems. Finally in Section 4 we summarizeunderstood methods for estimating the corresponding steady-state
and discuss our future plans for the work. performance. And while the absolute accuracy of the uncertainty

Throughout the paper we use lower-case variables with over-barsestimates will depend on several factors, including the accuracy
to denote a vector and upper-case variables to denote matrices. W@f the input and models provided to the system, we believe that
use the terndesignerto refer to the engineer or researcher evalu- Most designers would likely have (or have access to) reasonably
ating the system, and the tetargetto refer to the object actually ~ @PPropriate noise and device models.
being tracked/captured. Example targets include a sensor on a pers q System Models
son’s head, a retroreflective sphere on a joint or limb, and potential ~" - i .
3D surface points that one wants to reconstruct using cameras and 10 estimate the steady-state error covariance we being by mathe-
image/vision-based techniques. matlcally describing the measurement system and the expegted tar-

Finally, throughout the paper we use a simple acoustic 3D posi- get _motlon. We do so using stau_e-space models _[14] that will look
tion tracking system to provide a concrete basis for discussion. (In familiar to anyone acquainted with the Kalman filter [16, 27]. In
Section 3 we look at more realistic systems.) This acoustic system fact it might at first appear that we are describing a Kalman filter-
is depicted in Figure 3, and a corresponding visualization of the es- Pased tracking algorithm as in [11] or [28]. However the math-
timated performance is shown in Figure 1. There are four speakers€matics of steady-state estimation conceptually reverse the signal
permanently mounted in the corners of the ceiling, and a micro- diréction we would normally think about in a tracking or motion
phone (the tracking target) mounted on the moving user. The curve c@pture system. Normally we would think about propagating a sig-

in the middle represents an example target motion path through then@! from a point in the working volume, through a noisy sensor,
3D space over time, and the poiit) € O3 represents the 3D po- ~ @nd into an estimation algorithm. Instead the steady-state estimate

sition orstateof the target at time. in effect propagates estimated measurement noise signals through
models of the measurement systems, back into the working volume
(the state space), combines them with expectations for the target
2. PERFORMANCE ESTIMATION motion dynamics, and produces an estimate ofdndamentalin-
There are many possible quantitative metrics for performance certainty (error covariande™) at a particular point.
estimation. For example one might be concerned about resolution We begin with a general description of the appropriate state-
or precision, noise, static accuracy, dynamic accuracy, latency, orspace models, and then provide some concrete examples. Given
some combination. See [1, 6, 15] for more examples and generalann-dimensional statg(f), the target motion over timét can typ-
discussion of performance. ically be modeled as a first-order dynamic process:
Our approach to is to use a stochastic estimate of the asymp- _
totic or s?gady-staterror covariance throughout the working VC))/l- P X(t) = AX(t - 8t) + Gw(t - ot) @
ume. Consider our example acoustic 3D position tracking system. whereA is ann x n state transition matrixw is a zero-mean and
At a representative set of 3D poinf;, Xy, ...,Xp} throughout the spectrally whiten x 1 random signal known as th@ocess noise
working volume we can estimate and graphically depict andG is ann x n noise shaping matrix. In addition it is common to
_ _ model them-dimensional device measurementt timet as
R = Jim E{(5(®) - % () (K1) -% ()T} 1<i<p (@

Z(t) = HX(t) + (t) 3)
wherex; and X represent thérue and estimatedstates (respec-  \whereH is anm x n matrix relating then-dimensional state to the
tively) at pointi, andE denotes statistical expectation. Note that m gimensional measurements, andepresents zero-mean, white
we do not actually attempt to estimageor %. Instead we estimate  easurement noise, presumed to be uncorrelatedmith —

P* directly from state-space models of the system and stochastic

estimates of the various noise sources, as described below in thelg,ch stochastic frameworks make assumptions about noise char-
remainder of this section. acteristics, etc. Even if these assumptions are not completely accu-
A stochastic steady-state approach is attractive for many reasonsrate they are often adopted for simplicity or lack of a better model.

Figure 3: A simple acoustic 3D position tracker example.
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Equations (2) and (3) are often referred to respectively as the previous value(t — 6t), the corresponding velocity elemegtand
process modeind themeasurement modednd they serve in some  the time §t since the last updatex(t) = x(t — ot) + X(t — 8t) x
form as the basis for most stochastic estimation methods. In the 6t. The complete corresponding state transition mariwhich is
case of tracking, the former models the target’s motion over time, actually a function obt, would be
while the latter models the outputs of the devices (sensors) used to

estimate the target’s position. (l) (1) 8 8(; é‘)t 8
In practice the actual noise signalandv are not known or esti-
: : ; . 0 01 0 0 ot
mated as part of a stochastic estimator. Instead designers typically A= 000 1 0 0 (12)
model the process and measurements as 0000 1 0
M) = AXt-3t), ) 0000 01
Z{t) = Hx(v), (5) Now consider the random component of the process given by

Equation (2). The process noigeis presumed to be a normally-
distributed, zero-mean, spectrally white random variable with dis-
lﬁribution w ~ N(0,Q). If we assume the process noise “flows”
through (is shaped by) the same system of integrators represented
by Equation (11), then the covarianQecan be described as

then estimate the process and measurement noise covari@nces
andR of the presumed normal distributioms~ N(0,Q) andv ~
N(0,R), and use those covariances to weight the measurements an
to estimate the state uncertainty. It is the parameiets, Q and
R (as described below) that the designer must “know” (specify) to

perform a steady-state analysis. o (8t)3
In cases where the process and/or measurement models are non- Qli,i] = QT (12)
linear, equations (4) and (5) would be written as (51)2
)Rt) — f ()?(t _ 50)7 (6) Q['a ” = Q(St)[],l] = QT (13)
Zt) h(X(t)). @) Qlj,jl = ast (14)

These non-linear functions can be linearized about the point of in- for each pair(i, j) € {(1,4),(2,5),(3,6)} and some noise magni-
terestx’in the state space. To do so one would compute the Jaco-tudeg. The above derivation d® can be found in [5], and discus-

bians of the respective functions, sion about choosing can be found in [29].
9 — It is worth noting here that while one might imagine the need for
A = ff (x) 8) many different process (target motion) models, our experience indi-
X X cates that the above position-velocity model is a reasonable match
H — ij()?) ©) for the average human motion. If one expected the target to be Bri-
X < marily still, one might want to eliminate the velocity statesxin

Similarly if one expected the target to undergo coherent accelera-

and use them in place of their corresponding matrices in equations_; :
tions, one could add acceleration states.

(4) and (5). In fact this is what we typically do. While such lin-
earizations can lead to sub-optimal results, they provide a compu-2 1 2 The Measurement Model
tationally efficient means for estimation, and in most cases should
offer a reasonable basis for comparison of steady-state réges.
linear models, the designer would write functions that implement
andH (linear functions in matrix form) from equations (4) and (5).
For non-linear models, the designer would instead write functions
that implement the respective Jacobians from equations (8) and (9).

In the measurement model described by Equation (3)rtba-
surement matrix Hletermines the relationship between the state
and the measurements. Each type of device (combination sen-
sor and/or source) would typically require a different measurement
model. In our acoustic example (see Figure 3) there are four speak-
ers fixed in the environment, and the target is a single moving mi-
2.1.1 The Process Model crophone. Our “candidate” example tracking system will contin-
ually measure the range from the microphone to each of the four
speakers using a time-of-flight approach. In this caise 4 and
the measurement function would be

In the process model described by Equation (2), the state transi-
tion matrixA and noise shaping matr&each play a role in moving
the user’s state forward over some (typically small) interval of time.
The termAx models the deterministic portion of the process, while - — — —
the termGw and corresponding covarian€@ model the random Zi] = hi(x) = \/(i[x] —tfi,x))2+ (Xy] —tfi,y)2 + (X4 - [i,2)?
portion of the user’s motioA. —

Here we use our acoustic tracker example to provide a more con-for each t_ran;mitter Ei<4, where_t[L +| represents the position
crete notion of the process model paramefe@ndQ. To begin of transmitteli. Because our acoustic system uses four scalar range
with, let us expand our 3D stasentroduced earlier t6 include the measurements and its state vector is six-dimensional, the measure-

target position andlerivatives(velocities) of the target. The six- ment matrl_xH F"“St be_ a4 6 matrix. In fact because our measure-
dimensional state would then be ment function is non-linear, we would have to use the linear approx-
imation given by the measurement Jacobian as in Equation (7). For
X= [ Xy zXYy z ]T. (10) example, the Jacobian element corresponding to transmitter num-
ber one and thg element of the state would be

To move the single elementof the state vectok forward over
time 6t one would compute the new positiaras a function of the Xx — 1 x
1x = = = — .
2|f there is concern, one can carry out a separate analysis of the \/(i[x] — )2+ (Y]~ )2+ (g i, 2)?

likely linearization error. Referring back to Equation (3), the measurement noisa normally-
3Here and in subsequent expressions we will omit the time param- distributed, zero-mean, spectrally white, random variable with prob-
eterst andét from variables when possible to reduce complexity.  ability distributionv ~ N(0, R). The magnitude of the covarianBe
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represents the expected measurement noise for the given combinalimited fields of view or occlusions. Any measurement model can

tion of sources and sensors. Unlike the process rpisen (12)— be defined to test for occlusion and include its effects in its calcu-

(14), the measurement noise has concrete origins, and in practicdation. This is the case with the system described in Se@idn1

R can be estimated with relative ease. For example, one can ar-and, while not included in the analysis presented here, [7] presents

range a real source/sensor pair in a lab, and gather statistics on the probabilistic model for dynamic self-occlusion that could also be

measurement variance under representative conditions, then lateincorporated into a measurement model.

fit a function to those gathered statistics and use this function in It is important to note that the sample tindé used throughout

the asymptotic analysis. Or one can simply estimate the form and the paper, for example iA(6t) andQ(ét), is defined by thenea-

magnitude of the noise based on past experience or simulation assurement devicesf the candidate devices provide measurements at

in [8]. For our acoustic tracker exampljs the expected variance 100 Hz, thenst = 0.01 seconds. If there are multiple devices with

in the range measurements, which is a function of the range itself. different measurement rates, then there are multiple corresponding
ot values, with corresponding instancesAgbt) andQ(6t).

2.2 Steady-State Solution Finally one has to decide at what poifitg, %z, .., Xp} to evalu-

The Discrete Algebraic Riccati Equation (DARE) represents a ateP”. One could choose a set of points on a surface in the working
closed-form solution to the steady-state covariaRte13]. As- volume, or a set that spans some 3D volume, perhaps on a regular
suming the process and measurement noise elements are uncorre3D grid. We present examples of both in Section 3.
lated the DARE can be written as We illustrate the overall process with pseudo-code. Notice how

1 the contributions from each device are similarly fused at every point,
P = APAT + Q—AP°HT (R+ H P°°HT> HP AT, no matter what type of device (or combination of devices). This is

] what makes the approach so general.
We use the MacFarlane—Potter—Fath “Eigenstructure Method” [13]

to calculate the DARE solutioR” as follows. Given the model For eachn-dimensional poinki € {X1,Xp,...,Xp}
parameters\, Q, H, andR from Section 2.1 we first calculate the W5 = zerog2n, 2n)
2n x 2n discrete-time Hamiltonian matri¥ as For each device .
CTuTool T Determinedt for the device
w— { A+QA" H'R™™H QA } . (15) EvaluateA with that 5t using (11)
ATTHTRH AT EvaluateQ with that 8t using (12)—(14)

EvaluateH atx;

We then form il
EvaluateR at X

B| - = - ComputeW using (15)
&|-EE..a (a6) Somputey
. _ _ ) Compute then eigenvectors o¥s as in (16)
from then characteristic eigenvectofg,ey,...,ey) of ¥, and fi- ComputeP® as in (17)

nally usingB andC we compute the steady-state covariance as

p° —pcL. 17) Note that theH andR must be _evaluated with_ the appropriate mea-
surement (or Jacobian) function for the device.

As described in the next section we do this at a representative set of Finally one can use surface or volume visualization techniques
points{X1,Xz,...,Xp} throughout the working volume, computing  to render the complete set of poir& for 1 <i < p. We show
H andR at each point, and using the sakandQ throughout. examples of both in the following section.

Note that one can also compute tlexay time constantA, Q,H,R)
corresponding t®* [13]. This indicates the time it would take any
algorithm to converge on an estimatexgtwith steady-state uncer-
tainty P*, given the available measurements. This is in some sense3' RESULTS

a lower bound on the latency of the system at pmint The results presented in this section and throughout this paper
. are the product of both Matld¥ simulations and our working
2.3 Complete Steady-State Computation system prototype, Artemis. Artemis is written in Interactive Data
In the preceding section we provided a general solutioR*to Languagé (IDL), a development environment targeted for data
Here we illustrate the process we use to comiitdor all of the analysis and visualization applications. We chose IDL because
desired points in the working volume. of its built-in image processing, matrix math, GUI builder, and
To begin with one has to define tpeocess modelin particular cross-platform portability. While Artemis was developed in the

one must decide on the form A‘(&t) andQ(at)’ for examp|e asin Windows enVirOnment, IDLs Virtual Machine allows deployment
equations (11)—(14). Note that we include #teparameters here ~ across multiple platforms including Mac OS X and Linux.
to emphasize thak andQ are functions obt. .

Next one needs to define distinoeasurement modedsd cor- 3.1 Evaluation
respondindH andR matrices (functions) for each device type. For Our approach to evaluating estimated expected performance was
our example acoustic tracking system, one could think of four sepa- twofold. First, we compared our steady-state predictions to the
rate measurement models or a single parametric model. If using themeasurement error reported in [30] using a HiBall-300mpti-
latter approachtd andR are functions ok and any other parame-  cal tracking system. Second, we performed a series of controlled
ters of interest (e.qg., electrical biases, focal length, etc.). In a hybrid experiments (again using the HiBall-300f), estimated the ac-
system one would typically have multiple parametric measurement tual performance over a wide area, and compared the results to the
models, e.g., one for acoustic devices and one for cameras as irsteady-state predictions.
the hybrid example we present in Section 3. In any case the func- Figure 5 shows our experimental setup in which we moved the
tion that implements each measurement model must handle device-HiBall sensor along a series of paths mechanically constrained along
specific processing (e.g., beacon selection) and exceptions such aa rigid rail. 3rdTech engineers graciously provided us with low-
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Figure 4: P* estimates at Left: 1.9 meter “head” height, and Right: 1.0 meter “waist” height

level access to the system, so we were able to log HiBall data at aperforming center area. Performance estimates in the far corner
very high rate (1-3 KHz). We then used the data to compare with of the surface show values of 0.45 to 0.50 mm (-3.30 to -3.35 log
steady-state estimates. In particular, we fitted curves to the “rail meters).
path” data, then looked at deviations from those curves. Figures 6 and 7 show some numerical results from the HiBall rail
Our experimental rail rig was approximately seven feet (1.4 m) experiments depicted in Figure 5. The plot on the left in Figure 6
long, with a constant height of approximately 1.9 meters. In order shows the “jitter” of the real system’s individual position estimates
to perform a wide-area comparison, we positioned the rig along 28 (deviation from a curve fit to the data) and the plot on the right
paths crisscrossing the area, forming a grid that ranged from 3.0 toshows the estimated steady-state covariaR€@.(During our ini-
6.0 meters in the-direction and 5.5 to 10.0 meters yn We in- tial analysis of the real system'’s deviation from a line fit we came
tentionally arranged the grid to extend beyond one ceiling edge by to three realizations. First, we realized that the rail was sagging
about one meter, allowing for a region of potentially deteriorating several millimeters as a result of its own weight and the load of the

performance where the HiBall is starved for measurements. HiBall. Second, we realized that in the real system there is inherent
. noise (uncertainty) in both the HiBall camera models and the LED
3.1.1 The HiBallM System positions. Third, we realized that we were adding mechanical noise

The HiBa"_SOOJM system estimates the sensor (target) pose by (friction, gait, etc.) as we walked the HiBall sensor along the rails.
sighting a two-dimensional array of ceiling-mounted light emit- To address the first problem we computed the deviation of the real
ting diodes (LEDs). For our steady-state estimates we modeled data from adeflection curveas described in [24]. To address the
the HiBall using the same process model the system uses, and g€cond and third problems we increased the expected measurement
single 1000 Hz measurement model. In the measurement model noise slightly. The results are shown in Figure 6. Both actual and
we specified a grid of beacons identical to an actual installation, €stimated system performance are qualitatively and quantitatively
spaced 10 cm apart across a 6.3 m by 9.0 m ceiling. Just as the acconsistent under the ceiling. The performance degrades similarly
tual system continually chooses a set of nearby LEDs for tracking, in both the actual and estimated data as the HiBall sensor moves
our measurement model chooses a subset of visible LEDs for per-out from under the ceiling LEDs. At most points where the real
formance analysis. Further, both measurement models incorporateSystem lost tracking, our performance method indicated very high
occlusion testing in order to choose visible LEDs. or infinite P* if there was no solution.

In 1999, the developers of the HiBall tracking system reported
estimation errors of 0.2 mm “for nearly all of the working volume” 3.1.2 A Sparse HiBall! System
and 0.5 mm at a height of approximately 1 meter [30]. We modeled 1o further validate the performance estimation method, we dis-
this setup for comparison and Figure 4 shows the resulting surface gpeq every other row of LEDs in the ceiling, effectively doubling
plots of P* analysis at 1.9 meters (head height) and at 1.0 meter the gistance between rows. We did this both in the actual sys-
(W_a_lst height) across an area at the corner of our current HiBall tem and in our steady-state models. Here again (Figure 7) we
ceiling. At 1.9 meters, th” estimates are around 0.20t0 0.22mm  fing the performance estimates are similar to the actual system
(-3.6 0 -3.7 log meters). Note the peaks and valleys in performance performance. While the overall “sparse” system performance re-
corresponding to the location of the LED strips in the ceiling. At mains very good with the standard deviation range increasing only
first glance, it would seem that tf estimates at 1.0 meter predict slightly, the performance is less consistent with clear peaks and

better than the reported 0.5 mm (-3.0 log meters) with the more \4|jeys of accuracy that map directly to the alternating enabled or
ceiling-central estimates at or around 0.3 mm (-3.5 log meters). gisapled rows of LEDs.

However, upon reexamination of [30], we determined that the test
setup had been positioned at the ceil@tgeand not in the better-
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sliding
HiBall™

mobile supports tape marking rail approximate
paths on floor ceiling edge

‘n‘fik* S— ‘

Figure 5: Experimental setup. Left: shows the LED strips on ceiling, the precision 80/23 rail, the mobile rail supports, and the
sliding HiBall ™ fixture (see also the inset). Right: the tape on the floor marks the 28 different linear rail paths that collectively form
a grid intended to span the edge of the ceiling (dashed red line) and some portion of the interior.

log deviation of stats- GRID. batch-full fram ling fits (complete) log 35 positien sdev for plane-20050412-path-PV.h-Pss-full (complete)

sdev [log meters]
sdev [lag meters]

y [meters] e = 3 8 y [meters] e 3

% [meters] % [meters]

Figure 6: Comparison of actual HiBall™ position stddev with P* estimates. Left position stddev (from curve fit) of the real system.
The surface is interpolated over the stddev values. The blue circles indicate actual values. Rigi®; estimates over a plane fit to the
rail data. The semi-transparent vertical planes in both plots marks the edge of the “ceiling” (the LED array) around 9 meters iry.

lag §S position sdev for plane-20050412-path-PV.h-Pss-hall {under ceiling)

7 7
2 2
g 3
g g
3 3
57 3

-4,

p¢
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Figure 7: Comparison of actual HiBall™ position stddev (left) with P* estimates (right) when alternating rows of LEDs are disabled.
See also caption for Figure 6. Note that the data off the “ceiling” was excluded from both plots to increase the dynamic range.
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3.2 An Acoustic Example

Figure 1 shows the results from the performance estimation for Jdu Ju du
our hypothetical acoustic system. The red spheres at the top mark H=| % o2 oxd
the positions of the four transmitters (speakers). The system is ox[ Ix[2 %3

modeled with a constant update rate of 50 Biz-£ 0.02 seconds).

The Q matrix is a 6x 6 matrix of the form (12)—(14) witlgx = For R we used a function similar to that of the preceding acoustic
qy= 0.395 andyz=0.107. The measurement covariance matrixis example, where the measurement error covariance increases as the
a 4x 4 diagonal matrix withR{i,i] = O.OOSz'ﬁ]2 for 1<i <4, where square of the distance.
Zis the range given in Sectidd.1.2 For simplicity, we chose a In Figure 8 one can see that the view frusta of the individual cam-
measurement model covariance formula that is a qUadratiC function eras are recognizab|e' as the performance increases in the Over|ap_
of distance. We do not claim that this is the best noise model avail- ping regions. In this configuration, the best performance is located
able and suggest that the measurement model can be modified tgt the horizontal center at a height of 0.24 meters. The worst per-
represent any function desired. formance below the first frusta overlap (0.68 meters) occurs at the
bottom corners of the volume. Note that this figure uses a reverse
. ... color map where better performance (lower uncertainty) is repre-
3.3 A Multi-Camera Acquisition System sented by the brighter areas and lower performance (higher uncer-
We modeled an existing eight-camera acquisition rig that we use tainty) is represented by the darker areas. This color mapping was
for 3D computer vision-based scene reconstruction research. (Seehosen for improved visibility.
Figure 8.) A current goal related to that research is to determine

how to rearrange cameras, and we are using our tools to evaluat . . .
different Conﬁgﬂraﬂons_ g 3.4 Mixed Devices (A Hybrid System)
To illustrate the generality of our approach, we combined the
L —— acoustic model of Section 3.2 with the multi-camera system model
1z 10 08 06 W of Section 3.3. Given the pseudo-code at the end of Section 2.3, we
Eig Max (L-inf norm)[log meters] L simply added the camera device list and parametric measurement
LY model to the loop, along with the acoustic devices and model. The
results are shown in Figure 9 (with reverse color map), where one
2 ” can see how overaP” decreases (performance improves) when

compared to either the acoustic or multi-camera systems alone.
Further, the system can now “see” at heights above 0.68 meters due
to the inclusion of the acoustic sensors. In fact, the region of peak

performance has moved from the horizontal center (camera) and

the points closest to the speakers (acoustic) to the top four corners
of the working volume (height of 0.68 meters). Cf. Figure 1.

-18 16 14 1.2 -1.0 9 »
Eig Max (L-inf norm)[log meters] .
L}

Figure 8: A volume rendering of a P* analysis of an 8-camera
vision-based acquisition rig. The grey camera icons st the top
indicate accurate positions and rotations of the cameras.

The process model we used was the same as in the preceding
acoustic example, with an update rate of 30 Hz. For the measure-
ment function we used a simple pinhole camera model based on
the Point Grey Dragonfi™ camera specifications used (6 mm fo-
cal length, 640x480 resolution), where the image coordinates are
given by

{ u } _ { X [1]/X[3] }
- v
v X[2/X[3] Figure 9: A P* visualization for a hypothetical hybrid system

with acoustic devices and cameras. Acoustic transmitters and
wherexX = R(X —C), Ris a camera rotation matrix; is the 3D cameras are depicted with small red and gray icons.
point where we are computing®, andc is the camera position
vector. Since our measurement function is non-linear, we used the
linear approximation given by the measurement Jacobian,
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regions of peak |
performance

Figure 10: A hypothetical eight-camera motion capture system. Left: picture depicting the arrangement of the eight cameras in the
room. Center: volume visualization of P* throughout the space. Right: Surface plot at plane of peak performance (z=5.6 feet).

3.5 A Motion Capture System proaches or exhaustive simulations, one of our goals is to reduce

a common paradigm. Cameras are position at fixed locations in System design parameters. To this end we are investigating ap-

the environment, looking inward toward the capture area, so that Proaches such as parallel, adaptive, demand-driven computation to

they can observe active or passive (reflective) targets affixed to theiMprove the responsiveness of the application. We hope to make

moving human(s). As such the modeling foP% analysis is very Artemis available to others, along with a repository of process and

similar to the preceding multi-camera acquisition system. measurement models to use as building blocks in system design
Figure 10 depicts a hypothetical eight-camera motion capture and analysis.

system, and a correspondiRf visualization. While the absolute

P* values may not be accurate in this analysis (and so are notin-5, ACKNOWLEDGEMENTS

cluded) the relative results from the volume visualization show us We want to acknowledge Professor Gary Bishop for discussions

tbha::’ as er might e?(pec;, there alrle dﬁad Sdpo_tﬁ in the _cor?hers aﬂqelated to this work, and Erica Stanley for her contributions to the
etier periormance in a hexagonally-shaped pifiar running throug prototype system. This research was supported by National Li-

the center of the volume. Numerical analysis showed that peak brary of Medicine contract NO1-LM-3-3514: “3D Telepresence for

. . i o '8\1edical Consultation: Extending Medical Expertise Throughout,
pairs at heights of 5 feet and 7 feet. A surface visualization at th'seBetween and Beyond Hospitals.”

height clearly shows that the areas of estimated peak performanc
are close to the camera pairs as indicated in Figure 10neanith
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